1
|
Alharbi TMD. Recent progress on vortex fluidic synthesis of carbon nanomaterials. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2172954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Thaar M. D. Alharbi
- School of Science, Taibah University, Medina, Saudi Arabia
- Nanotechnology Centre, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
2
|
Vimalanathan K, Palmer T, Gardner Z, Ling I, Rahpeima S, Elmas S, Gascooke JR, Gibson CT, Sun Q, Zou J, Andersson MR, Darwish N, Raston CL. High shear in situ exfoliation of 2D gallium oxide sheets from centrifugally derived thin films of liquid gallium. NANOSCALE ADVANCES 2021; 3:5785-5792. [PMID: 36132680 PMCID: PMC9419649 DOI: 10.1039/d1na00598g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 06/14/2023]
Abstract
A diversity of two-dimensional nanomaterials has recently emerged with recent attention turning to the post-transition metal elements, in particular material derived from liquid metals and eutectic melts below 330 °C where processing is more flexible and in the temperature regime suitable for industry. This has been explored for liquid gallium using an angled vortex fluidic device (VFD) to fabricate ultrathin gallium oxide (Ga2O3) sheets under continuous flow conditions. We have established the nanosheets to form highly insulating material and have electrocatalytic activity for hydrogen evolution, with a Tafel slope of 39 mV dec-1 revealing promoting effects of the surface oxidation (passivation layer).
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Timotheos Palmer
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Zoe Gardner
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Irene Ling
- School of Science, Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Soraya Rahpeima
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Sait Elmas
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Jason R Gascooke
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Christopher T Gibson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland Brisbane QLD 4072 Australia
| | - Jin Zou
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland Brisbane QLD 4072 Australia
| | - Mats R Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| |
Collapse
|
3
|
Alharbi TMD, Vimalanathan K, Alsulami IK, Raston CL. Vertically aligned laser sliced MWCNTs. NANOSCALE 2019; 11:21394-21403. [PMID: 31674619 DOI: 10.1039/c9nr08715j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Applications of multi-walled carbon nanotubes (MWCNTs) benefit from the availability of specific lengths of the material while keeping the outer walls pristine, for example, for applications requiring vertically aligned tubes. To this end, a simple and effective continuous flow 'top down' process to control the length of sliced MWCNTs has been developed using a vortex fluidic device (VFD) coupled with a 1064 nm pulse laser, with the process in the absence of chemicals and any auxiliary substances. Three different length distributions of the sliced MWCNTs, centered at 75 ± 2.1 nm, 300 ± 1.8 nm and 550 ± 1.4 nm, have been generated with the length depending on the VFD operating parameters and laser energy, with the processing resulting in a decrease in side wall defects of the material. We also show the ability to vertically self assemble short MWCNTs on a silicon substrate with control of the surface density coverage using a simple dipping and rinsing method.
Collapse
Affiliation(s)
- Thaar M D Alharbi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia. and Physics Department, Faculty of Science, Taibah University, Almadinah Almunawarrah 42353, Saudi Arabia
| | - Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| | - Ibrahim K Alsulami
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.
| |
Collapse
|
4
|
Alharbi TMD, Al-Antaki AHM, Moussa M, Hutchison WD, Raston CL. Three-step-in-one synthesis of supercapacitor MWCNT superparamagnetic magnetite composite material under flow. NANOSCALE ADVANCES 2019; 1:3761-3770. [PMID: 36133547 PMCID: PMC9419492 DOI: 10.1039/c9na00346k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Composites of multi-walled carbon nanotubes (MWCNTs) and superparamagnetic magnetite nanoparticles, Fe3O4@MWCNT, were synthesized in DMF in a vortex fluidic device (VFD). This involved in situ generation of the iron oxide nanoparticles by laser ablation of bulk iron metal at 1064 nm using a pulsed laser, over the dynamic thin film in the microfluidic platform. The overall processing is a three-step in one operation: (i) slicing MWCNTs, (ii) generating the superparamagnetic nanoparticles and (iii) decorating them on the surface of the MWCNTs. The Fe3O4@MWCNT composites were characterized by transmission electron microscopy, scanning transmission electron microscope, TG analysis, X-ray diffraction and X-ray photoelectron spectroscopy. They were used as an active electrode for supercapacitor measurements, establishing high gravimetric and areal capacitances of 834 F g-1 and 1317.7 mF cm-2 at a scan rate of 10 mV s-1, respectively, which are higher values than those reported using similar materials. In addition, the designer material has a significantly higher specific energy of 115.84 W h kg-1 at a specific power of 2085 W kg-1, thereby showing promise for the material in next-generation energy storage devices.
Collapse
Affiliation(s)
- Thaar M D Alharbi
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Physics Department, Faculty of Science, Taibah University Almadinah Almunawarah Saudi Arabia
| | - Ahmed H M Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Mahmoud Moussa
- School of Chemical Engineering and Advanced Materials, The University of Adelaide Adelaide SA 5001 Australia
| | - Wayne D Hutchison
- School of Science, University of New South Wales ADFA campus Canberra BC Australian Capital Territory 2610 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| |
Collapse
|
5
|
Jones DB, da Costa RF, Kossoski F, Varella MTDN, Bettega MHF, Ferreira da Silva F, Limão-Vieira P, García G, Lima MAP, White RD, Brunger MJ. Electron-impact electronic-state excitation of para-benzoquinone. J Chem Phys 2018; 148:124312. [DOI: 10.1063/1.5023494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. B. Jones
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - R. F. da Costa
- Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
- Centro de Ciências Exatas, Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, Espírito Santo, Brazil
| | - F. Kossoski
- Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - M. T. do N. Varella
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, São Paulo, Brazil
| | - M. H. F. Bettega
- Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná, Brazil
| | - F. Ferreira da Silva
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - P. Limão-Vieira
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - G. García
- Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, E-28006 Madrid, Spain
| | - M. A. P. Lima
- Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - R. D. White
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - M. J. Brunger
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
6
|
Luo X, Al-Antaki AHM, Vimalanathan K, Moffatt J, Zheng K, Zou Y, Zou J, Duan X, Lamb RN, Wang S, Li Q, Zhang W, Raston CL. Laser irradiated vortex fluidic mediated synthesis of luminescent carbon nanodots under continuous flow. REACT CHEM ENG 2018. [DOI: 10.1039/c7re00197e] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High shear vortex fluidics coupled with NIR affords luminescent carbon dots as a scalable process.
Collapse
|
7
|
Jones DB, Raston C. Improving oxidation efficiency through plasma coupled thin film processing. RSC Adv 2017. [DOI: 10.1039/c7ra09559g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plasma liquid processing efficiency improves by reducing the liquid film thickness.
Collapse
Affiliation(s)
- Darryl B. Jones
- Centre for NanoScale Science and Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | - Colin L. Raston
- Centre for NanoScale Science and Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| |
Collapse
|