1
|
Neveu A, Jean J, Boullay P, Kovrugin VM, Sagot A, Raj H, Pralong V. A 3Ti 5NbO 14 (A = H, Li and K) family: ionic exchange, physical and electrochemical properties. Dalton Trans 2024; 53:7115-7122. [PMID: 38568014 DOI: 10.1039/d4dt00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
A new layered titanoniobate, Li3Ti5NbO14, a member of the AxM2nO4n+2 family, has been synthesized using a molten salt reaction between H3Ti5NbO14 and an eutectic mixture of LiOH and LiNO3. This compound crystallizes in the P21/m space group with a = 9.273(15) Å, b = 3.788(6) Å, c = 8.871(3) Å, and β = 114.33(1)°, as determined by 3D electron diffraction single crystal analysis. It exhibits [Ti5NbO14]3- layers similar to K3Ti5NbO14, but differs from the latter by a 'parallel configuration' of its [Ti5NbO5]3- ribbons between the two successive layers. The topotactic character of the reaction suggests that exfoliation plays a prominent role in the synthesis of this new form. This new phase intercalates reversibly 2 lithium through a first-order transformation leading to a capacity of 100 mA h g-1 at a potential of 1.67 V vs. Li/Li+.
Collapse
Affiliation(s)
- Audric Neveu
- Normandie Univ, ENSICAEN, Unicaen, CNRS, CRISMAT, 14000 Caen, France.
- Réseau sur le Stockage Electrochimique de l'Énergie (RS2E), 80000 Amiens, France
| | - Justine Jean
- Normandie Univ, ENSICAEN, Unicaen, CNRS, CRISMAT, 14000 Caen, France.
- Réseau sur le Stockage Electrochimique de l'Énergie (RS2E), 80000 Amiens, France
| | - Philippe Boullay
- Normandie Univ, ENSICAEN, Unicaen, CNRS, CRISMAT, 14000 Caen, France.
| | - Vadim M Kovrugin
- Normandie Univ, ENSICAEN, Unicaen, CNRS, CRISMAT, 14000 Caen, France.
- Réseau sur le Stockage Electrochimique de l'Énergie (RS2E), 80000 Amiens, France
| | - Armance Sagot
- Normandie Univ, ENSICAEN, Unicaen, CNRS, CRISMAT, 14000 Caen, France.
- Réseau sur le Stockage Electrochimique de l'Énergie (RS2E), 80000 Amiens, France
| | - Hari Raj
- Normandie Univ, ENSICAEN, Unicaen, CNRS, CRISMAT, 14000 Caen, France.
- Réseau sur le Stockage Electrochimique de l'Énergie (RS2E), 80000 Amiens, France
| | - Valerie Pralong
- Normandie Univ, ENSICAEN, Unicaen, CNRS, CRISMAT, 14000 Caen, France.
- Réseau sur le Stockage Electrochimique de l'Énergie (RS2E), 80000 Amiens, France
| |
Collapse
|
2
|
Cao K, Zhu Y, He H, Xiao J, Ren N, Si J, Chen C. Zero-Strain Sodium Lanthanum Titanate Perovskite Embedded in Flexible Carbon Fibers as a Long-Span Anode for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11421-11430. [PMID: 38387026 DOI: 10.1021/acsami.3c16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
"High-capacity" graphite and "zero-strain" spinel Li4Ti5O12 (LTO) occupy the majority market of anode materials for Li+ storage in commercial applications. Nevertheless, their intrinsic drawbacks including the unsafe potential of graphite and unsatisfactory capacity of LTO limit the further development of lithium-ion batteries (LIBs), which is unable to satisfy the ever-increasing demands. Here, a novel Na0.35La0.55TiO3 perovskite embedded in multichannel carbon fibers (NLTO-NF) is rationally designed and synthesized through an electrospinning method. It not only has the advantages of a respectable specific capacity of 265 mAh g-1 at 0.1 A g-1 and superb rate capability, but it also possesses the zero-strain characteristic. Impressively, an ultralong cycling life with 96.3% capacity retention after 9000 cycles at 2 A g-1 is achieved in the half cell, and 90.3% of capacity retention ratio is obtained after even 2500 cycles at 1 A g-1 in the coupled LiFePO4/NLTO-NF full cell. This study introduces a new member with excellent performance to the zero-strain materials family for next-generation LIBs.
Collapse
Affiliation(s)
- Kuo Cao
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yiran Zhu
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haiyan He
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingchao Xiao
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Naiqing Ren
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Juntao Si
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chunhua Chen
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Quantitative ion exchange reactions to form Li2Vac2-2La2Ti3O9+ defect layered perovskites from H2La2Ti3O10 via solid acid/base reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Zhang X, Hu L, Wang L, He J, Cui H. Adsorption and Separation of Ethyl Mercaptan from Methane by Hydroxyl Groups on the Surface of HTiNbO 5-Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1497-1508. [PMID: 34918521 DOI: 10.1021/acs.langmuir.1c02823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adsorption and separation of light mercaptan (R-SH, R = C1-C4) from methane gas can effectively improve the utilization efficiency of methane and the resource conversion of organic sulfide. To further investigate the effects of composition and structural characteristics of laminates on desulfurization performance, in this paper, a two-dimensional (2D) HTiNbO5-nanosheet (HTiNbO5-NS) was constructed. In addition, the hydrogen-bonding interaction between the exposed hydroxyl active sites on the surface of HTiNbO5-NS and ethyl mercaptan (Et-SH) was constructed to realize the adsorption and separation of Et-SH from methane gas. The breakthrough adsorption capacity (Cap (BT)) of HTiNbO5-NS is 14.35 mg·g-1 in a micro fixed bed with a space velocity of 6000 h-1. The regeneration desulfurization rate (q) of the 10-cycle regeneration adsorption was ca. 96%. Furthermore, density functional theory (DFT) calculation results show that the S atoms of Et-SH and HTiNbO5-NS with the terminal hydroxyl and bridge hydroxyl have electron cloud covering to form the hydrogen-bonding interaction. In addition, the formation details of this hydrogen-bond interaction are discussed. The effects of Ti on the microstructure, hydroxyl acid, hydroxyl content, surface area, and pore volume of nanosheets were studied to explain the reasons for the differences in the properties of the two kinds of nanosheets. This work broadens the design of 2D niobium-based efficient adsorbents for R-SH based on hydrogen-bonding interaction and is helpful to enrich the application of the hydrogen-bonding interaction.
Collapse
Affiliation(s)
- Xiang Zhang
- School of Chemical Engineering, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, P. R. China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu 241003, P. R. China
| | - Lifang Hu
- School of Chemical Engineering, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, P. R. China
| | - Liping Wang
- School of Earth and Environment, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, P. R. China
| | - Jie He
- School of Chemical Engineering, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, P. R. China
- School of Earth and Environment, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, P. R. China
| | - Hongshan Cui
- School of Earth and Environment, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, P. R. China
| |
Collapse
|
5
|
Lou S, Zhao Y, Wang J, Yin G, Du C, Sun X. Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904740. [PMID: 31778036 DOI: 10.1002/smll.201904740] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Titanium-based oxides including TiO2 and M-Ti-O compounds (M = Li, Nb, Na, etc.) family, exhibit advantageous structural dynamics (2D ion diffusion path, open and stable structure for ion accommodations) for practical applications in energy storage systems, such as lithium-ion batteries, sodium-ion batteries, and hybrid pseudocapacitors. Further, Ti-based oxides show high operating voltage relative to the deposition of alkali metal, ensuring full safety by avoiding the formation of lithium and sodium dendrites. On the other hand, high working potential prevents the decomposition of electrolyte, delivering excellent rate capability through the unique pseudocapacitive kinetics. Nevertheless, the intrinsic poor electrical conductivity and reaction dynamics limit further applications in energy storage devices. Recently, various work and in-depth understanding on the morphologies control, surface engineering, bulk-phase doping of Ti-based oxides, have been promoted to overcome these issues. Inspired by that, in this review, the authors summarize the fundamental issues, challenges and advances of Ti-based oxides in the applications of advanced electrochemical energy storage. Particularly, the authors focus on the progresses on the working mechanism and device applications from lithium-ion batteries to sodium-ion batteries, and then the hybrid pseudocapacitors. In addition, future perspectives for fundamental research and practical applications are discussed.
Collapse
Affiliation(s)
- Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, N6A 5B9, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, N6A 5B9, Canada
| | - Jiajun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, N6A 5B9, Canada
| |
Collapse
|
6
|
Choi S, Kim MC, Moon SH, Kim H, Park KW. F-doped Li1.15Ni0.275Ru0.575O2 cathode materials with long cycle life and improved rate performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Abstract
In this study, oxygen reduction behavior of TiH2 powders during dehydrogenation process was investigated based on thermodynamics. During the hydrogenation–dehydrogenation (HDH) method to fabricate Ti powder, TiH2 was formed from a Ti sponge through hydrogenation annealing, and was easily pulverized even by ball milling due to its brittle nature. The ball milling process caused an increase in the oxygen concentration from 0.133 to 0.282 wt %, and transmission electron microscopy and X-ray photoelectron Spectroscopy results demonstrated that the formation of oxide layers such as TiO and TiO2 formed on the surface of the TiH2 powder resulted in the higher oxygen content. Dehydrogenation, which is the process originally conducted to eliminate hydrogen from TiH2, was used to remove and/or reduce oxygen, resulting in the reduction of the oxygen concentration from 0.282 to 0.216 wt %. Thermodynamic calculations confirmed the possibility of oxygen reduction by atomic hydrogen but molecular hydrogen has no function for the oxygen reduction. Glow discharge mass spectrometry (GD-MS) analysis, which checks H2O flow as an evidence of the oxygen reduction by hydrogen, supported the fact that the atomic hydrogen formed during the dehydrogenation process is able to play a critical role in decreasing the oxygen content.
Collapse
|
8
|
Lan T, Tu J, Zou Q, Zeng X, Zou J, Huang H, Wei M. Synthesis of anatase TiO2 mesocrystals with highly exposed low-index facets for enhanced electrochemical performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Yuan Y, Yu H, Cheng X, Ye W, Liu T, Zheng R, Long N, Shui M, Shu J. H 0.92K 0.08TiNbO 5 Nanowires Enabling High-Performance Lithium-Ion Uptake. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9136-9143. [PMID: 30763061 DOI: 10.1021/acsami.8b21817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
HTiNbO5 has been widely investigated in many fields because of its distinctive properties such as good redox activity, high photocatalytic activity, and environmental benignancy. Here, this work reports the synthesis of one-dimensional H0.92K0.08TiNbO5 nanowires via simple electrospinning followed by an ion-exchange reaction. The H0.92K0.08TiNbO5 nanowires consist of many small "lumps" with a uniform diameter distribution of around 150 nm. Used as an anode for lithium-ion batteries, H0.92K0.08TiNbO5 nanowires exhibit high capacity, fast electrochemical kinetics, and high performance of lithium-ion uptake. A capacity of 144.1 mA h g-1 can be carried by H0.92K0.08TiNbO5 nanowires at 0.5 C in the initial charge, and even after 150 cycles, the reversible capacity can remain at 123.7 mA h g-1 with an excellent capacity retention of 85.84%. For H0.92K0.08TiNbO5 nanowires, the diffusion coefficient of lithium ions is 1.97 × 10-11 cm2 s-1, which promotes the lithium-ion uptake effectively. The outstanding electrochemical performance is ascribed to its morphology and the formation of a stable phase during cycling. In addition, the in situ X-ray diffraction and ex situ transmission electron microscopy techniques are applied to reveal its lithium storage mechanism, which proves the structure stability and electrochemical reversibility, thus achieving high-performance lithium-ion uptake. All these advantages demonstrate that H0.92K0.08TiNbO5 nanowires can be a possible alternative anode material for rechargeable batteries.
Collapse
Affiliation(s)
- Yu Yuan
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| | - Haoxiang Yu
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| | - Xing Cheng
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| | - Wuquan Ye
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| | - Tingting Liu
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| | - Runtian Zheng
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| | - Nengbing Long
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| | - Miao Shui
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| | - Jie Shu
- Faculty of Materials Science and Chemical Engineering , Ningbo University , No. 818 Fenghua Road , Ningbo 315211 Zhejiang Province , People's Republic of China
| |
Collapse
|
10
|
Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries. Chem Asian J 2018; 13:299-310. [DOI: 10.1002/asia.201701602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Indexed: 11/07/2022]
|
11
|
All-carbon-based porous topological semimetal for Li-ion battery anode material. Proc Natl Acad Sci U S A 2017; 114:651-656. [PMID: 28069940 DOI: 10.1073/pnas.1618051114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topological state of matter and lithium batteries are currently two hot topics in science and technology. Here we combine these two by exploring the possibility of using all-carbon-based porous topological semimetal for lithium battery anode material. Based on density-functional theory and the cluster-expansion method, we find that the recently identified topological semimetal bco-C16 is a promising anode material with higher specific capacity (Li-C4) than that of the commonly used graphite anode (Li-C6), and Li ions in bco-C16 exhibit a remarkable one-dimensional (1D) migration feature, and the ion diffusion channels are robust against the compressive and tensile strains during charging/discharging. Moreover, the energy barrier decreases with increasing Li insertion and can reach 0.019 eV at high Li ion concentration; the average voltage is as low as 0.23 V, and the volume change during the operation is comparable to that of graphite. These intriguing theoretical findings would stimulate experimental work on topological carbon materials.
Collapse
|
12
|
Sun W, Liu J, Liu X, Fan X, Zhou K, Wei X. Bimolecular-induced hierarchical nanoporous LiTi2(PO4)3/C with superior high-rate and cycling performance. Chem Commun (Camb) 2017; 53:8703-8706. [DOI: 10.1039/c7cc04432a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon-coated hierarchical LiTi2(PO4)3 was synthesized by a facile bimolecular (glucose and DMEA) assisted hydrothermal reaction and a solid-state reaction, and exhibits excellent high-rate and cycling performance.
Collapse
Affiliation(s)
- Wenwei Sun
- Future Energy Laboratory
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei
- China
| | - Jiehua Liu
- Future Energy Laboratory
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei
- China
| | - Xiaoqian Liu
- Future Energy Laboratory
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei
- China
| | - Xiaojing Fan
- Future Energy Laboratory
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei
- China
| | - Kuan Zhou
- Future Energy Laboratory
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei
- China
| | - Xiangfeng Wei
- Future Energy Laboratory
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei
- China
| |
Collapse
|