1
|
Song Y, Ding Y, Su J, Li J, Ji Y. Unlocking the Potential of Machine Learning in Co-crystal Prediction by a Novel Approach Integrating Molecular Thermodynamics. Angew Chem Int Ed Engl 2025; 64:e202502410. [PMID: 40072272 DOI: 10.1002/anie.202502410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Co-crystal engineering is of interest for many applications in pharmaceutical, chemical, and materials fields, but rational design of co-crystals is still challenging. Although artificial intelligence has revolutionized decision-making processes in material design, limitations in generalization and mechanistic understanding remain. Herein, we sought to improve prediction of co-crystals by combining mechanistic thermodynamic modeling with machine learning. We constructed a brand-new co-crystal database, integrating drug, coformer, and reaction solvent information. By incorporating various thermodynamic models, the predictive performance was significantly enhanced. Benefiting from the complementarity of thermodynamic mechanisms and structural descriptors, the model coupling three thermodynamic models achieved optimal predictive performance in coformer and solvent screening. The model was rigorously validated against benchmark models using challenging independent test sets, showcasing superior performance in both coformer and solvent predicting with accuracy over 90%. Further, we employed SHAP analysis for model interpretation, suggesting that thermodynamic mechanisms are prominent in the model's decision-making. Proof-of-concept studies on ketoconazole validated the model's efficacy in identifying coformers/solvents, demonstrating its potential in practical application. Overall, our work enhanced the understanding of co-crystallization and highlighted the strategy that integrates mechanistic insights with data-driven models to accelerate the rational design and synthesis of co-crystals, as well as various other functional materials.
Collapse
Affiliation(s)
- Yutong Song
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211198, P.R. China
| | - Yewei Ding
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211198, P.R. China
| | - Junyi Su
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211198, P.R. China
| | - Jian Li
- Jinling Pharmaceutical Co., Ltd., Nanjing, 210009, P.R. China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211198, P.R. China
| |
Collapse
|
2
|
Dhaval M, Dudhat K, Gadoya A, Shah S, Pethani T, Jambukiya N, Patel A, Kalsariya C, Ansari J, Borkhataria C. Pharmaceutical Salts: Comprehensive Insights From Fundamental Chemistry to FDA Approvals (2019-2023). AAPS PharmSciTech 2025; 26:36. [PMID: 39821716 DOI: 10.1208/s12249-024-03020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025] Open
Abstract
Pharmaceutical salts are a cornerstone in drug development, offering a robust, economical, and industry-friendly option for improving the crucial physicochemical properties of drugs, particularly solubility and dissolution. This review article explores all critical aspects of salt formation, including its importance, the basic chemistry involved, the principles governing counterion selection, the range of counterions used, and the methods for preparing salts along with their advantages and limitations. Additionally, it explores analytical techniques for confirming salt formation and the different approaches various countries adopt in considering new salts as intellectual property. Furthermore, the review sheds light on US FDA-approved salts from 2019 to 2023, providing a unique perspective by analyzing trends in counterion selection observed in FDA-approved salts during this period. Despite the extensive literature on pharmaceutical salts, a comprehensive review addressing all these critical aspects in a single article with a focus on current trends and particularly on US FDA-approved salts from 2019 to 2023 is lacking. This review bridges this gap by thoroughly exploring all mentioned facets of pharmaceutical salts and providing an up-to-date overview.
Collapse
Affiliation(s)
- Mori Dhaval
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat-360005, India.
| | - Kiran Dudhat
- R.K. School of Pharmacy, R.K. University, Rajkot, Gujarat, India
| | - Aastha Gadoya
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat-360005, India
| | - Sunny Shah
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat-360005, India
| | - Trupesh Pethani
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Nilesh Jambukiya
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat-360005, India
| | - Ajay Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat-360005, India
| | - Chintan Kalsariya
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat-360005, India
| | - Jainabparvin Ansari
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat-360005, India
| | - Chetan Borkhataria
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat-360005, India
| |
Collapse
|
3
|
Trzeciak K, Dudek MK, Potrzebowski MJ. Mechanochemical Transformations of Pharmaceutical Cocrystals: Polymorphs and Coformer Exchange. Chemistry 2024; 30:e202402683. [PMID: 39384536 DOI: 10.1002/chem.202402683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Transformations of solid samples under solvent-free or minimal solvent conditions set the future trend and define a modern strategy for the production of new materials. Of the various technologies tested in recent years, the mechanochemical approach seems to be the most promising for economic and ecological reasons. The aim of this review article is to present the current state of art in solid state research on binary systems, which have found numerous applications in the pharmaceutical and materials science industries. This article is divided into three sections. In the first part, we describe the new equipment improvements, which include the innovative application of thermo-mechanochemistry, sono-mechanochemistry, photo-mechanochemistry, electro-mechanochemistry, as well as resonant acoustic mixing (RAM), and transformation under high-speed sample spinning ("SpeedMixing"). A brief description of techniques dedicated to ex-situ and in-situ studies of progress and the mechanism of solid matter transformation (PXRD, FTIR, Raman and NMR spectroscopy) is presented. In the second section, we discuss the problem of cocrystal polymorphism highlighting the issue related with correlation between mechanochemical parameters (time, temperature, energy, molar ratio, solvent used as a liquid assistant, surface energy, crystal size, crystal shape) and preference for the formation of requested polymorph. The last part is devoted to the description of the processes of coformer exchange in binary systems forced by mechanical and/or thermal stimuli. The influence of the thermodynamic factor on the selection of the best-suited partner for the formation of a two-component stable structure is presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
4
|
Li HJ, Li L, Sun J, Han JM, Yang L, Ren XT, Tong WC. Construction and Preparation of the Novel ADN/CL-20 Cocrystal via Directional Hydrogen Bonding Design for Turning Hygroscopicity. Inorg Chem 2024; 63:16713-16725. [PMID: 39178213 DOI: 10.1021/acs.inorgchem.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Ammonium dinitramide (ADN), as a novel and environmentally friendly oxidizer, has strong hygroscopicity when exposed to high-humidity air, which seriously hinders its application in solid propellants. Modification of oxidizers by cocrystallization is an effective strategy to improve the hygroscopicity of energetic components. In this paper, the theoretical simulation of ADN/CL-20 cocrystals was developed via a directional hydrogen bonding design to establish a cocrystal with improved hygroscopicity. Intermolecular interaction analyses reveal that hydrogen bonds and van der Waals interactions synergistically lead to the formation of cocrystals. The ADN/CL-20 cocrystal was prepared experimentally by the spray drying self-assembly technique, and the corresponding thermal analysis and sensitivity properties were conducted to illustrate the thermal stability and high safety. Furthermore, the critical relative humidity (CRH) measurement was carried out to evaluate the hygroscopicity of the cocrystal, exhibiting a certain degree of antihygroscopic effect with a CRH of 65%. The hydrogen bonds formed between ADN and CL-20 saturate the ammonium ions of ADN, further preventing ADN from absorbing water molecules in the air. The ADN/CL-20 cocrystal has high specific impulse characteristics (Isp: 272.6 s). Accordingly, this work clearly demonstrates that the ADN/CL-20 cocrystal is expected to be used in a solid propellant to make up for the deficiency of the ADN oxidizer.
Collapse
Affiliation(s)
- Hao-Jie Li
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Long Li
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jian Sun
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ji-Min Han
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Li Yang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Xiao-Ting Ren
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Wen-Chao Tong
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
5
|
Silva AT, Oliveira I, Duarte D, Moita D, Prudêncio M, Nogueira F, Ferraz R, Marques EF, Gomes P. "Seasoning" antimalarial drugs' action: chloroquine bile salts as novel triple-stage antiplasmodial hits. RSC Med Chem 2024; 15:2657-2662. [PMID: 39149112 PMCID: PMC11324038 DOI: 10.1039/d4md00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 08/17/2024] Open
Abstract
Malaria is one of the "big three" global infectious diseases, having caused above two hundred million cases and over half a million deaths in 2020. The continuous demand for new treatment options prioritizes the cost-effective development of new chemical entities with multi-stage antiplasmodial activity, for higher efficacy and lower propensity to elicit drug-resistant parasite strains. Following up on our long-term research towards the rescue of classical antimalarial aminoquinolines like chloroquine and primaquine, we have developed new organic salts by acid-base pairing of those drugs with natural bile acids. These antimalarial drug-derived bile salts were screened in vitro against the hepatic, blood and gametocyte stages of Plasmodium parasites, unveiling chloroquine bile salts as unprecedented triple-stage antiplasmodial hits. These findings pave a new pathway for drug rescuing, even beyond anti-malarial and other anti-infective drugs.
Collapse
Affiliation(s)
- Ana Teresa Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
| | - Isabel Oliveira
- CIQUP - IMS, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
| | - Denise Duarte
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa P-1349-008 Lisboa Portugal
| | - Diana Moita
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa P-1649 028 Lisboa Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa P-1649 028 Lisboa Portugal
| | - Fátima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa P-1349-008 Lisboa Portugal
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde - Instituto Politécnico do Porto P-4200-072 Porto Portugal
| | - Eduardo Figueira Marques
- CIQUP - IMS, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
| |
Collapse
|
6
|
Kimble MJ, Myers SD, Benedict JB. Methyl 2-hy-droxy-4-iodo-benzoate. IUCRDATA 2024; 9:x240394. [PMID: 38846559 PMCID: PMC11151288 DOI: 10.1107/s2414314624003948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The structure of the title compound, C8H7IO3, at 90 K has monoclinic (P21/c) symmetry. The extended structure is layered and displays inter-molecular and intra-molecular hydrogen bonding arising from the same OH group.
Collapse
Affiliation(s)
| | - Shea D. Myers
- 730 Natural Sciences Complex, Buffalo, NY 14260-3000, USA
| | | |
Collapse
|
7
|
Terlecki M, Kornowicz A, Sacharczuk K, Justyniak I, Lewiński J. Synthesis, polymorphism, and shape complementarity-induced co-crystallization of hexanuclear Co(II) clusters capped by a flexible heteroligand shell. Dalton Trans 2024; 53:7012-7022. [PMID: 38563241 DOI: 10.1039/d4dt00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymorphism and co-crystallization have gradually gained attention as new tools in the development of modern crystalline functional materials. However, the study on the selective self-assembly of metal clusters into multicomponent crystals is still in its infancy. Herein, we present the synthesis and characterization of two new heteroleptic hydroxido-acetato and acetato Co(II) clusters [Co6(OH)2(OAc)4(pyret)6] (1) and [Co6(OAc)6(pyret)6] (2) incorporating auxiliary 2-pyrrolidinoethoxylate (pyret) ligands. On this occasion, we revealed that the commonly used thermal procedure for dehydration of cobalt(II) acetate leads to a reagent comprising substantial contamination by cobalt hydroxido moieties. Comprehensive structural analysis of new compounds demonstrated intriguing crystal structure diversity of hydroxido-acetato cluster 1, which represents a rare example of both conformational and packing polymorphism in one compound, originating from the flexibility of organic O,N-ligands in the secondary coordination sphere. Furthermore, both clusters exhibit an interesting propensity for the selective formation of co-crystals 1·2 driven mainly by van der Waals forces and specific shape complementarity between co-formers.
Collapse
Affiliation(s)
- Michał Terlecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
| | - Arkadiusz Kornowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kornel Sacharczuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Barrio J, Li J, Shalom M. Carbon Nitrides from Supramolecular Crystals: From Single Atoms to Heterojunctions and Advanced Photoelectrodes. Chemistry 2023; 29:e202302377. [PMID: 37605638 DOI: 10.1002/chem.202302377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Carbon nitride materials (CN) have become one of the most studied photocatalysts within the last 15 years. While CN absorbs visible light, its low porosity and fast electron-hole recombination hinder its photoelectric performance and have motivated the research in the modification of its physical and chemical properties (such as energy band structure, porosity, or chemical composition) by different means. In this Concept we review the utilization of supramolecular crystals as CN precursors to tailor its properties. We elaborate on the features needed in a supramolecular crystal to serve as CN precursor, we delve on the influence of metal-free crystals in the morphology and porosity of the resulting materials and then discuss the formation of single atoms and heterojunctions when employing a metal-organic crystal. We finally discuss the performance of CN photoanodes derived from crystals and highlight the current standing challenges in the field.
Collapse
Affiliation(s)
- Jesús Barrio
- Department of Chemical Engineering, Imperial College London, London, SW72AZ, England, UK
| | - Junyi Li
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
9
|
Zhang J, Wan M, Fang J, Hong Z, Liu J, Qin J, Xue J, Du Y. Vibrational spectroscopic detection and analysis of isoniazid-nicotinamide-succinic acid ternary cocrystal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122623. [PMID: 36963218 DOI: 10.1016/j.saa.2023.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In this paper, binary and ternary cocrystals in the ternary cocrystal system of isoniazid-nicotinamide-succinic acid were prepared by solvent evaporation and grinding methods. All of them were characterized by terahertz time-domain spectroscopy (THz-TDS), confirming that the cocrystals could be obtained by the above two methods. In addition, to investigate the formation of hydrogen bonds and their influence in cocrystal, several possible forms of hydrogen bond in cocrystal were simulated by density functional theory (DFT). The simulated result was in good agreement with the experimental result, indicating that the hydrogen bonds in cocrystal were the carboxyl groups on both side of succinic acid forming a pyridine N-carboxylic acid heterosynthon with pyridine N of isoniazid or nicotinamide respectively. Meanwhile, the vibrational modes of the cocrystal were analyzed to investigate the effect of hydrogen bond to the molecules. To further understand the formation process of ternary cocrystal in this system, Raman spectroscopy was used to analyze the cocrystal samples with different time of grinding. Process information of cocrystal formation were obtained by analyzing the changes of the characteristic peaks in the corresponding Raman spectra. These results provide a wealth of information and a unique approach to the analysis of both structures and intermolecular interactions shown within ternary cocrystal.
Collapse
Affiliation(s)
- Jiale Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Mei Wan
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Jiyuan Fang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Zhi Hong
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Jianjun Liu
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Jianyuan Qin
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Aramini A, Bianchini G, Lillini S, Tomassetti M, Pacchiarotti N, Canestrari D, Cocchiaro P, Novelli R, Dragani MC, Palmerio F, Mattioli S, Bordignon S, d'Angelo M, Castelli V, d'Egidio F, Maione S, Luongo L, Boccella S, Cimini A, Brandolini L, Chierotti MR, Allegretti M. Ketoprofen, lysine and gabapentin co-crystal magnifies synergistic efficacy and tolerability of the constituent drugs: Pre-clinical evidences towards an innovative therapeutic approach for neuroinflammatory pain. Biomed Pharmacother 2023; 163:114845. [PMID: 37167730 DOI: 10.1016/j.biopha.2023.114845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic pain is an enormous public health concern, and its treatment is still an unmet medical need. Starting from data highlighting the promising effects of some nonsteroidal anti-inflammatory drugs in combination with gabapentin in pain treatment, we sought to combine ketoprofen lysine salt (KLS) and gabapentin to obtain an effective multimodal therapeutic approach for chronic pain. Using relevant in vitro models, we first demonstrated that KLS and gabapentin have supra-additive effects in modulating key pathways in neuropathic pain and gastric mucosal damage. To leverage these supra-additive effects, we then chemically combined the two drugs via co-crystallization to yield a new compound, a ternary drug-drug co-crystal of ketoprofen, lysine and gabapentin (KLS-GABA co-crystal). Physicochemical, biodistribution and pharmacokinetic studies showed that within the co-crystal, ketoprofen reaches an increased gastrointestinal solubility and permeability, as well as a higher systemic exposure in vivo compared to KLS alone or in combination with gabapentin, while both the constituent drugs have increased central nervous system permeation. These unique characteristics led to striking, synergistic anti-nociceptive and anti-inflammatory effects of KLS-GABA co-crystal, as well as significantly reduced spinal neuroinflammation, in translational inflammatory and neuropathic pain rat models, suggesting that the synergistic therapeutic effects of the constituent drugs are further boosted by the co-crystallization. Notably, while strengthening the therapeutic effects of ketoprofen, KLS-GABA co-crystal showed remarkable gastrointestinal tolerability in both inflammatory and chronic neuropathic pain rat models. In conclusion, these results allow us to propose KLS-GABA co-crystal as a new drug candidate with high potential clinical benefit-to-risk ratio for chronic pain treatment.
Collapse
Affiliation(s)
- Andrea Aramini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy.
| | - Gianluca Bianchini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | - Samuele Lillini
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Mara Tomassetti
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | | | - Daniele Canestrari
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | | | - Rubina Novelli
- R&D, Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy
| | | | | | - Simone Mattioli
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Simone Bordignon
- Department of Chemistry and NIS Centre, University of Torino, 10124 Torino, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesco d'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Serena Boccella
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Laura Brandolini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | | | | |
Collapse
|
11
|
Einkauf JD, Williams NJ, Seipp CA, Custelcean R. Near Quantitative Removal of Selenate and Sulfate Anions from Wastewaters by Cocrystallization with Chelating Hydrogen-Bonding Guanidinium Ligands. JACS AU 2023; 3:879-888. [PMID: 37006778 PMCID: PMC10052226 DOI: 10.1021/jacsau.2c00673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Selenium (Se) has become an environmental contaminant of aquatic ecosystems as a result of human activities, particularly mining, fossil fuel combustion, and agricultural activities. By leveraging the high sulfate concentrations relative to Se oxyanions (i.e., SeO n 2-, n = 3, 4) present in some wastewaters, we have developed an efficient approach to Se-oxyanion removal by cocrystallization with bisiminoguanidinium (BIG) ligands that form crystalline sulfate/selenate solid solutions. The crystallization of the sulfate, selenate and selenite, oxyanions and of sulfate/selenate mixtures with five candidate BIG ligands are reported along with the thermodynamics of crystallization and aqueous solubilities. Oxyanion removal experiments with the top two performing candidate ligands show a near quantitative removal (>99%) of sulfate or selenate from solution. When both sulfate and selenate are present, there is near quantitative removal (>99%) of selenate, down to sub-ppb Se levels, with no discrimination between the two oxyanions during cocrystallization. Reducing the selenate concentrations by 3 orders of magnitude or more relative to sulfate, as found in many wastewaters, led to no measurable loss in Se removal efficiencies. This work offers a simple and effective alternative to selective separation of trace amounts of highly toxic selenate oxyanions from wastewaters, to meet stringent regulatory discharge limits.
Collapse
|
12
|
Madanayake SN, Manipura A, Thakuria R, Adassooriya NM. Opportunities and Challenges in Mechanochemical Cocrystallization toward Scaled-Up Pharmaceutical Manufacturing. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Sithmi Nimashi Madanayake
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Aruna Manipura
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India
| | - Nadeesh M. Adassooriya
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Zhou J, Jin S, He L, Xu Y, Gao X, Liu B, Chen Z, Wang D. Twelve Salts Fabricated from 2-amino-5-methylthiazole and Carboxylic Acids through Combination of Classical H-bonds and Weak Noncovalent Associations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
A novel cocrystal of metformin hydrochloride with citric acid: Systematic synthesis and computational simulation. Eur J Pharm Biopharm 2022; 179:37-46. [PMID: 36041596 DOI: 10.1016/j.ejpb.2022.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
Pharmaceutical cocrystals have matured into an effective technique for tuning the physicochemical and mechanical properties of drugs in solid form simultaneously. Herein, in order to provide a novel cocrystal form of oral medicine metformin hydrochloride (MH), citric acid (CA) was selected as an efficient ligand after screening a variety of inorganic and organic acids. Thus, based on the principle of crystal engineering, we report a novel cocrystal: metformin hydrochloride - citric acid (MHCA) after the systematic screening, which was experimentally proved to be constituted with 1:1 stoichiometry. Compared with pure MH, MHCA has been proved higher solubility in water, methanol, and ethanol from 283.15 to 313.15 K. Through single-crystal X-ray diffraction (SC-XRD), the particular molecular structure of MHCA has been determined as the orthorhombic system and Pbca space group. Besides, the binding model of MH-CA was built for investigating the binding energy and stability between two components at 278, 298, and 318 K, which were found to be essential for the prediction and analysis of cocrystals. The contribution of different intermolecular interactions and the strength of molecular packing in the cocrystal also have been investigated by Hirshfeld surface analysis. It was found that the cocrystal structure was mainly stabilized by intermolecular hydrogen bonds existing as N-H···O between components, which indicated that the diffusion-combination trend of molecules enhanced the regular array of cocrystal. The results revealed that the molecules of MH and CA formed supramolecular cocrystals mainly induced by hydrogen bonds after passive contacts, such as co-crystallization or grind.
Collapse
|
15
|
Aziz T, Ullah A, Ali A, Shabeer M, Shah MN, Haq F, Iqbal M, Ullah R, Khan FU. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022; 139. [DOI: 10.1002/app.52624] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/17/2022] [Indexed: 12/19/2022]
Abstract
AbstractIn recent years, bio‐based polymers have emerged as an alternative to petroleum‐based polymers in various industries. The bio‐based materials are made from raw materials originating from natural sources, such as starch, cellulose, chitin, or bio‐degradable synthetic polymers (i.e., polycaprolactone and polylactic acid). In spite of several desirable properties of biodegradable polymers, for example, fully renewable, non‐toxic. Some properties like melt and impact strength, thermal stability, permeability, and so forth, still do not meet the demands for end‐use applications. One way to improve the properties of biopolymers and greatly enhance their commercial potential is to incorporate nanosized reinforcement in the polymer. The access of nano‐carriers to smart polymeric and bio‐materials are limited by polymerization methods. Bio‐polymers are considered an alternative to petroleum‐based fibers. These are directly produced by organisms. Smart nanoparticles are used in different medicines and their applications are size‐dependent. Among the different techniques used for sensitivity, selectivity, and interactions among the nanoparticles. More so, different approaches were found for polymerization. Methodologies such as the preparation of nano‐gels, bio‐degradable, and bio‐polymers manufacturing in the pharmaceutical field are discussed in detail. Their applications, properties in gene delivery, smart imaging, and multivalency approach are also highlighted.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Engineering Westlake University Hangzhou China
| | - Asmat Ullah
- School of Pharmacy Xi'an Jiaotong University Shaanxi China
| | - Amjad Ali
- Institute of Polymer Material, School of Material Science & Engineering Jiangsu University Zhenjiang China
| | | | - Muhammad Naeem Shah
- College of Electronics and Information Engineering Shenzhen University Shenzhen China
| | - Fazal Haq
- Department of Chemistry Gomal University D I Khan KPK Pakistan
| | - Mudassir Iqbal
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Roh Ullah
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (BIT) Beijing China
| | - Farman Ullah Khan
- Department of Chemistry University of Science & Technology, Bannu KPK Pakistan
| |
Collapse
|
16
|
Ten Salts and One Co-crystal Fabricated from 4-methylbenzo[d]thiazol-2-amine and Acids through Combination of Classical H-bonds and Weak Noncovalent Interactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Chen Q, Zhang T, Chen X, Liang M, Zhao H, Yuan P, Han Y, Li CP, Hao J, Xue P. Tunable Fluorescence in Two-Component Hydrogen-Bonded Organic Frameworks Based on Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24509-24517. [PMID: 35588507 DOI: 10.1021/acsami.2c05897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A dumbbell-shaped compound (TPAD) with four 2,4-diaminotriazine moieties as H-bond units and a benzene ring as a bridge group was found to form hydrogen-bonded organic frameworks (HOFs) with strong cyan fluorescence. An energy acceptor, 6,6',6″,6‴-(((benzo[c][1,2,5]thiadiazole-4,7-diylbis-(4,1-phenylene))bis(azanetriyl))tetrakis(benzene-4,1-diyl))tetrakis(1,3,5-triazine-2,4-diamine) (BTAD), with the same molecular skeleton as TPAD and a longer emission wavelength could homogeneously distribute within the framework of TPAD through occupying the locations of TPAD. As a result, two-component HOFs (TC-HOFs) were formed. The nonradiative energy transfer from TPAD as the donor to BTAD as the acceptor happens within frameworks owing to the efficient spectral overlap between the emission of TPAD and the absorption of BTAD. Moreover, the emission wavelengths and colors of TC-HOFs could be easily and continuously modulated by the content of the acceptor. The fluorescence color changed from cyan to orange when the content of BTAD gradually increased. This finding affirms that TC-HOFs with continuously adjustable composition can be constructed from two molecules with the same molecular skeleton, and highly efficient nonradiative energy transfer may happen in porous TC-HOFs. To the best of our knowledge, these TC-HOFs are the first example of TC-HOFs involved in energy transfer.
Collapse
Affiliation(s)
- Qiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Tong Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinyu Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Meng Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - He Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Pengfei Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yanning Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jingjun Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
18
|
DUTT B, CHOUDHARY M, BUDHWAR V. A Brief Discussion of Multi-Component Organic Solids: Key Emphasis on Co-Crystallization. Turk J Pharm Sci 2022; 19:220-231. [DOI: 10.4274/tjps.galenos.2020.78700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Wen X, Lu Y, Jin S, Zhu Y, Liu B, Wang D, Chen B, Wang P. Crystal structures of six salts from nicotinamide and organic acids by classical H-bonds and other noncovalent forces. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Birchall LT, Truccolo G, Jackson L, Shepherd HJ. Co-crystallisation as a modular approach to the discovery of spin-crossover materials. Chem Sci 2022; 13:3176-3186. [PMID: 35414871 PMCID: PMC8926199 DOI: 10.1039/d1sc04956a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we present co-crystallisation as a strategy for materials discovery in the field of switchable spin crossover (SCO) systems. Using [Fe(3-bpp)2]·2A (where 3-bpp = 2,6-bis(pyrazol-3-yl)pyridine, A = BF4 -/PF6 -) as a starting point, a total of 11 new cocrystals have been synthesised with five different dipyridyl coformers. Eight of these systems show spin crossover behaviour, and all show dramatically different switching properties from the parent complex. The cocrystals have been studied by variable temperature single-crystal X-ray diffraction and SQUID magnetometry to develop structure-property relationships. The supramolecular architecture of the cocrystals depends on the properties of the coformer. With linear, rigid coformer molecules leading to 1D supramolecular hydrogen-bonded chains, while flexible coformers form 2D sheets and bent coformers yield 3D network structures. The SCO behaviour of the cocrystals can be modified through changing the coformer and thus co-crystallisation presents a rapid, facile and highly modular tool for the discovery of new switchable materials. The wider applicability of this strategy to the design of hybrid multifunctional materials is also discussed.
Collapse
Affiliation(s)
- Lee T Birchall
- School of Physical Sciences, University of Kent Canterbury UK
| | - Giada Truccolo
- School of Physical Sciences, University of Kent Canterbury UK
| | - Lewis Jackson
- School of Physical Sciences, University of Kent Canterbury UK
| | | |
Collapse
|
21
|
Jiang H, Ye J, Hu P, Zhu S, Liang Y, Cui Z, Kloc C, Hu W. Growth direction dependent separate-channel charge transport in the organic weak charge-transfer co-crystal of anthracene-DTTCNQ. MATERIALS HORIZONS 2022; 9:1057-1067. [PMID: 35048097 DOI: 10.1039/d1mh01767e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b']-dithiophene (DTTCNQ) single crystals as a template to study the crystal growth direction dependent charge transport properties and attempted to elucidate the mechanism by proposing a separate-channel charge transport model. Single-crystal anthracene-DTTCNQ field-effect transistors showed that ambipolar transport properties could be observed in all crystal growth directions. Furthermore, upon changing the measured crystal directions, the electronic properties experienced a weak change from n-type dominated ambipolar, balanced ambipolar, to p-type dominated ambipolar properties. The theoretical calculations at density functional theory (DFT) and higher theory levels suggested that the anthracene-DTTCNQ co-crystal motif was a weak charge-transfer complex, in line with the experiment. Furthermore, the detailed theoretical analysis also indicated that electron or hole transport properties originated from separated channels formed by DTTCNQ or anthracene molecules. We thus proposed a novel separate-channel transport mechanism to support additional theoretical analysis and calculations. The joint experimental and theoretical efforts in this work suggest that the engineering of co-crystallization of weak charge-transfer complexes can be a practical approach for achieving tuneable ambipolar charge transport properties by the rational choice of co-crystal formers.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jun Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Christian Kloc
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
22
|
Basha MT, Alghanmi RM, Soliman SM, Abdel-Rahman LH, Shehata MR, Alharby WJ. Synthesis, spectroscopic characterizations, biological activity, DNA-binding investigation combined with DFT studies of new proton-transfer complexes of 2,4-diaminopyrimidine with 2,6-dichloro-4-nitrophenol and 3,5-dinitrosalicylic acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Yang X, Zhu Y, Chen X, Gao X, Jin S, Liu B, He L, Chen B, Wang D. Molecular structures of ten ionic hydrogen bond-mediated anhydrous tert-butylammonium salts from different carboxylic acids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Lee MJ, Kim JY, Kim P, Lee IS, Mswahili ME, Jeong YS, Choi GJ. Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery. Pharmaceutics 2022; 14:pharmaceutics14020429. [PMID: 35214161 PMCID: PMC8877905 DOI: 10.3390/pharmaceutics14020429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Vonoprazan (VPZ) is the first-in-class potassium-competitive acid blocker (P-CAB), and has many advantages over proton pump inhibitors (PPIs). It is administered as a fumarate salt for the treatment of acid-related diseases, including reflux esophagitis, gastric ulcer, and duodenal ulcer, and for eradication of Helicobacter pylori. To discover novel cocrystals of VPZ, we adopted an artificial neural network (ANN)-based machine learning model as a virtual screening tool that can guide selection of the most promising coformers for VPZ cocrystals. Experimental screening by liquid-assisted grinding (LAG) confirmed that 8 of 19 coformers selected by the ANN model were likely to create new solid forms with VPZ. Structurally similar benzenediols and benzenetriols, i.e., catechol (CAT), resorcinol (RES), hydroquinone (HYQ), and pyrogallol (GAL), were used as coformers to obtain phase pure cocrystals with VPZ by reaction crystallization. We successfully prepared and characterized three novel cocrystals: VPZ–RES, VPZ–CAT, and VPZ–GAL. VPZ–RES had the highest solubility among the novel cocrystals studied here, and was even more soluble than the commercially available fumarate salt of VPZ in solution at pH 6.8. In addition, novel VPZ cocrystals had superior stability in aqueous media than VPZ fumarates, demonstrating their potential for improved pharmaceutical performance.
Collapse
Affiliation(s)
- Min-Jeong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Chungnam, Korea;
| | - Ji-Yoon Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Chungnam, Korea; (J.-Y.K.); (P.K.); (I.-S.L.)
| | - Paul Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Chungnam, Korea; (J.-Y.K.); (P.K.); (I.-S.L.)
| | - In-Seo Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Chungnam, Korea; (J.-Y.K.); (P.K.); (I.-S.L.)
| | - Medard E. Mswahili
- Department of ICT Convergence, Soonchunhyang University, Asan 31538, Chungnam, Korea;
| | - Young-Seob Jeong
- Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Korea;
| | - Guang J. Choi
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Chungnam, Korea;
- Department of Medical Science, Soonchunhyang University, Asan 31538, Chungnam, Korea; (J.-Y.K.); (P.K.); (I.-S.L.)
- Correspondence:
| |
Collapse
|
25
|
Suresh S, Kandasamy S, Balasubramanian H, Ramakrishnan J, Poomani K. Insights on structure and interactions of 2-amino-4-methoxy-6-methylpyrimidinium salts with 4-aminosalicylate and 5-chlorosalicylate: a combined experimental and theoretical charge–density analysis. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:181-191. [DOI: 10.1107/s2053229622001280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022]
Abstract
The proton-transfer complexes 2-amino-4-methoxy-6-methylpyrimidinium (2A4M6MP) 4-aminosalicylate (4AMSA), C6H10N3O+·C7H6NO3
−, I, and 5-chlorosalicylate (5ClSA), C6H10N3O+·C7H4ClO3
−, II, were synthesized by slow evaporation and crystallized. The crystal structures of both I and II were determined by single-crystal X-ray structure analysis. The crystal structures of both salts exhibit O—H...O, N—H...O, N—H...N and C—H...O interactions in their crystals. The 4AMSA and 5ClSA anions in combination with the 2A4M6MP cations form distinct synthons, which are represented by the graph-set notations R
2
2(8), R
4
2(8) and R
2
2(8). Furthermore, the ΔpK
a
values were calculated and clearly demonstrate that 2A4M6MP is a good salt former when combined with carboxylic acids. Hirshfeld surface analysis was used to quantify the weak and strong interactions in the solid state, and energy framework calculations showed the stability of the hydrogen-bonding interactions. QTAIM (quantum theory of atoms in molecules) analysis revealed the nature of the chemical bonding in I and II, and the charge–density distribution in the intermolecular interactions in the crystal structures.
Collapse
|
26
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
27
|
Wang Q, Sun Z, Li D, Ye K, Xie C, Zhang S, Jiang L, Zheng K, Pang Q. Determination of protonation state in molecular salt of minoxidil and 2,4-dihydroxybenzoic acid through a combined experimental and theoretical study: influence of proton transfer on biological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Bujak M, Stammler HG, Vishnevskiy YV, Mitzel NW. Very close I⋯As and I⋯Sb interactions in trimethylpnictogen-pentafluoroiodobenzene cocrystals. CrystEngComm 2022. [DOI: 10.1039/d1ce01268a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unusually short, for any experimentally characterized molecular (co)crystal, directional C–I⋯As and C–I⋯Sb halogen bonds have been engineered in the supramolecular reactions of the in situ cocrystallized (CH3)3E (E = As or Sb) with C6F5I.
Collapse
Affiliation(s)
- Maciej Bujak
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Yury V. Vishnevskiy
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
29
|
Nath J, Baruah JB. Polymorphic solvates, ionic cocrystals and C–N bond formation to form ionic cocrystals in sulfamethoxazole and sulfathiazole-derived urea. CrystEngComm 2022. [DOI: 10.1039/d1ce01731d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvates and ionic cocrystals of two sulfa-drug based urea derivatives were studied, where also polymorphs of a solvate, thermal stability, unusual C–N bond formation and desolvation were elucidated.
Collapse
Affiliation(s)
- Jitendra Nath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam, India
| | - Jubaraj B. Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam, India
| |
Collapse
|
30
|
Suponitsky KY, Fedyanin IV, Karnoukhova VA, Zalomlenkov VA, Gidaspov AA, Bakharev VV, Sheremetev AB. Energetic Co-Crystal of a Primary Metal-Free Explosive with BTF. Ideal Pair for Co-Crystallization. Molecules 2021; 26:molecules26247452. [PMID: 34946534 PMCID: PMC8709047 DOI: 10.3390/molecules26247452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
Co-crystallization is an elegant technique to tune the physical properties of crystalline solids. In the field of energetic materials, co-crystallization is currently playing an important role in the engineering of crystals with improved performance. Here, based on an analysis of the structural features of the green primary explosive, tetramethylammonium salt of 7-oxo-5-(trinitromethyl)-4,5,6,7-tetrahydrotetrazolo[1,5-a][1,3,5]triazin-5-ide (1), a co-former such as the powerful secondary explosive, benzotrifuroxan (BTF, 2), has been proposed to improve it. Compared to the original 1, its co-crystal with BTF has a higher detonation pressure and velocity, as well as an initiating ability, while the impact sensitivity and thermal stability remained at about the same level. Both co-formers, 1 and 2, and co-crystal 3 were characterized by single-crystal X-ray diffraction and their crystal packing was analyzed in detail by the set of approaches, including periodic calculations. In the co-crystal 3, all intermolecular interactions were significantly redistributed. However, no new types of intermolecular interactions were formed during co-crystallization. Moreover, the interaction energies of structural units in crystals before and after co-crystallization were approximately the same. A similar trend was observed for the volumes occupied by structural units and their densifications. The similar nature of the organization of the crystals of the co-formers and the co-crystal gives grounds to assert that the selected co-formers are an ideal pair for co-crystallization, and the invariability of the organization of the crystals was probably responsible for the preservation of some of their properties.
Collapse
Affiliation(s)
- Kyrill Yu. Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia; (I.V.F.); (V.A.K.)
- Correspondence:
| | - Ivan V. Fedyanin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia; (I.V.F.); (V.A.K.)
| | - Valentina A. Karnoukhova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991 Moscow, Russia; (I.V.F.); (V.A.K.)
| | - Vladimir A. Zalomlenkov
- Chemistry Department, Samara State Technical University, 443100 Samara, Russia; (V.A.Z.); (A.A.G.); (V.V.B.)
| | - Alexander A. Gidaspov
- Chemistry Department, Samara State Technical University, 443100 Samara, Russia; (V.A.Z.); (A.A.G.); (V.V.B.)
| | - Vladimir V. Bakharev
- Chemistry Department, Samara State Technical University, 443100 Samara, Russia; (V.A.Z.); (A.A.G.); (V.V.B.)
| | - Aleksei B. Sheremetev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
31
|
Zhang Y, Zhang Y, Ye W, Li Z, Jin S, Guo M, Bai L, Wang D. Eleven adducts constructed from 4-methylbenzo[d]thiazol-2-amine and organic acids via coupling of classical H-bonds and noncovalent interactions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
|
33
|
Feliciano IO, Silva DP, Piedade MFM, Bernardes CES, Minas da Piedade ME. First and Second Dissociation Enthalpies in Bi-Component Crystals Consisting of Maleic Acid and L-Phenylalanine. Molecules 2021; 26:molecules26185714. [PMID: 34577186 PMCID: PMC8469174 DOI: 10.3390/molecules26185714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
The energetics of the stepwise dissociation of a A:B2 bi-component crystal, according to A:B2(cr) → A:B(cr) + B(cr) and A:B(cr) → A(cr) + B(cr), was investigated using MA:Phe2 and MA:Phe (MA = maleic acid; Phe = L-phenylalanine) as model systems. The enthalpy changes associated with these sequential processes and with the overall dissociation reaction A:B2(cr) → A(cr) + 2B(cr) were determined by solution calorimetry. It was found that they are all positive, indicating that there is a lattice enthalpy gain when MA:Phe2 is formed, either from the individual precursors or by adding Phe to MA:Phe. Single-crystal X-ray diffraction (SCXRD) analysis showed that MA:Phe2 is best described as a protic salt containing a maleate anion (MA−) and two non-equivalent L-phenylalanine units, both linked to MA− by NH···O hydrogen bonds (H-bond): one of these units is protonated (HPhe+) and the other zwitterionic (Phe±). Only MA− and HPhe+ molecules are present in the MA:Phe lattice. In this case, however, NH···O and OH···O H-bonds are formed between each MA− unit and two HPhe+ molecules. Despite these structural differences, the enthalpy cost for the removal of the zwitterionic Phe± unit from the MA:Phe2 lattice to yield MA:Phe is only 0.9 ± 0.4 kJ mol−1 higher than that for the dissociation of MA:Phe, which requires a proton transfer from HPhe+ to MA− and the rearrangement of L-phenylalanine to the zwitterionic, Phe±, form. Finally, a comparison of the dissociation energetics and structures of MA:Phe and of the previously reported glycine maleate (MA:Gly) analogue indicated that parameters, such as the packing coefficient, density, hydrogen bonds formed, or fusion temperature, are not necessarily good descriptors of dissociation enthalpy or lattice enthalpy trends when bi-component crystals with different molecular composition are being compared, even if the stoichiometry is the same.
Collapse
Affiliation(s)
- Inês O. Feliciano
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.O.F.); (C.E.S.B.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Daniela P. Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - M. Fátima M. Piedade
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Carlos E. S. Bernardes
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.O.F.); (C.E.S.B.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Manuel E. Minas da Piedade
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.O.F.); (C.E.S.B.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Correspondence: ; Tel.: +351-217500005
| |
Collapse
|
34
|
Mechanochemical synthesis and characterization of Zidovudine-lamivudine solid dispersion (binary eutectic mixture). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Eleven adducts from 4-methylbenzo[d]thiazol-2-amineand Carboxylic Acids via Classical H-bonds and Noncovalent Associations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Xie H, Gou R, Zhang S. Theoretical Study on the Effect of Solvent Behavior on Ammonium Dinitramide (ADN)/1,4,7,10,13,16‐Hexaoxacyclooctadecane (18‐Crown‐6) Cocrystal Growth Morphology at Different Temperatures. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202000203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hong Xie
- School of Environmental and Safety Engineering North University of China Taiyuan 030051 China
- National Key Laboratory of Applied Physics and Chemistry Xi'an 710061 China
| | - Rui‐jun Gou
- School of Environmental and Safety Engineering North University of China Taiyuan 030051 China
| | - Shu‐hai Zhang
- School of Environmental and Safety Engineering North University of China Taiyuan 030051 China
| |
Collapse
|
37
|
Ngilirabanga JB, Samsodien H. Pharmaceutical co‐crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. NANO SELECT 2021. [DOI: 10.1002/nano.202000201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Halima Samsodien
- School of Pharmacy, Faculty of Science University of the Western Cape Bellville South Africa
| |
Collapse
|
38
|
Direct compression tablet formulation of celecoxib enabled with a pharmaceutical solvate. Int J Pharm 2021; 596:120239. [PMID: 33484921 DOI: 10.1016/j.ijpharm.2021.120239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 01/01/2023]
Abstract
Celecoxib, an anti-inflammatory drug for pain and arthritis, is currently only available in capsule form. To reduce the onset time for a faster action and to lower the manufacturing cost, the tablet dosage form is more preferred. However, the commercial celecoxib (Form III) is not suitable for direct compression (DC) tablet manufacture due to poor flow, low bulk density, and tablet lamination. In this work, we overcome these challenges using a pharmaceutically acceptable dimethyl sulfoxide (DMSO) solvate of celecoxib. Aided with the DMSO solvate, an acceptable DC tablet formulation was successfully developed to manufacture tablets containing 200 mg celecoxib, with satisfactory manufacturability, disintegration, and in vitro dissolution performance.
Collapse
|
39
|
Gołdyn MR, Larowska D, Bartoszak-Adamska E. Novel Purine Alkaloid Cocrystals with Trimesic and Hemimellitic Acids as Coformers: Synthetic Approach and Supramolecular Analysis. CRYSTAL GROWTH & DESIGN 2021; 21:396-413. [PMID: 36466627 PMCID: PMC9714640 DOI: 10.1021/acs.cgd.0c01242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this work, benzene-1,3,5-tricarboxylic (trimesic acid, TMSA) and benzene-1,2,3-tricarboxylic acid (hemimellitic acid, HMLA) were used as coformers for cocrystal synthesis with chosen purine alkaloids. Theobromine (TBR) forms cocrystals TBR·TMSA and TBR·HMLA with these acids. Theophylline (TPH) forms cocrystals TPH·TMSA and TPH·HMLA, the cocrystal hydrate TPH·TMSA·2H2O and the salt hydrate (TPH)+·(HMLA)-·2H2O. Caffeine (CAF) forms the cocrystal CAF·TMSA and the cocrystal hydrate CAF·HMLA·H2O. The purine alkaloid derivatives were obtained by solution crystallization and by neat or liquid-assisted grinding. The powder X-ray diffraction method was used to confirm the synthesis of the novel substances. All of these solids were structurally characterized, and all synthons formed by purine alkaloids and carboxylic acids were recognized using a single-crystal X-ray diffraction method. The Cambridge Structural Database was used to determine the frequency of occurrence of analyzed supramolecular synthons, which is essential at the crystal structure design stage. Determining the influence of structural causes on the various synthon formations and molecular arrangements in the crystal lattice was possible using structurally similar purine alkaloids and two isomers of benzenetricarboxylic acid. Additionally, UV-vis measurements were made to determine the effect of cocrystallization on purine alkaloid solubility.
Collapse
|
40
|
Wu Y, Hao X, Li J, Guan A, Zhou Z, Guo F. New insight into improving the solubility of poorly soluble drugs by preventing the formation of their hydrogen-bonds: a case of dapsone salts with camphorsulfonic and 5-sulfosalicylic acid. CrystEngComm 2021. [DOI: 10.1039/d1ce00847a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The improved solubility of two salts of dapsone (DAP) was investigated from the view point of structures and hydrogen bonding.
Collapse
Affiliation(s)
- Yanhui Wu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiujia Hao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jianting Li
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Aiying Guan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhengzheng Zhou
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
41
|
Chen DQ, Gu Z, Wu YS, Yuan WH, Li Z. Simple and effective purification of a SGLT-2 inhibitor cocrystal Rongliflozin l-pyroglutamic acid: coformer-induced purification. CrystEngComm 2021. [DOI: 10.1039/d1ce01305j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report and design a simple and robust process to obtain a single and pure crystalline form I (1) of the cocrystal, containing Rongliflozin (2) with l-pyroglutamic acid (l-PA), based on coformer-induced purification (CoIP).
Collapse
Affiliation(s)
- Dao-Qian Chen
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Zheng Gu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Yu-Sheng Wu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Wei-Hui Yuan
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| | - Zheng Li
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
- HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, P. R. China
| |
Collapse
|
42
|
Li Y, Yu WL, Huang H, Zhu M, Wang JT. Anisotropic response of the co-crystal of CL-20/TNT under shock loading: molecular dynamics simulation. RSC Adv 2021; 11:38383-38390. [PMID: 35493208 PMCID: PMC9043970 DOI: 10.1039/d1ra06746j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Anisotropic response of the co-crystal of CL-20/TNT under shock loading is studied by analyzing the changes of thermodynamic parameters, product evolution and cluster evolution.
Collapse
Affiliation(s)
- Yan Li
- Xi'an High-Tech Research Institute, Xi'an 710025, China
- Naval University of Engineering, Wuhan 430033, China
| | - Wen-Li Yu
- Xi'an High-Tech Research Institute, Xi'an 710025, China
| | - Huang Huang
- Naval University of Engineering, Wuhan 430033, China
| | - Min Zhu
- Naval University of Engineering, Wuhan 430033, China
| | - Jin-Tao Wang
- Xi'an High-Tech Research Institute, Xi'an 710025, China
| |
Collapse
|
43
|
Wang SS, Li K, Ma X, Xue P. Acceptor-regulated luminescence in carbazole-based charge transfer complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00656h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dicarbazole derivative and two acceptors could formed 1D mixed stacking columns in their charge transfer co-crystals. Moreover, the LUMO energy levels of the acceptors determine the fluorescence colors of the co-crystals.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Kechang Li
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaohui Ma
- Department of Translational Medicine
- The First Hospital of Jilin University
- Changchun
- P. R. China
- Department of Oncology
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| |
Collapse
|
44
|
Iqbal U, Choudhary MI, Yousuf S. Synthesis of co-crystals of anti-cancer nandrolone as a potential leads towards treatment of cancer. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Araya-Sibaja AM, Wilhelm K, González-Aguilar GA, Vega-Baudrit JR, Salazar-López NJ, Domínguez-Avila JA, Navarro-Hoyos M. Curcumin Loaded and Co-loaded Nanosystems: A Review from a Biological Activity Enhancement Perspective. Pharm Nanotechnol 2020; 9:85-100. [PMID: 33371864 DOI: 10.2174/2211738508666201228150659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a natural phenolic compound exhibiting multiple bioactivities that have been evaluated in vitro, in vivo as well as through clinical studies in humans. Some of them include antimicrobial, antioxidant, anti-inflammatory, and central nervous system protective effects. Further, curcumin is generally recognized as a safe substance because of its low toxicity. However, its molecular structure is susceptible to changes in pH, oxidation, photodegradation, low aqueous solubility, and biotransformation compromising its bioavailability; these drawbacks are successfully addressed through nanotechnology. OBJECTIVE The present review systematizes findings on the enhancement of curcumin's beneficial effects when it is loaded and co-loaded into different types of nanosystems covering liposomes, polymeric and solid-lipid nanoparticles, nanostructured lipid carrier, lipid-polymeric hybrids, self- -assembled and protein-based core-shell systems in relation to its antimicrobial, antioxidant, anti-inflammatory and central nervous system protective bioactivities. CONCLUSION Curcumin is a versatile molecule capable of exerting antimicrobial, antioxidant, anti- inflammatory, and central nervous system protective effects in an enhanced manner using the possibilities offered by the nanotechnology-based approach. Its enhanced bioactivities are associated with increments in solubility, stability, bioavailability, as well as in improved intracellular uptake and cell internalization. These advantages, in addition to curcumin's low toxicity, indicate the potential of curcumin to be loaded and co-loaded into nanosystems capable of providing a controlled release and targeted administration.
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Krissia Wilhelm
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - José R Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Norma J Salazar-López
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Jesús A Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Mirtha Navarro-Hoyos
- BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| |
Collapse
|
46
|
Xu W, Hu K, Lu Y, Ye H, Jin S, Li M, Guo M, Wang D. The crystal structures of ten supramolecular salts of benzylamine and organic acids. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Golovnev NN, Molokeev MS, Sterkhova IV, Lesnikov MK. CRYSTAL STRUCTURE OF NORFLOXACINIUM AND 2,2′-BIPYRIDYL-1′-IUM 2-THIOBARBITURATES. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Dudek MK, Śniechowska J, Wróblewska A, Kaźmierski S, Potrzebowski MJ. Cocrystals "Divorce and Marriage": When a Binary System Meets an Active Multifunctional Synthon in a Ball Mill. Chemistry 2020; 26:13264-13273. [PMID: 32567718 DOI: 10.1002/chem.202002238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 11/06/2022]
Abstract
A well-defined and stable "AB" binary system in the presence of "C" a crystalline synthon ground in a ball mill undergoes selective transformation in the solid state according to the equation AB+C→AC+B. When the amount of C is increased two times then the equation AB+2C→AC+BC is valid. The other variants are more complex. The pathway BC+A is allowed and leads to the AC and B products. The pathway AC+B is not preferred, and no transformation is observed. These non-obvious correlations were observed for cocrystal of barbituric acid (BA):thiobarbituric acid (TBA) recently reported by Shemchuk et al. (Chem. Commun. 2016, 52, 11815-11818) in the presence of 1-hydroxy-4,5-dimethyl-imidazole 3-oxide (HIMO). This synthon shows high affinity for the BA0.5 TBA0.5 cocrystal as well for its individual components, BA and TBA. Single-quantum, double-quantum (SQ-DQ) 2D 1 H very fast MAS NMR with a spinning rate of 60 kHz was employed as a basic and most diagnostic tool for the study of cocrystals transformations. Analysis of the experimental data was supported by theoretical calculations, including computation of the stabilization energy, Estab , defined as the energy difference between the energy of a co-crystal and the sum of the energies of particular components in the respective stoichiometric ratios. Two mechanisms of synthon replacement have been proposed. Pathway 1 assumes a concerted mechanism of substitution. In this approach, synthon attack is synchronized in time with the departure of one of the components of the binary system. Pathway 2 implies a non-concerted process, with an intermediate stage in which three separate components are present. Evidence suggesting a preference for Pathway 2 is shown.
Collapse
Affiliation(s)
- Marta K Dudek
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Justyna Śniechowska
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Aneta Wróblewska
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Sławomir Kaźmierski
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Marek J Potrzebowski
- Division of Structural Studies, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| |
Collapse
|
49
|
Observation of field-induced single-ion magnet behavior in a mononuclear DyIII complex by co-crystallization of a square-planar CuII complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Bordignon S, Cerreia Vioglio P, Amadio E, Rossi F, Priola E, Voinovich D, Gobetto R, Chierotti MR. Molecular Crystal Forms of Antitubercular Ethionamide with Dicarboxylic Acids: Solid-State Properties and a Combined Structural and Spectroscopic Study. Pharmaceutics 2020; 12:E818. [PMID: 32872201 PMCID: PMC7559828 DOI: 10.3390/pharmaceutics12090818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022] Open
Abstract
We report on the preparation, characterization, and bioavailability properties of three new crystal forms of ethionamide, an antitubercular agent used in the treatment of drug-resistant tuberculosis. The new adducts were obtained by combining the active pharmaceutical ingredient with three dicarboxylic acids, namely glutaric, malonic and tartaric acid, in equimolar ratios. Crystal structures were obtained for all three adducts and were compared with two previously reported multicomponent systems of ethionamide with maleic and fumaric acid. The ethionamide-glutaric acid and the ethionamide-malonic acid adducts were thoroughly characterized by means of solid-state NMR (13C and 15N Cross-Polarization Magic Angle Spinning or CPMAS) to confirm the position of the carboxylic proton, and they were found to be a cocrystal and a salt, respectively; they were compared with two previously reported multicomponent systems of ethionamide with maleic and fumaric acid. Ethionamide-tartaric acid was found to be a rare example of kryptoracemic cocrystal. In vitro bioavailability enhancements up to a factor 3 compared to pure ethionamide were assessed for all obtained adducts.
Collapse
Affiliation(s)
- Simone Bordignon
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy; (S.B.); (P.C.V.); (E.A.); (F.R.); (E.P.)
| | - Paolo Cerreia Vioglio
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy; (S.B.); (P.C.V.); (E.A.); (F.R.); (E.P.)
| | - Elena Amadio
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy; (S.B.); (P.C.V.); (E.A.); (F.R.); (E.P.)
| | - Federica Rossi
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy; (S.B.); (P.C.V.); (E.A.); (F.R.); (E.P.)
| | - Emanuele Priola
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy; (S.B.); (P.C.V.); (E.A.); (F.R.); (E.P.)
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1/via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy; (S.B.); (P.C.V.); (E.A.); (F.R.); (E.P.)
| | - Michele R. Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy; (S.B.); (P.C.V.); (E.A.); (F.R.); (E.P.)
| |
Collapse
|