1
|
Javanmard K, Farhadi S, Zabardasti A, Mahmoudi F. Radioactive iodine capture by hexagonal boron nitride (h-BN) nanosheets in liquid and vapor phases: Experimental and theoretical studies. MATERIALS CHEMISTRY AND PHYSICS 2025; 332:130212. [DOI: 10.1016/j.matchemphys.2024.130212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Li C, Yan Q, Xu H, Luo S, Hu H, Wang S, Su X, Xiao S, Gao Y. Highly Efficient Capture of Volatile Iodine by Conjugated Microporous Polymers Constructed Using Planar 3- and 4-Connected Organic Monomers. Molecules 2024; 29:2242. [PMID: 38792104 PMCID: PMC11124010 DOI: 10.3390/molecules29102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The effective capture and recovery of radioiodine species associated with nuclear fuel reprocessing is of significant importance in nuclear power plants. Porous materials have been proven to be one of the most effective adsorbents for the capture of radioiodine. In this work, we design and synthesize a series of conjugated microporous polymers (CMPs), namely, TPDA-TFPB CMP, TPDA-TATBA CMP, and TPDA-TECHO CMP, which are constructed based on a planar rectangular 4-connected organic monomer and three triangular 3-connected organic monomers, respectively. The resultant CMPs are characterized using various characterization techniques and used as effective adsorbents for iodine capture. Our experiments indicated that the CMPs exhibit excellent iodine adsorption capacities as high as 6.48, 6.25, and 6.37 g g-1 at 348 K and ambient pressure. The adsorption mechanism was further investigated and the strong chemical adsorption between the iodine and the imine/tertiary ammonia of the CMPs, 3D network structure with accessible hierarchical pores, uniform micromorphology, wide π-conjugated structure, and high-density Lewis-base sites synergistically contribute to their excellent iodine adsorption performance. Moreover, the CMPs demonstrated good recyclability. This work provides guidance for the construction of novel iodine adsorbent materials with high efficiency in the nuclear power field.
Collapse
Affiliation(s)
- Chaohui Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China;
| | - Siyu Luo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China;
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| |
Collapse
|
3
|
Rajput SK, Mothika VS. Powders to Thin Films: Advances in Conjugated Microporous Polymer Chemical Sensors. Macromol Rapid Commun 2024; 45:e2300730. [PMID: 38407503 DOI: 10.1002/marc.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.
Collapse
Affiliation(s)
- Saurabh Kumar Rajput
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | - Venkata Suresh Mothika
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| |
Collapse
|
4
|
Taheri N, Dinari M, Ramezanzade V. Fabrication of Polysulfone Beads Containing Covalent Organic Polymer as a Versatile Platform for Efficient Iodine Capture. ACS OMEGA 2024; 9:19071-19076. [PMID: 38708203 PMCID: PMC11064206 DOI: 10.1021/acsomega.3c09869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Radioactive iodine poses a significant risk to human health, particularly with regard to reproductive and metabolic functions. Designing and developing highly efficient adsorbent materials for radioactive substances remain a significant challenge. This study aimed to address this issue by the fabricating polymeric beads containing covalent organic polymer (COP) as an effective method for removing iodine vapor. To achieve this, a COP was first synthesized via the Friedel-Crafts reaction catalyzed by anhydrous aluminum chloride. Then, COP-loaded polysulfone (PSf) (COP@PSf) and PSf beads were prepared using a phase separation method. The beads produced in this research have exhibited remarkable proficiency in adsorbing iodine vapor, showing an adsorption capacity of up to 216 wt % within just 420 min, which is higher than that of most other similar beads reported in the literature.
Collapse
Affiliation(s)
- Nazanin Taheri
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Vahid Ramezanzade
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| |
Collapse
|
5
|
Zhou W, Lavendomme R, Zhang D. Recent progress in iodine capture by macrocycles and cages. Chem Commun (Camb) 2024; 60:779-792. [PMID: 38126398 DOI: 10.1039/d3cc05337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The effective capture of radioiodine is vital to the development of the nuclear industry and ecological environmental protection. There is, therefore, a continuously growing research exploration in various types of solid-state materials for iodine capture. During the last decade, the potential of using macrocycle and cage-based supramolecular materials in effective uptake and separation of radioactive iodine has been demonstrated. Interest in the application of these materials in iodine capture originates from their diversified porous characteristics, abundant host-guest chemistry, high iodine affinity and adsorption capacity, high stability in various environments, facile modification and functionalization, and intrinsic structural flexibility, among other attributes. Herein, recent progress in macrocycle and cage-based solid-state materials, including pure discrete macrocycles and cages, and their polymeric forms, for iodine capture is summarized and discussed with an emphasis on iodine capture capacities, mechanisms, and design strategies.
Collapse
Affiliation(s)
- Weinan Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
6
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
7
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023; 5:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
8
|
Ahad J, Ahmad M, Farooq A, Waheed K, Irfan N. Removal of iodine by dry adsorbents in filtered containment venting system after 10 years of Fukushima accident. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27485-1. [PMID: 37231136 DOI: 10.1007/s11356-023-27485-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Radioactive iodine is a hazardous fission product and a major concern for public health. Special attention is paid to iodine out of 80 fission products because of its short half-life of 8.02 days, high activity, and potential health hazards like its irreversible accumulation in thyroid gland and ability to cause thyroid cancer locally. Radioactive iodine can get released in the form of aerosols (cesium iodide), elemental iodine, and organic iodide after a nuclear accident and can cause off-site and on-site contamination. Filtered containment venting system (FCVS) is a safety system whose main objective is mitigation of severe accidents via controlled venting and removal of different forms of iodine to ensure safety of people and environment. After nuclear accidents like Fukushima, extensive research has been done on the removal of iodine by using dry scrubbers. This review paper presents research status of iodine removal by dry adsorbents especially after 10 years of Fukushima to assess the progress, research gap, and challenges that require more attention. A good adsorbent should be cost-effective; it should have high selective adsorption towards iodine, high thermal and chemical stability, and good loading capacity; and its adsorption should remain unaffected by aging and the presence of inhibitors like CO, NO2, CH3Cl, H2O, and Cl2 and radiation. Research on different dry adsorbents was discussed, and their capability as a potential filter for FCVS was reviewed on the basis of all the above-mentioned features. Metal fiber filters have been widely used for removal of aerosols especially micro- and nanoscale aerosols. For designing a metal fiber filter, optimal size or combination of sizes of fibers, number of layers, and loading capacity of filter should be decided according to feasibility and requirement. Balance between flow resistance and removal efficiency is also very important. Sand bed filters were successful in retention of aerosols, but they showed low trapping of iodine and no trapping of methyl iodide at all. For iodine and methyl iodide removal, many adsorbents like activated carbon, zeolites, metal organic frameworks (MOFs), porous organic frameworks (POPs), silica, aerogels, titanosilicates, etc. have been used. Impregnated activated carbon showed good results but low auto-ignition temperature and decline in adsorption due to aging and inhibitors like NOx made them less suitable. Silver zeolites have been very successful in methyl iodide and iodine removal, but they are expensive and affected by presence of CO. Titanosilicates, macroreticular resins, and chalcogels were also studied and they showed good adsorption capacities, but their thermal stability was low. Other adsorbents like silica, MOFs, aerogels, and POPs also showed promising results for iodine adsorption and good thermal stability, but very limited or no research is available on their performance in severe accident conditions. This review will be very helpful for researchers to understand the merits and demerits of different types of dry adsorbents, the important operating parameters that need optimization for designing an efficient scrubber, margin of research, and foreseeable challenges in removal of different forms of iodine.
Collapse
Affiliation(s)
- Jawaria Ahad
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.
| | - Masroor Ahmad
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Amjad Farooq
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Khalid Waheed
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Naseem Irfan
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| |
Collapse
|
9
|
Yildirim O, Tsaturyan A, Damin A, Nejrotti S, Crocellà V, Gallo A, Chierotti MR, Bonomo M, Barolo C. Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15819-15831. [PMID: 36926827 PMCID: PMC10064318 DOI: 10.1021/acsami.2c20853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A novel 2D covalent organic polymer (COP), based on conjugated quinoid-oligothiophene (QOT) and tris(aminophenyl) benzene (TAPB) moieties, is designed and synthesized (TAPB-QOT COP). Some DFT calculations are made to clarify the equilibrium between different QOT isomers and how they could affect the COP formation. Once synthetized, the polymer has been thoroughly characterized by spectroscopic (i.e., Raman, UV-vis), SSNMR and surface (e.g., SEM, BET) techniques, showing a modest surface area (113 m2 g-1) and micropore volume (0.014 cm3 g-1 with an averaged pore size of 5.6-8 Å). Notwithstanding this, TAPB-QOT COP shows a remarkably high iodine (I2) uptake capacity (464 %wt) comparable to or even higher than state-of-the-art porous organic polymers (POPs). These auspicious values are due to the thoughtful design of the polymer with embedded sulfur sites and a conjugated scaffold with the ability to counterbalance the relatively low pore volumes. Indeed, both morphological and Raman data, supported by computational analyses, prove the very high affinity between the S atom in our COP and the I2. As a result, TAPB-QOT COP shows the highest volumetric I2 uptake (i.e., the amount of I2 uptaken per volume unit) up to 331 g cm-3 coupled with a remarkably high reversibility (>80% after five cycles).
Collapse
Affiliation(s)
- Onur Yildirim
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Arshak Tsaturyan
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- Institute
of Physical and Organic Chemistry, Southern
Federal University, 344006 Rostov-on-Don, Russia
- Université
Jean Monnet Saint-Etienne, CNRS, Institut d’Optique Graduate
School, Laboratoire Hubert Curien UMR 5516, F-42023 Saintt-Etienne, France
| | - Alessandro Damin
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Stefano Nejrotti
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Valentina Crocellà
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Angelo Gallo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Michele Remo Chierotti
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Matteo Bonomo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Claudia Barolo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
- ICxT
Interdepartmental Centre, Università
degli Studi di Torino, Via Lungo Dora Siena 100, 10153 Torino, Italy
| |
Collapse
|
10
|
Sacourbaravi R, Ansari-Asl Z, Darabpour E. Magnetic polyacrylonitrile/ZIF-8/Fe3O4 nanocomposite bead as an efficient iodine adsorbent and antibacterial agent. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Yu G, Liu Y, Yang X, Li Y, Li Y, Zhang Y, He C. A robust sp2 carbon-conjugated COF for efficient iodine uptake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
12
|
Zhang YX. The preparation of 2,2'-bithiophene-based conjugated microporous polymers by direct arylation polymerization and their application in fluorescence sensing 2,4-dinitrophenol. Anal Chim Acta 2023; 1240:340779. [PMID: 36641146 DOI: 10.1016/j.aca.2022.340779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
In this paper, we report the synthetic strategy of direct arylation polymerization (DAP) for four 2,2'-bithiophene-based conjugated microporous polymers (the 2,2'-BTh-based CMPs) by coupling 2,2'-bithiophene with the building blocks containing bromine. Compared to conventional coupling polymerization, this synthetic scheme is simple, facile and atomically efficient owing to neither preactivating the C-H bonds in 2,2'-bithiophene using organometallic reagents nor synthesis of complex thiophene-based building blocks. The resulting 2,2'-BTh-based CMPs exhibit excellent thermal stability, high specific surface areas, and good microporosity. Their specific surface areas are higher than that of other previously reported CMPs prepared with DAP. The four 2,2'-BTh-based CMPs can be utilized for multicolor fluorescence sensing of 2,4-dinitrophenol (DNP) with the high sensitivity and selectivity. The sensitivities appear to increase with the degree of structural distortion.
Collapse
Affiliation(s)
- Yu-Xia Zhang
- School of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
13
|
Zou J, Wen D, Zhao Y. Flexible three-dimensional diacetylene functionalized covalent organic frameworks for efficient iodine capture. Dalton Trans 2023; 52:731-736. [PMID: 36562413 DOI: 10.1039/d2dt03362c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The construction of functionalized covalent organic frameworks (COFs) is of great significance for broadening their potential applications, but is yet challenging to achieve, especially for three-dimensional (3D) COFs, because the connection of the building organic skeleton must strictly follow the pre-designed topology. Here we present the synthesis of two diamondyne-like 3D COFs (CPOF-2 and CPOF-3) functionalized with acetylene (-CC-) and diacetylene (-CC-CC-), respectively. The obtained COFs show a high crystallinity, permanent porosity, and chemical stability. Furthermore, CPOF-3 exhibited an extremely high volatile iodine uptake (as high as 5.87 g g-1), much higher than that of most reported COF-based adsorbents for iodine capture. Therefore, this study provides a new design principle to obtain high-performance iodine loading porous materials to solve the environmental pollution problem caused by radioactive iodine in the waste of the nuclear industry.
Collapse
Affiliation(s)
- Junyan Zou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, Guangdong, China
| | - Dan Wen
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, China. .,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, China. .,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| |
Collapse
|
14
|
Zhang M, Samanta J, Atterberry BA, Staples R, Rossini AJ, Ke C. A Crosslinked Ionic Organic Framework for Efficient Iodine and Iodide Remediation in Water. Angew Chem Int Ed Engl 2022; 61:e202214189. [PMID: 36331335 DOI: 10.1002/anie.202214189] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Iodine is widely used as an antimicrobial reagent for water disinfection in the wilderness and outer space, but residual iodine and iodide need to be removed for health reasons. Currently, it is challenging to remove low concentrations of iodine and iodide in water (≈5 ppm). Furthermore, the remediation of iodine and iodide across a broad temperature range (up to 90 °C) has not previously been investigated. In this work, we report a nitrate dimer-directed synthesis of a single-crystalline ionic hydrogen-bonded crosslinked organic framework (HC OF-7). HC OF-7 removes iodine and iodide species in water efficiently through halogen bonding and anion exchange, reducing the total iodine concentration to 0.22 ppm at room temperature. Packed HC OF-7 columns were employed for iodine/iodide breakthrough experiments between 23 and 90 °C, and large breakthrough volumes were recorded (≥18.3 L g-1 ). The high iodine/iodide removal benchmarks recorded under practical conditions make HC OF-7 a promising adsorbent for water treatment.
Collapse
Affiliation(s)
- Mingshi Zhang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, NH 03755, USA
| | - Jayanta Samanta
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, NH 03755, USA
| | - Benjamin A Atterberry
- United States Department of Energy, Ames National Laboratory, Ames, IA 50011, USA.,Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Richard Staples
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Aaron J Rossini
- United States Department of Energy, Ames National Laboratory, Ames, IA 50011, USA.,Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, NH 03755, USA
| |
Collapse
|
15
|
An Azo-Group-Functionalized Porous Aromatic Framework for Achieving Highly Efficient Capture of Iodine. Molecules 2022; 27:molecules27196297. [PMID: 36234834 PMCID: PMC9572897 DOI: 10.3390/molecules27196297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The strong radioactivity of iodine compounds derived from nuclear power plant wastes has motivated the development of highly efficient adsorbents. Porous aromatic frameworks (PAFs) have attracted much attention due to their low density and diverse structure. In this work, an azo group containing PAF solid, denoted as LNU-58, was prepared through Suzuki polymerization of tris-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)-amine and 3,5-dibromoazobenzene building monomers. Based on the specific polarity properities of the azo groups, the electron-rich aromatic fragments in the hierarchical architecture efficiently capture iodine molecules with an adsorption capacity of 3533.11 mg g−1 (353 wt%) for gaseous iodine and 903.6 mg g−1 (90 wt%) for dissolved iodine. The iodine uptake per specific surface area up to 8.55 wt% m−2 g−1 achieves the highest level among all porous adsorbents. This work illustrates the successful preparation of a new type of porous adsorbent that is expected to be applied in the field of practical iodine adsorption.
Collapse
|
16
|
Samanta P, Dutta S, Let S, Sen A, Shirolkar MM, Ghosh SK. Hydroxy-Functionalized Hypercrosslinked Polymers (HCPs) as Dual Phase Radioactive Iodine Scavengers: Synergy of Porosity and Functionality. Chempluschem 2022; 87:e202200212. [PMID: 36066453 DOI: 10.1002/cplu.202200212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/12/2022] [Indexed: 02/18/2024]
Abstract
Large-scale nuclear power plant production of iodine radionuclides (129 I, 131 I) pose huge threat in the events of nuclear disaster. Effective removal of radioiodine from nuclear waste is one of the most critical challenge because of the drawbacks of state-of-the-art adsorbents such as high cost, low uptake capacity and non-recyclability. Herein, two hydroxy-functionalized (-OH) hypercrosslinked polymers (HCPs), namely HCP-91 and HCP-92, have been synthesized and employed towards capture of iodine. High chemical stability along with synergistic harmony of high porosity and functionality of these materials makes them suitable candidates for capture of iodine from both vapor phase and water medium. Moreover, both the HCPs showed superior iodine removal performance from water in terms of fast kinetics and high removal efficiency (2.9 g g-1 and 2.49 g g-1 for HCP-91 and HCP-92 respectively). The role of functionality (-OH groups) and porosity has been established with the help of HCP-91, HCP-92 and non-functionalized biphenyl HCP for the efficient capture of I3 - ions from water. In addition, both HCPs exhibited excellent selectivity and recyclability towards triiodide ions, rendering the potential of these materials towards real-time applications. Lastly, Density functional theoretical studies revealed key insights and corroborate well with the experimental findings.
Collapse
Affiliation(s)
- Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| | - Arunabha Sen
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| | - Mandar M Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU) Lavale, Pune, 412115, Maharashtra, India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. HomiBhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
17
|
Synthesis of Electron-Rich Porous Organic Polymers via Schiff-Base Chemistry for Efficient Iodine Capture. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165161. [PMID: 36014397 PMCID: PMC9415008 DOI: 10.3390/molecules27165161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
As one of the main nuclear wastes generated in the process of nuclear fission, radioactive iodine has attracted worldwide attention due to its harm to public safety and environmental pollution. Therefore, it is of crucial importance to develop materials that can rapidly and efficiently capture radioactive iodine. Herein, we report the construction of three electron-rich porous organic polymers (POPs), denoted as POP-E, POP-T and POP-P via Schiff base polycondensations reactions between Td-symmetric adamantane knot and four-branched “linkage” molecules. We demonstrated that all the three POPs showed high iodine adsorption capability, among which the adsorption capacity of POP-T for iodine vapor reached up to 3.94 g·g−1 and the removal rate of iodine in n-hexane solution was up to 99%. The efficient iodine capture mechanism of the POP-T was investigated through systematic comparison of Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after iodine adsorption. The unique π-π conjugated system between imine bonds linked aromatic rings with iodine result in charge-transfer complexes, which explains the exceptional iodine capture capacity. Additionally, the introduction of heteroatoms into the framework would also enhance the iodine adsorption capability of POPs. Good retention behavior and recycling capacity were also observed for the POPs.
Collapse
|
18
|
Wang Y, Su Y, Yang L, Su M, Niu Y, Liu Y, Sun H, Zhu Z, Liang W, Li A. Highly efficient removal of PM and VOCs from air by a self-supporting bifunctional conjugated microporous polymers membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Zhang X, Maddock J, Nenoff TM, Denecke MA, Yang S, Schröder M. Adsorption of iodine in metal-organic framework materials. Chem Soc Rev 2022; 51:3243-3262. [PMID: 35363235 PMCID: PMC9328120 DOI: 10.1039/d0cs01192d] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment. 129I has an extremely long half-life of 1.57 × 107 years and poses a long-term environmental risk due to bioaccumulation. In contrast, 131I has a shorter half-life of 8.02 days and poses a significant risk to human health. There is, therefore, an urgent need to develop secure, efficient and economic stores to capture and sequester ionic and neutral iodine residues. Metal-organic framework (MOF) materials are a new generation of solid sorbents that have wide potential applicability for gas adsorption and substrate binding, and recently there is emerging research on their use for the selective adsorptive removal of iodine. Herein, we review the state-of-the-art performance of MOFs for iodine adsorption and their host-guest chemistry. Various aspects are discussed, including establishing structure-property relationships between the functionality of the MOF host and iodine binding. The techniques and methodologies used for the characterisation of iodine adsorption and of iodine-loaded MOFs are also discussed together with strategies for designing new MOFs that show improved performance for iodine adsorption.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - John Maddock
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Tina M Nenoff
- Materials, Physics and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Melissa A Denecke
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
- Division of Physical and Chemical Science, Department of Nuclear Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Sihai Yang
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Martin Schröder
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
20
|
Triazine-based porous organic polymers for reversible capture of iodine and utilization in antibacterial application. Sci Rep 2022; 12:2638. [PMID: 35173259 PMCID: PMC8850422 DOI: 10.1038/s41598-022-06671-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022] Open
Abstract
The capture and safe storage of radioactive iodine (129I or 131I) are of a compelling significance in the generation of nuclear energy and waste storage. Because of their physiochemical properties, Porous Organic Polymers (POPs) are considered to be one of the most sought classes of materials for iodine capture and storage. Herein, we report on the preparation and characterization of two triazine-based, nitrogen-rich, porous organic polymers, NRPOP-1 (SABET = 519 m2 g−1) and NRPOP-2 (SABET = 456 m2 g−1), by reacting 1,3,5-triazine-2,4,6-triamine or 1,4-bis-(2,4-diamino-1,3,5-triazine)-benzene with thieno[2,3-b]thiophene-2,5-dicarboxaldehyde, respectively, and their use in the capture of volatile iodine. NRPOP-1 and NRPOP-2 showed a high adsorption capacity of iodine vapor with an uptake of up to 317 wt % at 80 °C and 1 bar and adequate recyclability. The NRPOPs were also capable of removing up to 87% of iodine from 300 mg L−1 iodine-cyclohexane solution. Furthermore, the iodine-loaded polymers, I2@NRPOP-1 and I2@NRPOP-2, displayed good antibacterial activity against Micrococcus luteus (ML), Escherichia coli (EC), and Pseudomonas aeruginosa (PSA). The synergic functionality of these novel polymers makes them promising materials to the environment and public health.
Collapse
|
21
|
Shao L, Liu N, Wang L, Sang Y, Wan H, Zhan P, Zhang L, Huang J, Chen J. Facile preparation of oxygen-rich porous polymer microspheres from lignin-derived phenols for selective CO 2 adsorption and iodine vapor capture. CHEMOSPHERE 2022; 288:132499. [PMID: 34626649 DOI: 10.1016/j.chemosphere.2021.132499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 05/27/2023]
Abstract
Lignin is a natural O-containing aromatic amorphous polymers from the residues of biorefinery and industrial papermaking, it can derive lots of aromatic phenol chemicals used as industrial raw materials by an efficient depolymerization, and then produce synthetic polymers. Here, we selected six aromatic units from the liquid products of lignin depolymerization, and tried to prepare diversified O-rich hyper-cross-linked polymers (HCPs) by one-pot Friedel-Crafts alkylation reaction for CO2 and iodine vapor capture. HCP1, HCP2, and HCP3 microspheres possessed similar porous structure with Brunauer-Emmett-Teller (BET) surface areas (SBET) of 14.1-20.6 m2/g and high O content (26.34-30.68 wt%), while HCP4, HCP5, and HCP6 were composed of many bulks with 3D networks structure, and showed larger SBET of 15.4-246.9 m2/g and relatively low O content (18.48-26.38 wt%). The results indicated that the chemical position and quantities of substituent groups (methoxy and alkyl) into lignin-derived units had evident impact on their morphology and textural parameters. These HCPs exhibited considerable CO2 uptake (64.1 mg/g) and selectivity (35.2) at 273 K, and high iodine vapor uptake (192.3 wt%). Moreover, the performance analysis implied that the SBET and pore volume of these HCPs had not played the dominated roles in the CO2 and I2 adsorption, while their pore size distribution, O-functional groups, and electron density will be more important for the capture of the both. This study will offer a facile synthesis of O-rich polymer microsphere adsorbents based on the green and sustainable lignin.
Collapse
Affiliation(s)
- Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Na Liu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lizhi Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yafei Sang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huan'ai Wan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jienan Chen
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
22
|
Yan X, Yang Y, Li G, Zhang J, He Y, Wang R, Lin Z, Cai Z. Thiophene-based covalent organic frameworks for highly efficient iodine capture. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Yu YN, Yin Z, Cao LH, Ma YM. Organic porous solid as promising iodine capture materials. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01128-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
|
25
|
Wang L, Xie W, Xu G, Zhang S, Yao C, Xu Y. Synthesis of thiophene‐based conjugated microporous polymers for high iodine and carbon dioxide capture. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education Changchun China
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education Changchun China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education Changchun China
| | - Shuran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education Changchun China
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education Changchun China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education Changchun China
- School of School of Chemistry and Environmental Engineering, the Collaborative Innovation Center of Optical Materials and Chemistry Changchun University of Science and Technology Changchun China
| |
Collapse
|
26
|
Superior removal of iodine via cyclophosphazene-based conjugation-enriched cross-linking hybrid polymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Ohtsu H, Kim J, Kanamaru T, Inoue D, Hashizume D, Kawano M. Stepwise Observation of Iodine Diffusion in a Flexible Coordination Network Having Dual Interactive Sites. Inorg Chem 2021; 60:13727-13735. [PMID: 34407609 DOI: 10.1021/acs.inorgchem.1c02100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We created dual interactive sites in a porous coordination network using a CuI cluster and a rotation-restricted ligand, tetra(3-pyridyl)phenylmethane (3-TPPM). The dual interactive sites of iodide and Cu ions can adsorb I2 via four-step processes including two chemisorption processes. Initially, one I2 molecule was physisorbed in a pore and successively chemisorbed on iodide sites of the pore surface, and then the next I2 molecule was physisorbed and chemisorbed on Cu ions to form a cross-linked network. We revealed the four-step I2 diffusion process by single-crystal X-ray structure determination and spectroscopic kinetic analysis.
Collapse
Affiliation(s)
- Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Joonsik Kim
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tatsuya Kanamaru
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
28
|
Yan Z, Cui B, Zhao T, Luo Y, Zhang H, Xie J, Li N, Bu N, Yuan Y, Xia L. A Carbazole-Functionalized Porous Aromatic Framework for Enhancing Volatile Iodine Capture via Lewis Electron Pairing. Molecules 2021; 26:5263. [PMID: 34500694 PMCID: PMC8434361 DOI: 10.3390/molecules26175263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nitrogen-rich porous networks with additional polarity and basicity may serve as effective adsorbents for the Lewis electron pairing of iodine molecules. Herein a carbazole-functionalized porous aromatic framework (PAF) was synthesized through a Sonogashira-Hagihara cross-coupling polymerization of 1,3,5-triethynylbenzene and 2,7-dibromocarbazole building monomers. The resulting solid with a high nitrogen content incorporated the Lewis electron pairing effect into a π-conjugated nano-cavity, leading to an ultrahigh binding capability for iodine molecules. The iodine uptake per specific surface area was ~8 mg m-2 which achieved the highest level among all reported I2 adsorbents, surpassing that of the pure biphenyl-based PAF sample by ca. 30 times. Our study illustrated a new possibility for introducing electron-rich building units into the design and synthesis of porous adsorbents for effective capture and removal of volatile iodine from nuclear waste and leakage.
Collapse
Affiliation(s)
- Zhuojun Yan
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Bo Cui
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Ting Zhao
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Yifu Luo
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Hongcui Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Jialin Xie
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Na Li
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Naishun Bu
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
- Yingkou Institute of Technology, Yingkou 115014, China
| |
Collapse
|
29
|
Ceratti DR, Cohen AV, Tenne R, Rakita Y, Snarski L, Jasti NP, Cremonesi L, Cohen R, Weitman M, Rosenhek-Goldian I, Kaplan-Ashiri I, Bendikov T, Kalchenko V, Elbaum M, Potenza MAC, Kronik L, Hodes G, Cahen D. The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing. MATERIALS HORIZONS 2021; 8:1570-1586. [PMID: 34846465 DOI: 10.1039/d1mh00006c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr3 single crystals (A = CH3NH3+, methylammonium (MA); HC(NH2)2+, formamidinium (FA); and cesium, Cs+). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs+ protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects via methylamine from photo-dissociation, which binds to Pb2+. DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br3- defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants.
Collapse
Affiliation(s)
- D R Ceratti
- Weizmann Institute of Science, Department of Materials and Interfaces, 7610001, Rehovot, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bai W, Fan Y, Wang F, Mu P, Sun H, Zhu Z, Liang W, Li A. Facile synthesis of porous organic polymers (POPs) membrane via click chemistry for efficient PM2.5 capture. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Xiao H, Zhou H, Feng S, Gore DB, Zhong Z, Xing W. In situ growth of two-dimensional ZIF-L nanoflakes on ceramic membrane for efficient removal of iodine. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Li X, Zou Y, Jia Z, Zhang J, Li Y, Guo X, Zhang M, Li K, Li J, Ma L. A fully conjugated organic polymer via Knoevenagel condensation for fast separation of uranium. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123802. [PMID: 33113739 DOI: 10.1016/j.jhazmat.2020.123802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Design and preparation of a kind of pore-free adsorbent with abundant active sites is favorable for fast separation of uranium. Here, a two-dimensional olefin-linked conjugated organic polymer was prepared via the Knoevenagel condensation reaction. The product owns good stability and excellent fluorescence property due to the fully conjugated skeleton. Moreover, owning to the high content of N atom, it shows excellent performance in adsorption and separation of uranium, and more importantly, it is constructed with nearly pore-free structure because of the irregular staggered stacking, which makes it exhibit fast adsorption behavior towards uranium. These results confirm the feasibility of pore-free material for fast adsorption.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Yingdi Zou
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Zhimin Jia
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Jie Zhang
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China; College of Environment and Ecology, Chengdu University of Technology, No.1, Dongsanlu, Erxianqiao, Chengdu 610059, PR China.
| | - Yang Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Xinghua Guo
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Meicheng Zhang
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Kun Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Jing Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Lijian Ma
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| |
Collapse
|
33
|
Wu K, Huang YL, Zheng J, Luo D, Xie M, Li YY, Lu W, Li D. A microporous shp-topology metal–organic framework with an unprecedented high-nuclearity Co 10-cluster for iodine capture and histidine detection. MATERIALS CHEMISTRY FRONTIERS 2021; 5:4300-4309. [DOI: 10.1039/d1qm00211b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A microporous shp-topology metal–organic framework (JNU-200) constructed with 12-connected high-nuclearity Co10-cluster and 4-connected carboxylate ligand for iodine capture and histidine detection.
Collapse
Affiliation(s)
- Kun Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Yong-Liang Huang
- Department of Chemistry
- Shantou University Medical College
- Shantou
- P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Yan Yan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| |
Collapse
|
34
|
Sheng X, Shi H, Yang L, Shao P, Yu K, Luo X. Rationally designed conjugated microporous polymers for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141683. [PMID: 32866749 DOI: 10.1016/j.scitotenv.2020.141683] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Adsorption technology has been widely developed and employed for water and air pollution control. Conjugated microporous polymers (CMPs) emerge as the appropriate adsorbents candidate. To fulfill high capacity and good selectivity for the adsorption, strategies of flexible micropores design and functional group modification that facilitate the physical and chemical effect are considered desirable. The review firstly summarizes the advancements in structural studies of CMPs and the applications for contaminants adsorption from water and air. Further, the mechanisms involved in the remarkable capacity and selectivity of CMPs adsorbents are addressed. Finally, upcoming research efforts on materials design, adsorption principle, and resource recovery to overcome current practical bottlenecks are proposed.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
35
|
Huang Y, Li W, Xu Y, Ding M, Ding J, Zhang Y, Wang Y, Chen S, Jin Y, Xia C. Rapid iodine adsorption from vapor phase and solution by a nitrogen-rich covalent piperazine–triazine-based polymer. NEW J CHEM 2021. [DOI: 10.1039/d1nj00122a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The excellent pore performance and high nitrogen content of n-CTP result in increased diffusion and adsorption of I2, which subsequently decreases the equilibrium time.
Collapse
Affiliation(s)
- Yalin Huang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Wei Li
- Department of Cardiothoracic Surgery
- The First Affiliated Hospital of Chengdu Medical College
- Chengdu 610500
- China
| | - Yuwei Xu
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Mu Ding
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Jie Ding
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yun Zhang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yuanhua Wang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Shanyong Chen
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yongdong Jin
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Chuanqin Xia
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
36
|
Wang L, Yao C, Xie W, Xu G, Zhang S, Xu Y. A series of thiophene- and nitrogen-rich conjugated microporous polymers for efficient iodine and carbon dioxide capture. NEW J CHEM 2021. [DOI: 10.1039/d1nj03107d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of thiophene- and nitrogen-rich conjugated microporous polymers can be used for high iodine and carbon dioxide capture.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Shuran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
- School of School of Chemistry and Environmental Engineering, the Collaborative Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
37
|
Gogia A, Das P, Mandal SK. Tunable Strategies Involving Flexibility and Angularity of Dual Linkers for a 3D Metal-Organic Framework Capable of Multimedia Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46107-46118. [PMID: 32957781 DOI: 10.1021/acsami.0c13094] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The widespread use of nuclear power poses severe health and environmental risks owing to the nonregulated release and disposal of radioactive wastes in the environment. Among these wastes, the capture and removal of radioactive iodine poses a big challenge. To develop a novel material for capturing molecular iodine, we have strategically synthesized a nitrogen-rich three-dimensional (3D) metal-organic framework (MOF), {[Mn2(oxdz)2(tpbn)(H2O)2]·2C2H5OH}n (1), utilizing a bent heterocyclic dicarboxylate linker (H2oxdz: (4,4'-(1,3,4-oxadiazole-2,5-diyl)dibenzoic acid)) and a flexible bis(tridentate) ligand (tpbn: N, N', N″, N‴-tetrakis(2-pyridylmethyl)-1,4-diaminobutane). Based on its single-crystal structure, 1 is an eightfold interpenetrated 3D framework, consisting of a unique 4-connected {Mn2(tpbn)} subunit, in which the pores line up with the nitrogen atoms of the oxadiazole moiety. This can be considered as a big leap for the development of 3D MOFs using flexible bis(tridentate) ligands. To emphasize the role of the flexible methylene chain length in such ligand in the dimensionality of the resultant framework, the tphn (N, N', N″, N‴-tetrakis(2-pyridylmethyl)-1,6-diaminohexane) ligand with two additional methylene groups provides a one-dimensional (1D) CP {[Mn2(oxdz)2(tphn)(H2O)]·CH3OH}n (2). This spacer chain lengthening has a profound effect on the coordination of such ligand with Mn(II), further affecting the binding of oxdz. The inherent polarizable nature of the oxadiazole moiety and the presence of permanent pore of dimensions (19.122 × 19.253 Å2) in 1 have been exploited for the capture/removal of iodine not only from vapor and an organic solution but also from an aqueous media. It exhibits competent 100% reversible sorption of iodine with an uptake capacity of (1.1 ± 0.05) g/g of 1. The uptake value has been corroborated by both gravimetric and titrimetric analyses. The interaction of iodine with 1 has been notably studied with molecular simulations, kinetic models of sorption, field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. Moreover, 1 is highly stable and is recyclable without much loss of sorption capability up to five cycles.
Collapse
Affiliation(s)
- Alisha Gogia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
38
|
Li Z, Li H, Wang D, Suwansoontorn A, Du G, Liu Z, Hasan MM, Nagao Y. A simple and cost-effective synthesis of ionic porous organic polymers with excellent porosity for high iodine capture. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122796] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Geng T, Ma L, Chen G, Zhang C, Zhang W, Niu Q. Fluorescent conjugated microporous polymers containing pyrazine moieties for adsorbing and fluorescent sensing of iodine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20235-20245. [PMID: 32239401 DOI: 10.1007/s11356-019-06534-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/12/2019] [Indexed: 06/11/2023]
Abstract
Two kinds of fluorescent conjugated microporous polymers containing pyrazine moieties were prepared by the polymerization reaction of 2,5-di-triphenylamine-yl-pyrazine (DTPAPz) and N,N,N',N'-tetrapheny-2,5-(diazyl) pyrazine (TDPz) with 2,4,6-trichloro-1,3,5-triazine (TCT) through Friedel-Crafts reaction using the methanesulfonic acid as a catalysts. Both CMPs have high thermal stability and decomposition temperature reaches above 596 and 248 °C under nitrogen atmosphere, respectively. By right of porous morphology and electron-donating nitrogen, as well as electron-rich π-conjugated structures, the adsorption performance for iodine vapor on the CMPs is very excellent, which can reach 441% and 312%. In addition, fluorescence studies showed that the two CMPs exhibited high fluorescence sensitivity to electron-deficient iodine, o-nitrophenol (o-NP), and picric acid (PA) via fluorescence quenching.
Collapse
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China.
| | - Lanzhen Ma
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Guofeng Chen
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Weiyong Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Qingyuan Niu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
40
|
Li M, Zhao H, Lu ZY. Highly efficient, reversible iodine capture and exceptional uptake of amines in viologen-based porous organic polymers. RSC Adv 2020; 10:20460-20466. [PMID: 35517750 PMCID: PMC9054242 DOI: 10.1039/d0ra03242e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Abstract
A viologen-based porous organic polymer, POP-V-VI, was designed and synthesized by a facile nucleophilic substitution between cyanuric chloride and 1,2-bis(4-pyridinium) ethylene. Together with the reported POP-V-BPY with a similar structure, these viologen-based porous organic polymers bear high charge density, phenyl ring and nitrogenous affinity sites, which endow them with excellent iodine vapor uptake capacity (4860 mg g-1 for POP-V-VI and 4200 mg g-1 for POP-V-BPY) and remarkably high adsorption capacity for pyridine (4470 mg g-1 for POP-V-VI and 8880 mg g-1 for POP-V-BPY) and other aliphatic amines. POP-V-VI and POP-V-BPY could be efficiently recycled and reused three times without significant loss of iodine vapor uptake. All these results demonstrate that POP-V-VI and POP-V-BPY are promising adsorbents for practical applications in portable devices such as gas masks.
Collapse
Affiliation(s)
- Meiting Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130012 China
- Institute of Theoretical Chemistry, Jilin University Changchun 130023 China
| | - Huanyu Zhao
- Institute of Theoretical Chemistry, Jilin University Changchun 130023 China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130012 China
- Institute of Theoretical Chemistry, Jilin University Changchun 130023 China
| |
Collapse
|
41
|
Wang S, Hu Q, Liu Y, Meng X, Ye Y, Liu X, Song X, Liang Z. Multifunctional conjugated microporous polymers with pyridine unit for efficient iodine sequestration, exceptional tetracycline sensing and removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121949. [PMID: 31927352 DOI: 10.1016/j.jhazmat.2019.121949] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 05/21/2023]
Abstract
In this work, two multifunctional conjugated microporous polymers (CMP-LS7-8) were obtained via the Pd-catalyzed Suzuki coupling reactions of 2,4,6-tris(4-bromophenyl)pyridine with two aromatic borates. The Brunauer-Emmett-Teller (BET) surface areas of CMP-LS7-8 were calculated to be 507 and 2028 m2 g-1. CMP-LS7-8 exhibit excellent volatile iodine adsorption about 2.77 and 5.29 g g-1, respectively, and outstanding reversible adsorption. High adsorption capacity should be attributed to an integrated effect by excellent porous characteristics, effective sorption sites, and expanded π-conjugated network. In addition, this platform integrated two functions of sensing and adsorption of tetracycline (TC) into one material. The excellent luminescence of CMP-LS7-8 can be effectively quenched by TC, which demonstrates they can be acted as new sensitive and selective fluorescence probes toward TC. Simultaneously, CMP-LS7-8 also display high adsorption ability of TC. The adsorption kinetics of TC suggested that the process of adsorption followed a pseudo-second-order model, and the adsorption behaviour of these polymers fitted with the Langmuir model. These results suggest that CMP-LS7-8 posess high volatile iodine capture and exceptional TC detection and removal performance, which can be promising candidates for environmental remediation.
Collapse
Affiliation(s)
- Shun Wang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qibo Hu
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yuchuan Liu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xianyu Meng
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yu Ye
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xionghui Liu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xiaowei Song
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
42
|
Liu C, Xia M, Zhang M, Yuan K, Hu F, Yu G, Jian X. One-pot synthesis of nitrogen-rich aminal- and triazine-based hierarchical porous organic polymers with highly efficient iodine adsorption. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Zhu Z, Wu S, Liu C, Mu P, Su Y, Sun H, Liang W, Li A. Ionic liquid and magnesium hydrate incorporated conjugated microporous polymers nanotubes with superior flame retardancy and thermal insulation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Construction of hypercrosslinked polymers with dual nitrogen-enriched building blocks for efficient iodine capture. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Zhang S, Li X, Gong W, Sun T, Wang Z, Ning G. Pillar[5]arene-Derived Microporous Polyaminal Networks with Enhanced Uptake Performance for CO2 and Iodine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05871] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiyue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaohan Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| | - Tianjun Sun
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Marine Engineering College of Dalian Maritime University, Dalian 116023, P. R. China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| |
Collapse
|
46
|
An WK, Zheng SJ, Du YN, Ding SY, Li ZJ, Jiang S, Qin Y, Liu X, Wei PF, Cao ZQ, Song M, Pan Z. Thiophene-embedded conjugated microporous polymers for photocatalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01164a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
“Bottom-up” embedding of thiophene derivatives into CMPs for highly efficient heterogeneous photocatalysis is reported.
Collapse
|
47
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
48
|
Geng TM, Zhang C, Hu C, Liu M, Fei YT, Xia HY. Synthesis of 1,6-disubstituted pyrene-based conjugated microporous polymers for reversible adsorption and fluorescence sensing of iodine. NEW J CHEM 2020. [DOI: 10.1039/c9nj05509f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four 1,6-disubstituted pyrene-based fluorescent conjugated microporous polymers were synthesized by Sonogashira–Hagihara reaction, trimerization reaction of –CN, and Friedel–Crafts reaction, respectively, which can efficient capture and sense I2.
Collapse
Affiliation(s)
- Tong-Mou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Ya-Ting Fei
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Hong-Yu Xia
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| |
Collapse
|
49
|
Feng C, Xu G, Xie W, Zhang S, Yao C, Xu Y. Polytriazine porous networks for effective iodine capture. Polym Chem 2020. [DOI: 10.1039/c9py01948k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein we present a rational strategy for the development of nitrogen-enriched conjugated microporous polymers (CMPs) (TBTT-CMP@1, 2 and 3) via a BH coupling reaction under mild conditions, for the super absorption of iodine. TBTT-CMP@1 exhibited iodine capture amount up to 442 wt%.
Collapse
Affiliation(s)
- Chenchen Feng
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Shuran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| |
Collapse
|
50
|
Li X, Chen G, Xu H, Jia Q. Task-specific synthesis of cost-effective electron-rich thiophene-based hypercrosslinked polymer with perylene for efficient iodine capture. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|