1
|
Yi D, Wakeel MA, Agarwal V. Gatekeeping Activity of Collinear Ketosynthase Domains Limits Product Diversity for Engineered Type I Polyketide Synthases. Biochemistry 2024; 63:2240-2244. [PMID: 39186058 PMCID: PMC11411704 DOI: 10.1021/acs.biochem.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Engineered type I polyketide synthases (type I PKSs) can enable access to diverse polyketide pharmacophores and generate non-natural natural products. However, the promise of type I PKS engineering remains modestly realized at best. Here, we report that ketosynthase (KS) domains, the key carbon-carbon bond-forming catalysts, control which intermediates are allowed to progress along the PKS assembly lines and which intermediates are excluded. Using bimodular PKSs, we demonstrate that KSs can be exquisitely selective for the upstream polyketide substrate while retaining promiscuity for the extender unit that they incorporate. It is then the downstream KS that acts as a gatekeeper to ensure the fidelity of the extender unit incorporation by the upstream KS. We also demonstrate that these findings are not universally applicable; substrate-tolerant KSs do allow engineered polyketide intermediates to be extended. Our results demonstrate the utility for evaluating the KS-induced bottlenecks to gauge the feasibility of engineering PKS assembly lines.
Collapse
Affiliation(s)
- Dongqi Yi
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Mujeeb A. Wakeel
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Buyachuihan L, Reiners S, Zhao Y, Grininger M. The malonyl/acetyl-transferase from murine fatty acid synthase is a promiscuous engineering tool for editing polyketide scaffolds. Commun Chem 2024; 7:187. [PMID: 39181936 PMCID: PMC11344766 DOI: 10.1038/s42004-024-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Modular polyketide synthases (PKSs) play a vital role in the biosynthesis of complex natural products with pharmaceutically relevant properties. Their modular architecture makes them an attractive target for engineering to produce platform chemicals and drugs. In this study, we demonstrate that the promiscuous malonyl/acetyl-transferase domain (MAT) from murine fatty acid synthase serves as a highly versatile tool for the production of polyketide analogs. We evaluate the relevance of the MAT domain using three modular PKSs; the short trimodular venemycin synthase (VEMS), as well as modules of the PKSs deoxyerythronolide B synthase (DEBS) and pikromycin synthase (PIKS) responsible for the production of the antibiotic precursors erythromycin and pikromycin. To assess the performance of the MAT-swapped PKSs, we analyze the protein quality and run engineered polyketide syntheses in vitro. Our experiments include the chemoenzymatic synthesis of fluorinated macrolactones. Our study showcases MAT-based reprogramming of polyketide biosynthesis as a facile option for the regioselective editing of substituents decorating the polyketide scaffold.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Simon Reiners
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yue Zhao
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Ray KA, Saif N, Keatinge-Clay AT. Modular polyketide synthase ketosynthases collaborate with upstream dehydratases to install double bonds. Chem Commun (Camb) 2024; 60:8712-8715. [PMID: 39056119 PMCID: PMC11321453 DOI: 10.1039/d4cc03034f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
A VMYH motif was determined to help ketosynthases in polyketide assembly lines select α,β-unsaturated intermediates from an equilibrium mediated by an upstream dehydratase. Alterations of this motif decreased ketosynthase selectivity within a model tetraketide synthase, most significantly when replaced by the TNGQ motif of ketosynthases that accept D-β-hydroxy intermediates.
Collapse
Affiliation(s)
- Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | - Nisha Saif
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| |
Collapse
|
4
|
Ray KA, Lutgens JD, Bista R, Zhang J, Desai RR, Hirsch M, Miyazawa T, Cordova A, Keatinge-Clay AT. Assessing and harnessing updated polyketide synthase modules through combinatorial engineering. Nat Commun 2024; 15:6485. [PMID: 39090122 PMCID: PMC11294587 DOI: 10.1038/s41467-024-50844-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The modular nature of polyketide assembly lines and the significance of their products make them prime targets for combinatorial engineering. The recently updated module boundary has been successful for engineering short synthases, yet larger synthases constructed using the updated boundary have not been investigated. Here we describe our design and implementation of a BioBricks-like platform to rapidly construct 5 triketide, 25 tetraketide, and 125 pentaketide synthases to test every module combination of the pikromycin synthase. Anticipated products are detected from 60% of the triketide synthases, 32% of the tetraketide synthases, and 6.4% of the pentaketide synthases. We determine ketosynthase gatekeeping and module-skipping are the principal impediments to obtaining functional synthases. The platform is also employed to construct active hybrid synthases by incorporating modules from the erythromycin, spinosyn, and rapamycin assembly lines. The relaxed gatekeeping of a ketosynthase in the rapamycin synthase is especially encouraging in the quest to produce designer polyketides.
Collapse
Affiliation(s)
- Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Joshua D Lutgens
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ramesh Bista
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ronak R Desai
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Antonio Cordova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Johnston CW, Badran AH. Natural and engineered precision antibiotics in the context of resistance. Curr Opin Chem Biol 2022; 69:102160. [PMID: 35660248 DOI: 10.1016/j.cbpa.2022.102160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Antibiotics are essential weapons in our fight against infectious disease, yet the consequences of broad-spectrum antibiotic use on microbiome stability and pathogen resistance are prompting investigations into more selective alternatives. Echoing the advent of precision medicine in oncology, precision antibiotics with focused activities are emerging as a means of addressing infections without damaging microbiomes or incentivizing resistance. Historically, antibiotic design principles have been gleaned from Nature, and reinvestigation of overlooked antibacterials is now providing scaffolds and targets for the design of pathogen-specific drugs. In this perspective, we summarize the biosynthetic and antibacterial mechanisms used to access these activities, and discuss how such strategies may be co-opted through engineering approaches to afford precision antibiotics.
Collapse
Affiliation(s)
- Chad W Johnston
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ahmed H Badran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Guzman KM, Khosla C. Fragment antigen binding domains (F abs) as tools to study assembly-line polyketide synthases. Synth Syst Biotechnol 2022; 7:506-512. [PMID: 34977395 PMCID: PMC8683866 DOI: 10.1016/j.synbio.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
The crystallization of proteins remains a bottleneck in our fundamental understanding of their functions. Therefore, discovering tools that aid crystallization is crucial. In this review, the versatility of fragment-antigen binding domains (Fabs) as protein crystallization chaperones is discussed. Fabs have aided the crystallization of membrane-bound and soluble proteins as well as RNA. The ability to bind three Fabs onto a single protein target has demonstrated their potential for crystallization of challenging proteins. We describe a high-throughput workflow for identifying Fabs to aid the crystallization of a protein of interest (POI) by leveraging phage display technologies and differential scanning fluorimetry (DSF). This workflow has proven to be especially effective in our structural studies of assembly-line polyketide synthases (PKSs), which harbor flexible domains and assume transient conformations. PKSs are of interest to us due to their ability to synthesize an unusually broad range of medicinally relevant compounds. Despite years of research studying these megasynthases, their overall topology has remained elusive. One Fab in particular, 1B2, has successfully enabled X-ray crystallographic and single particle cryo-electron microscopic (cryoEM) analyses of multiple modules from distinct assembly-line PKSs. Its use has not only facilitated multidomain protein crystallization but has also enhanced particle quality via cryoEM, thereby enabling the visualization of intact PKS modules at near-atomic (3-5 Å) resolution. The identification of PKS-binding Fabs can be expected to continue playing a key role in furthering our knowledge of polyketide biosynthesis on assembly-line PKSs.
Collapse
Affiliation(s)
- Katarina M. Guzman
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins. Nat Commun 2022; 13:515. [PMID: 35082289 PMCID: PMC8792006 DOI: 10.1038/s41467-022-27955-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The modular organization of the type I polyketide synthases (PKSs) would seem propitious for rational engineering of desirable analogous. However, despite decades of efforts, such experiments remain largely inefficient. Here, we combine multiple, state-of-the-art approaches to reprogram the stambomycin PKS by deleting seven internal modules. One system produces the target 37-membered mini-stambomycin metabolites − a reduction in chain length of 14 carbons relative to the 51-membered parental compounds − but also substantial quantities of shunt metabolites. Our data also support an unprecedented off-loading mechanism of such stalled intermediates involving the C-terminal thioesterase domain of the PKS. The mini-stambomycin yields are reduced relative to wild type, likely reflecting the poor tolerance of the modules downstream of the modified interfaces to the non-native substrates. Overall, we identify factors contributing to the productivity of engineered whole assembly lines, but our findings also highlight the need for further research to increase production titers. Genetic engineering of the type I polyketide synthases (PKSs) to produce desirable analogous remains largely inefficient. Here, the authors leverage multiple approaches to delete seven internal modules from the stambomycin PKS and generate 37-membered mini-stambomycin macrolactones.
Collapse
|
8
|
Hirsch M, Fitzgerald BJ, Keatinge-Clay AT. How cis-Acyltransferase Assembly-Line Ketosynthases Gatekeep for Processed Polyketide Intermediates. ACS Chem Biol 2021; 16:2515-2526. [PMID: 34590822 PMCID: PMC9879353 DOI: 10.1021/acschembio.1c00598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With the redefinition of polyketide synthase (PKS) modules, a new appreciation of their most downstream domain, the ketosynthase (KS), is emerging. In addition to performing its well-established role of generating a carbon-carbon bond between an acyl-CoA building block and a growing polyketide, it may gatekeep against incompletely processed intermediates. Here, we investigate 739 KSs from 92 primarily actinomycete, cis-acyltransferase assembly lines. When KSs were separated into 16 families based on the chemistries at the α- and β-carbons of their polyketide substrates, a comparison of 32 substrate tunnel residues revealed unique sequence fingerprints. Surprisingly, additional fingerprints were detected when the chemistry at the γ-carbon was considered. Representative KSs were modeled bound to their natural polyketide substrates to better understand observed patterns, such as the substitution of a tryptophan by a smaller residue to accommodate an l-α-methyl group or the substitution of four smaller residues by larger ones to make better contact with a primer unit or diketide. Mutagenesis of a conserved glutamine in a KS within a model triketide synthase indicates that the substrate tunnel is sensitive to alteration and that engineering this KS to accept unnatural substrates may require several mutations.
Collapse
Affiliation(s)
- Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brendan J. Fitzgerald
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Miyazawa T, Fitzgerald BJ, Keatinge-Clay AT. Preparative production of an enantiomeric pair by engineered polyketide synthases. Chem Commun (Camb) 2021; 57:8762-8765. [PMID: 34378565 DOI: 10.1039/d1cc03073f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using the updated module boundary of polyketide assembly lines, modules from the pikromycin synthase were recombined into engineered synthases that furnish an enantiomeric pair of 2-stereocenter triketide lactones at >99% ee with yields up to 0.39 g per liter of E. coli K207-3 in shake flasks.
Collapse
Affiliation(s)
- Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | | | | |
Collapse
|
10
|
|
11
|
Xu J, Zhang X, Huang F, Li G, Leadlay PF. Efophylins A and B, Two C2-Asymmetric Macrodiolide Immunosuppressants from Streptomyces malaysiensis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1579-1586. [PMID: 33973788 DOI: 10.1021/acs.jnatprod.1c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genomics-inspired isolation led to the identification of two new natural congeneric C2-asymmetric macrodiolide immunosuppressants, named efophylins A (1) and B (2), from Streptomyces malaysiensis DSM 4137. Their structures were elucidated by spectroscopic and computational methods and were in agreement with biosynthetic predictions from the efophylin gene cluster. Compound 2 exhibited potent immunosuppressive activity and demonstrated to inhibit the activation of the NFAT and block NFAT dephosphorylation in vitro. The immunosuppressive activity of compound 2 is possibly at least in part via the CaN/NFAT signaling pathway.
Collapse
Affiliation(s)
- Jing Xu
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Xuexia Zhang
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Gang Li
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
12
|
Mindrebo JT, Chen A, Kim WE, Re RN, Davis TD, Noel JP, Burkart MD. Structure and Mechanistic Analyses of the Gating Mechanism of Elongating Ketosynthases. ACS Catal 2021; 11:6787-6799. [DOI: 10.1021/acscatal.1c00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jeffrey T. Mindrebo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Rebecca N. Re
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joseph P. Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
13
|
Yi D, Acharya A, Gumbart JC, Gutekunst WR, Agarwal V. Gatekeeping Ketosynthases Dictate Initiation of Assembly Line Biosynthesis of Pyrrolic Polyketides. J Am Chem Soc 2021; 143:7617-7622. [DOI: 10.1021/jacs.1c02371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Klaus M, Buyachuihan L, Grininger M. Ketosynthase Domain Constrains the Design of Polyketide Synthases. ACS Chem Biol 2020; 15:2422-2432. [PMID: 32786257 DOI: 10.1021/acschembio.0c00405] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Modular polyketide synthases (PKSs) produce complex, bioactive secondary metabolites in assembly line-like multistep reactions. Longstanding efforts to produce novel, biologically active compounds by recombining intact modules to new modular PKSs have mostly resulted in poorly active chimeras and decreased product yields. Recent findings demonstrate that the low efficiencies of modular chimeric PKSs also result from rate limitations in the transfer of the growing polyketide chain across the noncognate module:module interface and further processing of the non-native polyketide substrate by the ketosynthase (KS) domain. In this study, we aim at disclosing and understanding the low efficiency of chimeric modular PKSs and at establishing guidelines for modular PKSs engineering. To do so, we work with a bimodular PKS testbed and systematically vary substrate specificity, substrate identity, and domain:domain interfaces of the KS involved reactions. We observe that KS domains employed in our chimeric bimodular PKSs are bottlenecks with regards to both substrate specificity as well as interaction with the acyl carrier protein (ACP). Overall, our systematic study can explain in quantitative terms why early oversimplified engineering strategies based on the plain shuffling of modules mostly failed and why more recent approaches show improved success rates. We moreover identify two mutations of the KS domain that significantly increased turnover rates in chimeric systems and interpret this finding in mechanistic detail.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| |
Collapse
|
15
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
16
|
Hwang S, Lee N, Cho S, Palsson B, Cho BK. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Front Mol Biosci 2020; 7:87. [PMID: 32500080 PMCID: PMC7242659 DOI: 10.3389/fmolb.2020.00087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
In nature, various enzymes govern diverse biochemical reactions through their specific three-dimensional structures, which have been harnessed to produce many useful bioactive compounds including clinical agents and commodity chemicals. Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are particularly unique multifunctional enzymes that display modular organization. Individual modules incorporate their own specific substrates and collaborate to assemble complex polyketides or non-ribosomal polypeptides in a linear fashion. Due to the modular properties of PKSs and NRPSs, they have been attractive rational engineering targets for novel chemical production through the predictable modification of each moiety of the complex chemical through engineering of the cognate module. Thus, individual reactions of each module could be separated as a retro-biosynthetic biopart and repurposed to new biosynthetic pathways for the production of biofuels or commodity chemicals. Despite these potentials, repurposing attempts have often failed owing to impaired catalytic activity or the production of unintended products due to incompatible protein–protein interactions between the modules and structural perturbation of the enzyme. Recent advances in the structural, computational, and synthetic tools provide more opportunities for successful repurposing. In this review, we focused on the representative strategies and examples for the repurposing of modular PKSs and NRPSs, along with their advantages and current limitations. Thereafter, synthetic biology tools and perspectives were suggested for potential further advancement, including the rational and large-scale high-throughput approaches. Ultimately, the potential diverse reactions from modular PKSs and NRPSs would be leveraged to expand the reservoir of useful chemicals.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Namil Lee
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
17
|
Yeo WL, Heng E, Tan LL, Lim YW, Ching KC, Tsai DJ, Jhang YW, Lauderdale TL, Shia KS, Zhao H, Ang EL, Zhang MM, Lim YH, Wong FT. Biosynthetic engineering of the antifungal, anti-MRSA auroramycin. Microb Cell Fact 2020; 19:3. [PMID: 31906943 PMCID: PMC6943886 DOI: 10.1186/s12934-019-1274-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Using an established CRISPR-Cas mediated genome editing technique for streptomycetes, we explored the combinatorial biosynthesis potential of the auroramycin biosynthetic gene cluster in Streptomyces roseosporous. Auroramycin is a potent anti-MRSA polyene macrolactam. In addition, auroramycin has antifungal activities, which is unique among structurally similar polyene macrolactams, such as incednine and silvalactam. In this work, we employed different engineering strategies to target glycosylation and acylation biosynthetic machineries within its recently elucidated biosynthetic pathway. Auroramycin analogs with variations in C-, N- methylation, hydroxylation and extender units incorporation were produced and characterized. By comparing the bioactivity profiles of five of these analogs, we determined that unique disaccharide motif of auroramycin is essential for its antimicrobial bioactivity. We further demonstrated that C-methylation of the 3, 5-epi-lemonose unit, which is unique among structurally similar polyene macrolactams, is key to its antifungal activity.
Collapse
Affiliation(s)
- Wan Lin Yeo
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Elena Heng
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore
| | - Lee Ling Tan
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore
| | - Yi Wee Lim
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Kuan Chieh Ching
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - De-Juin Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Yi Wun Jhang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Huimin Zhao
- Departments of Chemical and Biomolecular Engineering, Chemistry, Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ee Lui Ang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Mingzi M Zhang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yee Hwee Lim
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore.
| | - Fong T Wong
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore.
| |
Collapse
|
18
|
Engineering enzymatic assembly lines to produce new antibiotics. Curr Opin Microbiol 2019; 51:88-96. [PMID: 31743841 PMCID: PMC6908967 DOI: 10.1016/j.mib.2019.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Many clinical antibiotics are natural products produced by thiotemplate-based assembly line biosynthetic pathways. Assembly line pathways provide an opportunity for rational bioengineering to modify complex natural product structures. New, rule-based mix and match strategies facilitate the engineering of non-ribosomal peptide assembly line synthetases. Evolutionary guided approaches highlight new avenues for polyketide synthase assembly line reprogramming.
Numerous important therapeutic agents, including widely-used antibiotics, anti-cancer drugs, immunosuppressants, agrochemicals and other valuable compounds, are produced by microorganisms. Many of these are biosynthesised by modular enzymatic assembly line polyketide synthases, non-ribosomal peptide synthetases, and hybrids thereof. To alter the backbone structure of these valuable but difficult to modify compounds, the respective enzymatic machineries can be engineered to create even more valuable molecules with improved properties and/or to bypass resistance mechanisms. In the past, many attempts to achieve assembly line pathway engineering failed or led to enzymes with compromised activity. Recently our understanding of assembly line structural biology, including an appreciation of the conformational changes that occur during the catalytic cycle, have improved hugely. This has proven to be a driving force for new approaches and several recent examples have demonstrated the production of new-to-nature molecules, including anti-infectives. We discuss the developments of the last few years and highlight selected, illuminating examples of assembly line engineering.
Collapse
|
19
|
Eng CH, Backman TWH, Bailey CB, Magnan C, García Martín H, Katz L, Baldi P, Keasling JD. ClusterCAD: a computational platform for type I modular polyketide synthase design. Nucleic Acids Res 2019; 46:D509-D515. [PMID: 29040649 PMCID: PMC5753242 DOI: 10.1093/nar/gkx893] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/24/2017] [Indexed: 01/10/2023] Open
Abstract
ClusterCAD is a web-based toolkit designed to leverage the collinear structure and deterministic logic of type I modular polyketide synthases (PKSs) for synthetic biology applications. The unique organization of these megasynthases, combined with the diversity of their catalytic domain building blocks, has fueled an interest in harnessing the biosynthetic potential of PKSs for the microbial production of both novel natural product analogs and industrially relevant small molecules. However, a limited theoretical understanding of the determinants of PKS fold and function poses a substantial barrier to the design of active variants, and identifying strategies to reliably construct functional PKS chimeras remains an active area of research. In this work, we formalize a paradigm for the design of PKS chimeras and introduce ClusterCAD as a computational platform to streamline and simplify the process of designing experiments to test strategies for engineering PKS variants. ClusterCAD provides chemical structures with stereochemistry for the intermediates generated by each PKS module, as well as sequence- and structure-based search tools that allow users to identify modules based either on amino acid sequence or on the chemical structure of the cognate polyketide intermediate. ClusterCAD can be accessed at https://clustercad.jbei.org and at http://clustercad.igb.uci.edu.
Collapse
Affiliation(s)
- Clara H Eng
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Tyler W H Backman
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
| | - Constance B Bailey
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christophe Magnan
- Department of Computer Science, University of California, Irvine, CA 92697, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Héctor García Martín
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
| | - Leonard Katz
- QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, CA 92697, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Jay D Keasling
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA.,QB3 Institute, University of California, Berkeley, CA 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
20
|
Lin GM, Warden-Rothman R, Voigt CA. Retrosynthetic design of metabolic pathways to chemicals not found in nature. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Klaus M, D’Souza AD, Nivina A, Khosla C, Grininger M. Engineering of Chimeric Polyketide Synthases Using SYNZIP Docking Domains. ACS Chem Biol 2019; 14:426-433. [PMID: 30682239 DOI: 10.1021/acschembio.8b01060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineering of assembly line polyketide synthases (PKSs) to produce novel bioactive compounds has been a goal for over 20 years. The apparent modularity of PKSs has inspired many engineering attempts in which entire modules or single domains were exchanged. In recent years, it has become evident that certain domain-domain interactions are evolutionarily optimized and, if disrupted, cause a decrease of the overall turnover rate of the chimeric PKS. In this study, we compared different types of chimeric PKSs in order to define the least invasive interface and to expand the toolbox for PKS engineering. We generated bimodular chimeric PKSs in which entire modules were exchanged, while either retaining a covalent linker between heterologous modules or introducing a noncovalent docking domain, or SYNZIP domain, mediated interface. These chimeric systems exhibited non-native domain-domain interactions during intermodular polyketide chain translocation. They were compared to otherwise equivalent bimodular PKSs in which a noncovalent interface was introduced between the condensing and processing parts of a module, resulting in non-native domain interactions during the extender unit acylation and polyketide chain elongation steps of their catalytic cycles. We show that the natural PKS docking domains can be efficiently substituted with SYNZIP domains and that the newly introduced noncovalent interface between the condensing and processing parts of a module can be harnessed for PKS engineering. Additionally, we established SYNZIP domains as a new tool for engineering PKSs by efficiently bridging non-native interfaces without perturbing PKS activity.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Departments of Chemistry and Chemical Engineering and Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Alicia D. D’Souza
- Departments of Chemistry and Chemical Engineering and Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Aleksandra Nivina
- Departments of Chemistry and Chemical Engineering and Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering and Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Grote M, Kushnir S, Pryk N, Möller D, Erver J, Ismail-Ali A, Schulz F. Identification of crucial bottlenecks in engineered polyketide biosynthesis. Org Biomol Chem 2019; 17:6374-6385. [DOI: 10.1039/c9ob00831d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quo vadis combinatorial biosynthesis: STOP signs through substrate scope limitations lower the yields in engineered polyketide biosynthesis using cis-AT polyketide synthases.
Collapse
Affiliation(s)
- Marius Grote
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Susanna Kushnir
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Niclas Pryk
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - David Möller
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Julian Erver
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Ahmed Ismail-Ali
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Frank Schulz
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| |
Collapse
|
23
|
Abdel-Hameed ME, Bertrand RL, Donald LJ, Sorensen JL. Lichen ketosynthase domains are not responsible for inoperative polyketide synthases in Ascomycota hosts. Biochem Biophys Res Commun 2018; 503:1228-1234. [DOI: 10.1016/j.bbrc.2018.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
|
24
|
Synthetic biology of polyketide synthases. ACTA ACUST UNITED AC 2018; 45:621-633. [DOI: 10.1007/s10295-018-2021-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/03/2018] [Indexed: 12/31/2022]
Abstract
Abstract
Complex reduced polyketides represent the largest class of natural products that have applications in medicine, agriculture, and animal health. This structurally diverse class of compounds shares a common methodology of biosynthesis employing modular enzyme systems called polyketide synthases (PKSs). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we describe the chassis (hosts) that are used to assemble, express, and engineer the parts and devices to produce polyketides. We describe a recently developed software tool to design PKS system and provide an example of its use. Finally, we provide perspectives of what needs to be accomplished to fully realize the potential that synthetic biology approaches bring to this class of molecules.
Collapse
|
25
|
Kalkreuter E, Williams GJ. Engineering enzymatic assembly lines for the production of new antimicrobials. Curr Opin Microbiol 2018; 45:140-148. [PMID: 29733997 DOI: 10.1016/j.mib.2018.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 01/06/2023]
Abstract
A large portion of natural products are biosynthesized by the polyketide synthase and non-ribosomal peptide synthetase enzymatic assembly lines. Recent advancements in the study of these megasynthases has led to many new examples that demonstrate the production of non-natural natural products. The field is likely nearing the ability to design and build new biosynthetic pathways de novo. We discuss the various recent approaches taken towards this goal, focusing on the installation of new substrates, the swapping of enzymatic domains and modules, and the impact of metabolic engineering and synthetic biology. We also address the challenges remaining alongside the many successes in this area.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, United States.
| |
Collapse
|
26
|
Klaus M, Grininger M. Engineering strategies for rational polyketide synthase design. Nat Prod Rep 2018; 35:1070-1081. [DOI: 10.1039/c8np00030a] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this review, we highlight strategies in engineering polyketide synthases (PKSs). We focus on important protein–protein interactions that constitute an intact PKS assembly line.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Cluster of Excellence for Macromolecular Complexes
- Goethe University Frankfurt
- 60438 Frankfurt am Main
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Cluster of Excellence for Macromolecular Complexes
- Goethe University Frankfurt
- 60438 Frankfurt am Main
| |
Collapse
|
27
|
Cai W, Zhang W. Engineering modular polyketide synthases for production of biofuels and industrial chemicals. Curr Opin Biotechnol 2017; 50:32-38. [PMID: 28946011 DOI: 10.1016/j.copbio.2017.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; Chan Zuckerberg Biohub, San Francisco, CA 94158, United States.
| |
Collapse
|
28
|
Fischer M, Grininger M. Strategies in megasynthase engineering - fatty acid synthases (FAS) as model proteins. Beilstein J Org Chem 2017; 13:1204-1211. [PMID: 28694866 PMCID: PMC5496573 DOI: 10.3762/bjoc.13.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
Megasynthases are large multienzyme proteins that produce a plethora of important natural compounds by catalyzing the successive condensation and modification of precursor units. Within the class of megasynthases, polyketide synthases (PKS) are responsible for the production of a large spectrum of bioactive polyketides (PK), which have frequently found their way into therapeutic applications. Rational engineering approaches have been performed during the last 25 years that seek to employ the "assembly-line synthetic concept" of megasynthases in order to deliver new bioactive compounds. Here, we highlight PKS engineering strategies in the light of the newly emerging structural information on megasynthases, and argue that fatty acid synthases (FAS) are and will be valuable objects for further developing this field.
Collapse
Affiliation(s)
- Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Keatinge-Clay AT. Polyketidsynthase-Module: eine Neudefinition. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adrian T. Keatinge-Clay
- Department of Molecular Biosciences; The University of Texas at Austin; 100 E. 24 St. Austin TX 78712 USA
| |
Collapse
|
30
|
Keatinge-Clay AT. Polyketide Synthase Modules Redefined. Angew Chem Int Ed Engl 2017; 56:4658-4660. [PMID: 28322495 DOI: 10.1002/anie.201701281] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/24/2017] [Indexed: 11/06/2022]
Abstract
Modular redefinition: A long-standing paradigm in modular polyketide synthase enzymology, namely the definition of a module, has been challenged by Abe and co-workers in their recent study. With this new understanding has emerged renewed hope for engineering these assembly lines to produce new materials and medicines.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX, 78712, USA
| |
Collapse
|
31
|
Zhang L, Hashimoto T, Qin B, Hashimoto J, Kozone I, Kawahara T, Okada M, Awakawa T, Ito T, Asakawa Y, Ueki M, Takahashi S, Osada H, Wakimoto T, Ikeda H, Shin-ya K, Abe I. Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lihan Zhang
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Bin Qin
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium; 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium; 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Teppei Kawahara
- Japan Biological Informatics Consortium; 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Masahiro Okada
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Takuya Ito
- Faculty of Pharmaceutical Sciences; Tokushima Bunri University; 180 Nishihama, Yamashirocho Tokushima Japan
| | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences; Tokushima Bunri University; 180 Nishihama, Yamashirocho Tokushima Japan
| | - Masashi Ueki
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama Japan
| | - Shunji Takahashi
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama Japan
| | - Toshiyuki Wakimoto
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering; Kitasato Institute for Life Sciences; Kitasato University; Kanagawa Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
32
|
Bayly CL, Yadav VG. Towards Precision Engineering of Canonical Polyketide Synthase Domains: Recent Advances and Future Prospects. Molecules 2017; 22:molecules22020235. [PMID: 28165430 PMCID: PMC6155766 DOI: 10.3390/molecules22020235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
Modular polyketide synthases (mPKSs) build functionalized polymeric chains, some of which have become blockbuster therapeutics. Organized into repeating clusters (modules) of independently-folding domains, these assembly-line-like megasynthases can be engineered by introducing non-native components. However, poor introduction points and incompatible domain combinations can cause both unintended products and dramatically reduced activity. This limits the engineering and combinatorial potential of mPKSs, precluding access to further potential therapeutics. Different regions on a given mPKS domain determine how it interacts both with its substrate and with other domains. Within the assembly line, these interactions are crucial to the proper ordering of reactions and efficient polyketide construction. Achieving control over these domain functions, through precision engineering at key regions, would greatly expand our catalogue of accessible polyketide products. Canonical mPKS domains, given that they are among the most well-characterized, are excellent candidates for such fine-tuning. The current minireview summarizes recent advances in the mechanistic understanding and subsequent precision engineering of canonical mPKS domains, focusing largely on developments in the past year.
Collapse
Affiliation(s)
- Carmen L Bayly
- Department of Genome Sciences & Technology, The University of British Columbia, Vancouver, BC V5Z 4S6, Canada.
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Vikramaditya G Yadav
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
33
|
Zhang L, Hashimoto T, Qin B, Hashimoto J, Kozone I, Kawahara T, Okada M, Awakawa T, Ito T, Asakawa Y, Ueki M, Takahashi S, Osada H, Wakimoto T, Ikeda H, Shin-ya K, Abe I. Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. Angew Chem Int Ed Engl 2017; 56:1740-1745. [DOI: 10.1002/anie.201611371] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Lihan Zhang
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Bin Qin
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium; 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium; 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Teppei Kawahara
- Japan Biological Informatics Consortium; 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Masahiro Okada
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Takuya Ito
- Faculty of Pharmaceutical Sciences; Tokushima Bunri University; 180 Nishihama, Yamashirocho Tokushima Japan
| | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences; Tokushima Bunri University; 180 Nishihama, Yamashirocho Tokushima Japan
| | - Masashi Ueki
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama Japan
| | - Shunji Takahashi
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama Japan
| | - Toshiyuki Wakimoto
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering; Kitasato Institute for Life Sciences; Kitasato University; Kanagawa Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi, Koto-ku Tokyo Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|