1
|
Gutiérrez-Gálvez L, García-Mendiola T, Lorenzo E, Nuez-Martinez M, Ocal C, Yan S, Teixidor F, Pinheiro T, Marques F, Viñas C. Compelling DNA intercalation through 'anion-anion' anti-coulombic interactions: boron cluster self-vehicles as promising anticancer agents. J Mater Chem B 2024; 12:9550-9565. [PMID: 39141010 DOI: 10.1039/d4tb01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anticancer drugs inhibit DNA replication by intercalating between DNA base pairs, forming covalent bonds with nucleotide bases, or binding to the DNA groove. To develop safer drugs, novel molecular structures with alternative binding mechanisms are essential. Stable boron hydrides offer a promising alternative for cancer therapy, opening up additional options like boron neutron capture therapy based on 10B and thermal neutron beams or proton boron fusion therapy using 11B and proton beams. These therapies are more efficient when the boron compound is ideally located inside cancer cells, particularly in the nucleus. Current cancer treatments often utilize small, polycyclic, aromatic, planar molecules that intercalate between ds-DNA base pairs, requiring only a spacing of approximately 0.34 nm. In this paper, we demonstrate another type of intercalation. Notably, [3,3'-Fe(1,2-C2B9H11)2]-, ([o-FESAN]-), a compact 3D molecule measuring 1.1 nm × 0.6 nm, can as well intercalate by strong non-bonding interactions preferentially with guanine. Unlike known intercalators, which are positive or neutral, [o-FESAN]- is a negative species and when an [o-FESAN]- molecule approaches the negatively charged DNA phosphate chain an anion-anion interaction consistently anti-electrostatic via Ccluster-H⋯O-P bonds occurs. Then, when more molecules approach, an elongated outstandingly self-assembled structure of [o-FESAN]--[o-FESAN]- forms moving anions towards the interthread region to interact with base pairs and form aggregates of four [o-FESAN]- anions per base pair. These aggregates, in this environment, are generated by Ccluster-H⋯O-C, N-H⋯H-B and Ccluster-H⋯H-B interactions. The ferrabis(dicarbollide) boron-rich small molecules not only effectively penetrate the nucleus but also intercalate with ds-DNA, making them promising for cancer treatment. This amphiphilic anionic molecule, used as a carrier-free drug, can enhance radiotherapy in a multimodal perspective, providing healthcare professionals with improved tools for cancer treatment. This work demonstrates these findings with a plethora of techniques.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Shunya Yan
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Teresa Pinheiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
2
|
Gureev AP, Alimova AA, Silachev DN, Plotnikov EY. Noncoupled Mitochondrial Respiration as Therapeutic Approach for the Treatment of Metabolic Diseases: Focus on Transgenic Animal Models. Int J Mol Sci 2023; 24:16491. [PMID: 38003681 PMCID: PMC10671337 DOI: 10.3390/ijms242216491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction contributes to numerous chronic diseases, and mitochondria are targets for various toxins and xenobiotics. Therefore, the development of drugs or therapeutic strategies targeting mitochondria is an important task in modern medicine. It is well known that the primary, although not the sole, function of mitochondria is ATP generation, which is achieved by coupled respiration. However, a high membrane potential can lead to uncontrolled reactive oxygen species (ROS) production and associated dysfunction. For over 50 years, scientists have been studying various synthetic uncouplers, and for more than 30 years, uncoupling proteins that are responsible for uncoupled respiration in mitochondria. Additionally, the proteins of the mitochondrial alternative respiratory pathway exist in plant mitochondria, allowing noncoupled respiration, in which electron flow is not associated with membrane potential formation. Over the past two decades, advances in genetic engineering have facilitated the creation of various cellular and animal models that simulate the effects of uncoupled and noncoupled respiration in different tissues under various disease conditions. In this review, we summarize and discuss the findings obtained from these transgenic models. We focus on the advantages and limitations of transgenic organisms, the observed physiological and biochemical changes, and the therapeutic potential of uncoupled and noncoupled respiration.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.); (A.A.A.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Alina A. Alimova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.); (A.A.A.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
3
|
Fink K, Uchman M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213684] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Salamoun JM, Garcia CJ, Hargett SR, Murray JH, Chen SY, Beretta M, Alexopoulos SJ, Shah DP, Olzomer EM, Tucker SP, Hoehn KL, Santos WL. 6-Amino[1,2,5]oxadiazolo[3,4- b]pyrazin-5-ol Derivatives as Efficacious Mitochondrial Uncouplers in STAM Mouse Model of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:6203-6224. [PMID: 32392051 PMCID: PMC11042500 DOI: 10.1021/acs.jmedchem.0c00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small molecule mitochondrial uncouplers have recently garnered great interest for their potential in treating nonalcoholic steatohepatitis (NASH). In this study, we report the structure-activity relationship profiling of a 6-amino[1,2,5]oxadiazolo[3,4-b]pyrazin-5-ol core, which utilizes the hydroxy moiety as the proton transporter across the mitochondrial inner membrane. We demonstrate that a wide array of substituents is tolerated with this novel scaffold that increased cellular metabolic rates in vitro using changes in oxygen consumption rate as a readout. In particular, compound SHS4121705 (12i) displayed an EC50 of 4.3 μM in L6 myoblast cells and excellent oral bioavailability and liver exposure in mice. In the STAM mouse model of NASH, administration of 12i at 25 mg kg-1 day-1 lowered liver triglyceride levels and improved liver markers such as alanine aminotransferase, NAFLD activity score, and fibrosis. Importantly, no changes in body temperature or food intake were observed. As potential treatment of NASH, mitochondrial uncouplers show promise for future development.
Collapse
Affiliation(s)
- Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Jacob H Murray
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Simon P Tucker
- Continuum Biosciences, Pty Ltd., Sydney 2035, Australia
- Continuum Biosciences Inc., Boston, Massachusetts 02116, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
6
|
Rokitskaya TI, Khailova LS, Makarenkov AV, Shunaev AV, Tatarskiy VV, Shtil AA, Ol'shevskaya VA, Antonenko YN. Carborane derivatives of 1,2,3-triazole depolarize mitochondria by transferring protons through the lipid part of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:573-583. [PMID: 30562498 DOI: 10.1016/j.bbamem.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Boron containing polyhedra (carboranes) are three-dimensional delocalized aromatic systems. These structures have been shown to transport protons through lipid membranes and mitochondria. Conjugation of carboranes to various organic moieties is aimed at obtaining biologically active compounds with novel properties. Taking advantage of 1,2,3-triazoles as the scaffolds valuable in medicinal chemistry, we synthesized 1-(o-carboranylmethyl)-4-pentyl-1,2,3-triazole (c-triazole) and 1-(o-carboranylmethyl)-4-pentyl-1,2,3-triazolium iodide (c-triazolium). Both compounds interacted with model lipid membranes and exhibited a proton carrying activity in planar bilayers and liposomes in a concentration- and pH-dependent manner. Importantly, mechanisms of the protonophoric activity differed; namely, protonation-deprotonation reactions of the triazole and the o-carborane moieties were involved in the transport cycles of c-triazole and c-triazolium, respectively. At micromolar concentrations, c-triazole and c-triazolium stimulated respiration of isolated rat liver mitochondria and depolarized their membrane potential, with c-triazole being more potent. In living K562 (human chronic myelogenous leukemia) cells, both c-triazolium and c-triazole altered the mitochondrial membrane potential as determined by a decreased intracellular accumulation of the potential-dependent dye tetramethylrhodamine ethyl ester. Finally, cell viability testing demonstrated a cytotoxic potency of c-triazolium and, to a lesser extent, of c-triazole against K562 cells, whereas non-malignant fibroblasts were much less sensitive. In all tests, the reference boron-free benzyl-4-pentyl-1,2,3-triazole showed little-to-no effects. These results demonstrated that carboranyltriazoles carry protons across biological membranes, a property potentially important in anticancer drug design.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexei V Shunaev
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Victor V Tatarskiy
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation; National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, Moscow 119049, Russian Federation
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|