1
|
Wei X, You Y, Fan Z, Sheng G, Ma J, Huang Y, Xu H. Controllable integration of nano zero-valent iron into MOFs with different structures for the purification of hexavalent chromium-contaminated water: Combined insights of scavenging performance and potential mechanism investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173395. [PMID: 38795988 DOI: 10.1016/j.scitotenv.2024.173395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
This work combined the stability of the porous structure of metal-organic frameworks with the strong reducibility of nano zero-valent iron, for the controllable integration of NZVI into MOFs to utilize the advantages of each component with enhancing the rapid decontamination and scavenging of Cr(VI) from wastewater. Hence, four kinds of MOFs/NZVI composites namely ZIF67/NZVI, MOF74/NZVI, MIL101(Fe)/NZVI, CuBTC/NZVI, were prepared for Cr(VI) capture. The results indicated that the stable structure of ZIF67, MOF74, MIL101(Fe), CuBTC, was beneficial for the dispersion of NZVI that could help more close contact between MOFs/NZVI reactive sites and Cr(VI), subsequently, MOFs/NZVI was proved to be better scavengers for Cr(VI) scavenging than NZVI alone. The Cr(VI) capture achieved the maximum adsorption capacity at pH ~ 4.0, which might be due to the participation of more H+ in the reaction and better corrosion of NZVI at lower pH. Mechanism investigation demonstrated synergy of adsorption, reduction and surface precipitation resulted in enhanced Cr(VI) scavenging, and Fe(0), dissolved and surface-bound Fe(II) were the primary reducing species. The findings of this investigation indicated that the as-prepared composites of ZIF67/NZVI, MOF74/NZVI, MIL101(Fe)/NZVI, CuBTC/NZVI, with high oxidation resistance and excellent reactivity, could provide reference for the decontamination and purification of actual Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Yanran You
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Zheyu Fan
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Guodong Sheng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China.
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Huiting Xu
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| |
Collapse
|
2
|
Dai W, Wang Y, Guo W, Wang G, Qiu M. Effects of Fe(II) and humic acid on U(VI) mobilization onto oxidized carbon nanofibers derived from the pyrolysis of bacterial cellulose. Int J Biol Macromol 2024; 266:131210. [PMID: 38552692 DOI: 10.1016/j.ijbiomac.2024.131210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The effects of Fe(II) and humic acid on U(VI) immobilization onto oxidized carbon nanofibers (Ox-CNFs, pyrolysis of bacterial cellulose) were investigated by batch, spectroscopic and modeling techniques, with results suggesting that, Ox-CNFs exhibited fast adsorption rate (adsorption equilibrium within 3 h), high adsorption performance (maximum adsorption capacity of 208.4 mg/g), good recyclability (no notable change after five regenerations) in the presence of Fe(II) towards U(VI) from aqueous solutions (e.g., 40 % reduction and 10 % adsorption at pH 8.0), which was attributed to the various oxygen-containing functional groups, excellent chemical stability, large specific surface area and high redox effect. U(VI) adsorption increased with increasing pH from 2.0 to 5.0, then high-level plateau and remarkable decrease were observed at 5.0-6.0 and at pH > 6.0, respectively. According to FT-IR and XPS analysis, a negative correlation between U(VI) reduction and organic in the presence of Fe(II) implied that U(VI) reduction was driven by Fe(II) while inhibited by humic acid. The interaction mechanism of U(VI) on Ox-CNFs was demonstrated to be adsorption and ion exchange at low pH and reduction at high pH according to XPS and surface complexation modeling. These findings filled the knowledge gaps pertaining to the effect of Fe(II) on the transformation and fate of U(VI) in the actual environment. This carbon material with distinctive performance and unique topology offers a potential platform for actual application in environmental remediation.
Collapse
Affiliation(s)
- Weisheng Dai
- College of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China; Shaoxing Raw Water Group Co., LTD., Shaoxing 312000, PR China
| | - Yao Wang
- College of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China
| | - Weijuan Guo
- College of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China
| | - Guofu Wang
- College of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China; School of Architectural Engineering, Shaoxing University Yuanpei College, Shaoxing 312000, PR China.
| | - Muqing Qiu
- College of Life and Environmental Science, Shaoxing University, Shaoxing 312000, PR China.
| |
Collapse
|
3
|
Rani L, Srivastav AL, Kaushal J, Shukla DP, Pham TD, van Hullebusch ED. Significance of MOF adsorbents in uranium remediation from water. ENVIRONMENTAL RESEARCH 2023; 236:116795. [PMID: 37541412 DOI: 10.1016/j.envres.2023.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India; Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Dericks P Shukla
- Department of Civil Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
4
|
Huang CW, Zhou SR, Hsiao WC. Multifunctional TiO2/MIL-100(Fe) to conduct adsorption, photocatalytic, and heterogeneous photo-Fenton reactions for removing organic dyes. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Zhang J, Hou J, Zhang K, Zhang R, Geng J, Wang S, Zhang Z. Integration of quantum dots with Zn 2GeO 4 nanoellipsoids to expand the dynamic detection range of uranyl ions in fluorescent test strips. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129182. [PMID: 35643004 DOI: 10.1016/j.jhazmat.2022.129182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent colorimetric test strips normally have a narrow dynamic detection-range due to the limited responsive range from single responsive materials, which cannot meet the wide detection requirement in practical applications. Herein, we developed an approach to detect uranyl ions (UO22+) with a broad detection range using the synthesized ZnS:Mn quantum dots (QDs) modified Zn2GeO4 nanoellipsoids (Zn2GeO4 @ZnS:Mn NEs), containing two responsive materials with the opposite signal responses at different UO22+ concentrations. Specifically, a red to chocolate color change was observed at low analyte concentrations (0.01-100 μM) resulting from the photoinduced electron transfer effect from ZnS:Mn QDs to UO22+. A sequentially olive drab to green color change has been observed when further increasing the UO22+ concentration (100-1000 μM) as a result of the antenna effect between Zn2GeO4 nanoellipsoids and UO22+. In addition, a low-cost and portable fluorescent test strip has been further fabricated through embedding Zn2GeO4 @ZnS:Mn NEs on a microporous structure membrane, demonstrating a facile yet effective colorimetric response to UO22+ in lab water, lake water, and seawater with a wide dynamic range. Therefore, it is potentially attractive for real-time and on-site detection of UO22+ in sudden-onset situations.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jinjin Hou
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| | - Ruilong Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230000, China
| | - Junlong Geng
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230000, China.
| | - Suhua Wang
- College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zhongping Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230000, China
| |
Collapse
|
6
|
Recent Advances and Future Perspectives of Polymer-Based Magnetic Nanomaterials for Detection and Removal of Radionuclides: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
New insights into colloidal GO, Cr(VI) and Fe(II) interaction by a combined batch, spectroscopic and DFT calculation investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Gan L, Wang L, Xu L, Fang X, Pei C, Wu Y, Lu H, Han S, Cui J, Shi J, Mei C. Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125305. [PMID: 33611041 DOI: 10.1016/j.jhazmat.2021.125305] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In this study, novel Fe3C-porous carbon composites (Fe3C-C) were prepared via the pyrolysis of Fe2O3 loaded MOF-74(Zn), which could integrate both strong adsorption properties and excellent peroxymonosulfate (PMS) activating performance for the removal of bisphenol A (BPA) in water. Results indicated that the composite obtained at 1000 °C (Fe3C-C1000) exhibited optimal catalytic capability. Specifically, 0.1 mM BPA could be completely removed by 0.1 g/L Fe3C-C1000 within 10 min after the adsorption enrichment. Afterwards, the mechanism of Fe3C-C/PMS system was unveiled based on quenching tests, electron spin resonance analysis, electrochemical analysis, PMS consumption detection and solvent exchange (H2O to D2O) test. The BPA degradation pathways were also analyzed through identifying its decomposition intermediates. Results showed that the Fe3C and porous carbon constituents could activate PMS via radical and non-radical mechanisms respectively, and BPA was readily degraded through both pathways. Additionally, it was found that the Fe3C-C1000/PMS system could maintain conspicuous catalytic performance in a variety of complicated water matrices with wide pH application range and long-time use stability. This study suggests a new insight for the design and development of novel catalyst which can be used for the removal of refractory organic contaminants with high concentrations in water media.
Collapse
Affiliation(s)
- Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Linjie Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China.
| | - Xingyu Fang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Chun Pei
- Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, School of Civil Engineering, Shenzhen University, Shenzhen, 518060 Guangdong, People's Republic of China
| | - Ying Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Haiqin Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Shuguang Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Juqing Cui
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Jiangtao Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Wang Y, Wang X, Qi B, Cheng J, Wang X, Shang Y, Jia J. Design of SnO
2
/ZnO@ZIF‐8 Hydrophobic Nanofibers for Improved H
2
S Gas Sensing. ChemistrySelect 2021. [DOI: 10.1002/slct.202100795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yumeng Wang
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Xinchang Wang
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Beiying Qi
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Jipeng Cheng
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinyue Wang
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Jianfeng Jia
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| |
Collapse
|
10
|
Yang A, Wang Z, Zhu Y. Facile preparation and adsorption performance of low-cost MOF@cotton fibre composite for uranium removal. Sci Rep 2020; 10:19271. [PMID: 33159151 PMCID: PMC7648642 DOI: 10.1038/s41598-020-76173-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
A novel composite MOF@cotton fibre (HCF) was prepared and characterized by FTIR, SEM, XPS and TGA. The effect of various parameters on the adsorption efficiency, such as the solution pH, contact time, initial U(VI) concentration and temperature, was studied. The maximal sorption capacity (Qm) is 241.28 mg g-1 at pH 3.0 for U(VI) according to the Langmuir isotherm adsorption model, and the kinetic and thermodynamic data reveal a relatively fast entropy-driven process (ΔH0 = 13.47 kJ mol-1 and ΔS0 = 75.47 J K-1 mol-1). The removal efficiency of U(VI) by HCF is comparable with that of pure cotton fibre and as-prepared MOF (noted as HST). However, the HST composite with cotton fibre significantly improved the treatment process of U(VI) from aqueous solutions in view of higher removal efficiency, lower cost and faster solid-liquid separation. Recycling experiments showed that HCF can be used up to five times with less than 10% efficiency loss.
Collapse
Affiliation(s)
- Aili Yang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China.
| | - Zhijun Wang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China
| | - Yukuan Zhu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou Sichuan, 621907, China
| |
Collapse
|
11
|
Abstract
This review is devoted to discussion of the latest advances in design and applications of boron imidazolate frameworks (BIFs) that are a particular sub-family of zeolite-like metal–organic frameworks family. A special emphasis is made on nanostructured hybrid materials based on BIF matrices and their modern applications, especially in environment remediation and energy conversion.
Collapse
|
12
|
|
13
|
Yang F, Xie S, Wang G, Yu CW, Liu H, Liu Y. Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (VI) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20246-20258. [PMID: 32242317 DOI: 10.1007/s11356-020-08381-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/09/2020] [Indexed: 05/12/2023]
Abstract
A novel composite material (nZVI/UiO-66) of nanoscale zero-valent iron (nZVI) with a functionalized metal-organic framework was synthesized by this study via a coprecipitation method, which was used for the efficient removal of U(VI) in the aqueous solution. The nZVI/UiO-66 had an excellent removal capacity of 404.86 mg g-1 with an initial U(VI) concentration of 80 mg L-1, 313 K and pH = 6. The transmission electron microscopy (TEM) revealed that nZVI particles were inhomogeneously distributed on the surface of UiO-66. The analysis by the X-ray diffraction (XRD) has further illustrated that the introduction of nZVI did not change the structure of UiO-66. The adsorption process closely followed the pseudo-second-order kinetic and the Freundlich isotherm model. The removal process of U(VI) by nZVI/UiO-66 was spontaneous and endothermic. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses have illustrated that the mechanism was mainly related to adsorption of U(VI) from UiO-66 and reduction of U(VI) by nZVI. The Zr-O bonds were shown to play a vital role in the uranium removal. nZVI/UiO-66 could be recycled. The uptake rate could be maintained at around 80% after 5 cycles of use. Therefore, these results manifested that the nZVI/UiO-66 is a promising sorbent for the efficient and selective removal of U(VI) in radioactive wastewaters.
Collapse
Affiliation(s)
- Fan Yang
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Shuibo Xie
- Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China.
| | - Guohua Wang
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Chuck Wah Yu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Haiyan Liu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yingjiu Liu
- Hunan Provincial Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Li JH, Yu ZW, Li JQ, Fan YL, Gao Z, Xiong JB, Wang L, Tao Y, Yang LX, Xiao YX, Luo F. Constructing PtI@COF for semi-hydrogenation reactions of phenylacetylene. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Yang ZC, Wang TR, Li RT, Chen TW, Fan Y, Jiang WH, Li MM, Chen JX. Construction of hybrid DNAs@CP for the rapid synchronous sensing of multiplex microRNAs based on experimental studies and molecular simulation. J Inorg Biochem 2020; 208:111076. [PMID: 32304915 DOI: 10.1016/j.jinorgbio.2020.111076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022]
Abstract
A water stable one-dimensional (1D) ladder-shaped coordination polymer (CP) has been synthesized and exhibits a strong affinity to two fluorescein-tagged single-stranded probe DNAs (P-DNAs), giving a sensing platform of P-DNAs@1. Such a hybrid sensing platform is capable of simultaneous detection of breast cancer related microRNA-221 (miRNA-221) and miRNA-222 in a specific and synchronous manner, without observable cross-reactions, as supported by experimental evidences. The interaction mode and the electronic energy between CP 1 with nucleic acid were confirmed by molecular simulation and the universal force field (UFF).
Collapse
Affiliation(s)
- Zi-Chuan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Tao-Rui Wang
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Rong-Tian Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Ting-Wei Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yue Fan
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Wei-Hua Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Min-Min Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, PR China.
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
16
|
Qi Y, Ye J, Ren S, Lv J, Zhang S, Che Y, Ning G. In-situ synthesis of metal nanoparticles@metal-organic frameworks: Highly effective catalytic performance and synergistic antimicrobial activity. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121687. [PMID: 31784130 DOI: 10.1016/j.jhazmat.2019.121687] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
M-NP@Zn-BIF (M-NP = Ag or Cu nanoparticle; Zn-BIF is a zinc-based boron imidazolate framework, Zn2(BH(2-mim)3)2(obb); 2-mim = 2-methylimidazole; obb = 4,4'-oxybis(benzoate)) composites were successfully in-situ synthesized by utilizing the reducing ability of the BH bond contained in the Zn-BIF at room temperature without any additional chemical reduction reagents. These composites (225 μg/mL) exhibited excellent catalytic activity to convert 4-nitrophenol to 4-aminophenol in 2.5 min and 6 min with a conversion rate of 99.9 %, respectively. In addition, Ag@Zn-BIF (50 μg/mL) showed highly synergistic antibacterial activity against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with a bactericidal rate of approximately 99.9 %. An antibacterial mechanism was proposed for the generation of intracellular reactive oxygen species (ROS) levels. Superoxide radicals (O2-) and hydroxyl radicals (OH) formed during the antibacterial process were shown to accelerate the death of bacteria. They also exhibited highly photocatalytic activity for Rhodamine B (RhB). When the concentration of the composites is 1000 μg/mL, the photocatalytic efficiency of Ag@Zn-BIF and Cu@Zn-BIF increased by 31.62 and 18.13 times compared with Zn-BIF, respectively. All in all, this study developed a simple and versatile integrated platform for the removal of nitrophenols, organic dyes, and the effective inactivation of bacteria in water.
Collapse
Affiliation(s)
- Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China; Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China.
| | - Shuangsong Ren
- Department of Ultrasound, the First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, PR China
| | - Jialin Lv
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China
| | - Ying Che
- Department of Ultrasound, the First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, PR China.
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China; Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning, 116024, PR China.
| |
Collapse
|
17
|
Preparation of Zeolitic Imidazolate Framework-91 and its modeling for pervaporation separation of water/ethanol mixtures. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Zhang ZH, Lan JH, Yuan LY, Sheng PP, He MY, Zheng LR, Chen Q, Chai ZF, Gibson JK, Shi WQ. Rational Construction of Porous Metal-Organic Frameworks for Uranium(VI) Extraction: The Strong Periodic Tendency with a Metal Node. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14087-14094. [PMID: 32109047 DOI: 10.1021/acsami.0c02121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although metal-organic frameworks (MOFs) have been reported as important porous materials for the potential utility in metal ion separation, coordinating the functionality, structure, and component of MOFs remains a great challenge. Herein, a series of anionic rare earth MOFs (RE-MOFs) were synthesized via a solvothermal template reaction and for the first time explored for uranium(VI) capture from an acidic medium. The unusually high extraction capacity of UO22+ (e.g., 538 mg U per g of Y-MOF) was achieved through ion-exchange with the concomitant release of Me2NH2+, during which the uranium(VI) extraction in the series of isostructural RE-MOFs was found to be highly sensitive to the ionic radii of the metal nodes. That is, the uranium(VI) adsorption capacities continuously increased as the ionic radii decreased. In-depth mechanism insight was obtained from molecular dynamics simulations, suggesting that both the accessible pore volume of the MOFs and hydrogen-bonding interactions contribute to the strong periodic tendency of uranium(VI) extraction.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Pan-Pan Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Li-Rong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zhang L, Yan Z, Chen X, Yu M, Liu F, Cheng F, Chen J. Facile synthesis of amorphous MoSx–Fe anchored on Zr-MOFs towards efficient and stable electrocatalytic hydrogen evolution. Chem Commun (Camb) 2020; 56:2763-2766. [DOI: 10.1039/c9cc08771k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MoSx–Fe nanoparticles dispersively, firmly anchored on a UiO-66-(OH)2 support via phenol–Fe(iii) coordination exhibit superior electrocatalytic hydrogen evolution performance in an acidic electrolyte.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Renewable Energy Conversion and Storage Center
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Renewable Energy Conversion and Storage Center
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiang Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Renewable Energy Conversion and Storage Center
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Meng Yu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Renewable Energy Conversion and Storage Center
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Fangming Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Renewable Energy Conversion and Storage Center
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Renewable Energy Conversion and Storage Center
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Renewable Energy Conversion and Storage Center
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
20
|
Ying Y, Pourrahimi AM, Sofer Z, Matějková S, Pumera M. Radioactive Uranium Preconcentration via Self-Propelled Autonomous Microrobots Based on Metal-Organic Frameworks. ACS NANO 2019; 13:11477-11487. [PMID: 31592633 DOI: 10.1021/acsnano.9b04960] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-propelled micromachines have recently attracted attention for environmental remediation, yet their use for radioactive waste management has not been addressed. Engineered micromotors that are able to combine highly adsorptive capabilities together with fast autonomous motion in liquid media are promising tools for the removal of nuclear waste, which is one of the most difficult types to manage. Herein, we fabricate self-propelled micromotors based on metal-organic frameworks (MOFs) via template-based interfacial synthesis and show their potential for efficient removal of radioactive uranium. A crucial challenge of the MOF-based motors is their stability in the presence of fuel (hydrogen peroxide) and acidic media. We have ensured their structural stability by Fe doping of zeolitic imidazolate framework-8 (ZIF-8). The implementation of magnetic ferroferric oxide nanoparticles (Fe3O4 NPs) and catalytic platinum nanoparticles (Pt NPs) results in the magnetically responsive and bubble-propelled micromotors. In the presence of 5 wt % H2O2, these micromotors are propelled at a high speed of ca. 860 ± 230 μm·s-1 (i.e., >60 body lengths per second), which is significantly faster than that of other microrod-based motors in the literature. These micromotors demonstrate a highly efficient removal of uranium (96%) from aqueous solution within 1 h, with the subsequent recovery under magnetic control, as well as stable recycling ability and high selectivity. Such self-propelled magnetically recoverable micromotors could find a role in the management and remediation of radioactive waste.
Collapse
Affiliation(s)
- Yulong Ying
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Amir Masoud Pourrahimi
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Zdeněk Sofer
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
| | - Stanislava Matějková
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo nám. 542/2 , 166 10 Prague , Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague , Czech Republic
- Department of Medical Research, China Medical University Hospital , China Medical University , No. 91 Hsueh-Shih Road , Taichung 40402 , Taiwan
- Future Energy and Innovation Lab, Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , Brno , CZ-616 00 , Czech Republic
| |
Collapse
|
21
|
Liu L, Yang W, Gu D, Zhao X, Pan Q. In situ Preparation of Chitosan/ZIF-8 Composite Beads for Highly Efficient Removal of U(VI). Front Chem 2019; 7:607. [PMID: 31552224 PMCID: PMC6743043 DOI: 10.3389/fchem.2019.00607] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
With the rapid growth of nuclear power generation and fuel processing, the treatment of nuclear industry wastewater has become a major problem, and if not handled properly, it will pose a potential threat to the ecological environment and human health. Herein, a chitosan (CS)/ZIF-8 composite monolithic beads with ZIF-8 loading up to 60 wt% for U(VI) removal was prepared, which can be easily removed after use. It possesses a very high adsorption capacity of 629 mg•g−1 at pH = 3 for U(VI) and a well recyclability is demonstrated for at least four adsorption/desorption cycles. X-ray photoelectron spectroscopy (XPS) was carried out to study the adsorption mechanism between uranium and adsorbent, and the chelation of U(VI) ions with imidazole, hydroxyl, and amino groups was revealed. This work shows that CS/ZIF-8 composite can be used as an effective adsorbent for uranium extraction from aqueous solution, and has a potential application value in wastewater treatment.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou, China
| | - Dongxu Gu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou, China
| | - Xiaojun Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou, China.,Hainan Policy and Industrial Research Institute of Low-Carbon Economy, Hainan University, Haikou, China
| |
Collapse
|
22
|
Sun W, Chen S, Wang Y. A metal-organic-framework approach to engineer hollow bimetal oxide microspheres towards enhanced electrochemical performances of lithium storage. Dalton Trans 2019; 48:2019-2027. [PMID: 30667432 DOI: 10.1039/c8dt04716b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosized electrode materials with a hollow structure, larger specific surface area, and lower energy density as well as more void space are widely adopted for high-performance lithium-ion batteries. In this work, we obtained bimetal-organic frameworks of Fe/Mn-MOF-74 with a hollow microsphere morphology via a facile one-step microwave method and further used it to fabricate hollow Fe-Mn-O/C microspheres. Endowed with the metal-organic-framework-derived carbon-coated nanoparticle-assembled hollow structure with hierarchical porous characteristics and synergistic effects between two different metal species, the Fe-Mn-O/C electrode exhibits outstanding electrochemical performances as the anode of lithium-ion batteries. It achieves improved cycling performance (1294 mA h g-1 after 200 cycles at 0.1 A g-1) and good rate capability (722, 604, and 521 mA h g-1 at 0.2, 0.5 and 1 A g-1). The smart design of a hollow morphology with uniform two metal species can promote the synthesis of multimetal oxides and their carbon composites, as well as their further potential application for energy-storage.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, P. R. China200444.
| | | | | |
Collapse
|
23
|
Li JH, Yang LX, Li JQ, Yin WH, Tao Y, Wu HQ, Luo F. Anchoring nZVI on metal-organic framework for removal of uranium(Ⅵ) from aqueous solution. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
24
|
Facile construction of Fe@ zeolite imidazolate Framework-67 to selectively remove uranyl ions from aqueous solution. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Feng M, Zhang P, Zhou HC, Sharma VK. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. CHEMOSPHERE 2018; 209:783-800. [PMID: 29960946 DOI: 10.1016/j.chemosphere.2018.06.114] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 05/19/2023]
Abstract
Heavy metals and radionuclides in water are a global environmental issue, which has been receiving considerable attention worldwide. Water-stable MOFs are green and recyclable materials to eliminate the environmental impacts caused by the hazardous heavy metal ions and radionuclides in water. This paper presents a systematical review on the current status of water-stable MOFs that capture and convert a wide range of heavy metal ions (e.g., As(III)/As(V), Pb(II), Hg(II), Cd(II), and Cr(III)/Cr(VI)) and radionuclides (e.g., U(VI), Se(IV)/Se(VI) and Cs(I)) in aqueous solution. Water-stable MOFs and MOF-based composites exhibit the superior adsorption capability for these metal species in water. Significantly, MOFs show high selectivity in capturing target metal ions even in the presence of multiple water constituents. Mechanisms involved in capturing metal ions are described. MOFs also have excellent catalytic performance (photocatalysis and catalytic reduction by formic acid) for Cr(VI) conversion to Cr(III). Future research is suggested to provide insightful guidance to enhance the performance of the MOFs in capturing target pollutants in aquatic environment.
Collapse
Affiliation(s)
- Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Peng Zhang
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
26
|
Yang LX, Wu HQ, Gao HY, Li JQ, Tao Y, Yin WH, Luo F. Hybrid Catalyst of a Metal–Organic Framework, Metal Nanoparticles, and Oxide That Enables Strong Steric Constraint and Metal–Support Interaction for the Highly Effective and Selective Hydrogenation of Cinnamaldehyde. Inorg Chem 2018; 57:12461-12465. [DOI: 10.1021/acs.inorgchem.8b01922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li-Xiao Yang
- State Key Laboratory for Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Hui-Qiong Wu
- State Key Laboratory for Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Heng-Ya Gao
- State Key Laboratory for Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Jian-Qiang Li
- State Key Laboratory for Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Yuan Tao
- State Key Laboratory for Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Wen-Hui Yin
- State Key Laboratory for Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Feng Luo
- State Key Laboratory for Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
27
|
Xiong YY, Wu HQ, Luo F. The MOF+
Technique: A Potential Multifunctional Platform. Chemistry 2018; 24:13701-13705. [DOI: 10.1002/chem.201801348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/06/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Yang Xiong
- School of Biology; Chemistry and Material Science; East China University of Technology; Nanchang Jiangxi 344000 China
| | - Hui Qiong Wu
- School of Biology; Chemistry and Material Science; East China University of Technology; Nanchang Jiangxi 344000 China
| | - Feng Luo
- School of Biology; Chemistry and Material Science; East China University of Technology; Nanchang Jiangxi 344000 China
- College of Chemistry and Chemical Engineering; Hunan University of Science and Technology; HuNan, TanXiang China
| |
Collapse
|
28
|
Zhang H, Dai Z, Sui Y, Xue J, Ding D. Adsorption of U(VI) from aqueous solution by magnetic core–dual shell Fe3O4@PDA@TiO2. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5923-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Wu HQ, Yan CS, Luo F, Krishna R. Beyond Crystal Engineering: Significant Enhancement of C 2H 2/CO 2 Separation by Constructing Composite Material. Inorg Chem 2018; 57:3679-3682. [PMID: 29561608 DOI: 10.1021/acs.inorgchem.8b00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Different from the established crystal engineering method for enhancing gas-separation performance, we demonstrate herein a distinct approach. In contrast to the pristine MOF (metal-organic framework) material, the C2H2/CO2 separation ability for the resultant Ag NPs (nanoparticle)@Fe2O3@MOF composite material, estimated from breakthrough calculations, is greatly enhanced by 2 times, and further magnified up to 3 times under visible light irradiation.
Collapse
Affiliation(s)
- Hui Qiong Wu
- School of Biology, Chemistry and Material Science , East China University of Technology , NanChang , Jiangxi 344000 , China
| | - Chang Sheng Yan
- School of Biology, Chemistry and Material Science , East China University of Technology , NanChang , Jiangxi 344000 , China
| | - Feng Luo
- School of Biology, Chemistry and Material Science , East China University of Technology , NanChang , Jiangxi 344000 , China.,College of Chemistry and Chemical Engineering , Hunan University of Science and Technology , XiangTan , HuNan 411201 , China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| |
Collapse
|
30
|
Liu J, Liu J, Wu P, Zhang M, Wang J, Jiang L. Multiple solvent-response behavior of metal-organic inverse opals. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Tao Y, Wu HQ, Li JQ, Yang LX, Yin WH, Luo MB, Luo F. Applying MOF+ technique for in situ preparation of a hybrid material for hydrogenation reaction. Dalton Trans 2018; 47:14889-14892. [DOI: 10.1039/c8dt03416h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate herein the preparation of a hybrid material for catalytic purpose by our recently developed MOF+ method. Impressively, the results show that the resultant catalyst displays superior catalytic performances for hydrogenation on olefin and selective semihydrogenation on phenylacetylene.
Collapse
Affiliation(s)
- Yuan Tao
- State Key Laboratory for Nuclear Resources and Environment
- and School of Biology
- Chemistry
- and Material Science
- East China University of Technology
| | - Hui Qiong Wu
- State Key Laboratory for Nuclear Resources and Environment
- and School of Biology
- Chemistry
- and Material Science
- East China University of Technology
| | - Jian Qiang Li
- State Key Laboratory for Nuclear Resources and Environment
- and School of Biology
- Chemistry
- and Material Science
- East China University of Technology
| | - Li Xiao Yang
- State Key Laboratory for Nuclear Resources and Environment
- and School of Biology
- Chemistry
- and Material Science
- East China University of Technology
| | - Wen Hui Yin
- State Key Laboratory for Nuclear Resources and Environment
- and School of Biology
- Chemistry
- and Material Science
- East China University of Technology
| | - Ming Biao Luo
- State Key Laboratory for Nuclear Resources and Environment
- and School of Biology
- Chemistry
- and Material Science
- East China University of Technology
| | - Feng Luo
- State Key Laboratory for Nuclear Resources and Environment
- and School of Biology
- Chemistry
- and Material Science
- East China University of Technology
| |
Collapse
|
32
|
Luo MB, Xiong YY, Wu HQ, Feng XF, Li JQ, Luo F. The MOF+Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angew Chem Int Ed Engl 2017; 56:16376-16379. [DOI: 10.1002/anie.201709197] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Ming Biao Luo
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Yang Yang Xiong
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Hui Qiong Wu
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Xue Feng Feng
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Jian Qiang Li
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Feng Luo
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| |
Collapse
|
33
|
Luo MB, Xiong YY, Wu HQ, Feng XF, Li JQ, Luo F. The MOF+Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ming Biao Luo
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Yang Yang Xiong
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Hui Qiong Wu
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Xue Feng Feng
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Jian Qiang Li
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| | - Feng Luo
- School of Biology, Chemistry and Material Science; East China University of Technology; Fuzhou Jiangxi 344000 China
| |
Collapse
|
34
|
A Zinc(II) Porous Metal-Organic Framework and Its Morphologically Controlled Catalytic Properties in the Knoevenagel Condensation Reaction. Chempluschem 2017; 82:1182-1187. [DOI: 10.1002/cplu.201700327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 12/12/2022]
|
35
|
Liu X, Zhou Y, Zhang J, Tang L, Luo L, Zeng G. Iron Containing Metal-Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20255-20275. [PMID: 28548822 DOI: 10.1021/acsami.7b02563] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) with Fe content are gradually developing into an independent branch in environmental remediation, requiring economical, effective, low-toxicity strategies to the complete procedure. In this review, recent advancements in the structure, synthesis, and environmental application focusing on the mechanism are presented. The unique structure of novel design proposed specific characteristics of different iron-containing MOFs with potential innovation. Synthesis of typical MILs, NH2-MILs and MILs based materials reveal the basis and defect of the current method, indicating the optimal means for the actual requirements. The adsorption of various contamination with multiple interaction as well as the catalytic degradation over radicals or electron-hole pairs are reviewed. This review implied considerable prospects of iron-containing MOFs in the field of environment and a more comprehensive cognition into the challenges and potential improvement.
Collapse
Affiliation(s)
- Xiaocheng Liu
- College of Resources and Environment, Hunan Agricultural University , Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University , Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University , Changsha 410128, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University , Changsha 410082, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University , Changsha 410128, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University , Changsha 410082, China
| |
Collapse
|
36
|
Min X, Yang W, Hui YF, Gao CY, Dang S, Sun ZM. Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient UO22+ adsorption and selective UO22+/Ln3+ separation. Chem Commun (Camb) 2017; 53:4199-4202. [DOI: 10.1039/c6cc10274c] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fe3O4@ZIF-8 nanoparticles with outstanding UO22+ adsorption capacity and selectivity for lanthanide ions could be simply separated by magnet from a solution containing lanthanide ions.
Collapse
Affiliation(s)
- Xue Min
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Weiting Yang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Yuan-Feng Hui
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chao-Ying Gao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Song Dang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Zhong-Ming Sun
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|