1
|
Preparation of fenpropathrin nanoemulsions for eco-friendly management of Helicoverpa armigera: improved insecticidal activity and biocompatibility. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Hou Q, Zhang H, Bao L, Song Z, Liu C, Jiang Z, Zheng Y. NCs-Delivered Pesticides: A Promising Candidate in Smart Agriculture. Int J Mol Sci 2021; 22:ijms222313043. [PMID: 34884846 PMCID: PMC8657871 DOI: 10.3390/ijms222313043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/01/2023] Open
Abstract
Pesticides have been used extensively in the field of plant protection to maximize crop yields. However, the long-term, unmanaged application of pesticides has posed severe challenges such as pesticide resistance, environmental contamination, risk in human health, soil degradation, and other important global issues. Recently, the combination of nanotechnology with plant protection strategies has offered new perspectives to mitigate these global issues, which has promoted a rapid development of NCs-based pesticides. Unlike certain conventional pesticides that have been applied inefficiently and lacked targeted control, pesticides delivered by nanocarriers (NCs) have optimized formulations, controlled release rate, and minimized or site-specific application. They are receiving increasing attention and are considered as an important part in sustainable and smart agriculture. This review discussed the limitation of traditional pesticides or conventional application mode, focused on the sustainable features of NCs-based pesticides such as improved formulation, enhanced stability under harsh condition, and controlled release/degradation. The perspectives of NCs-based pesticides and their risk assessment were also suggested in this view for a better use of NCs-based pesticides to facilitate sustainable, smart agriculture in the future.
Collapse
Affiliation(s)
- Qiuli Hou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Q.H.); (H.Z.); (C.L.)
| | - Hanqiao Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Q.H.); (H.Z.); (C.L.)
| | - Lixia Bao
- Analysis & Testing Center, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (L.B.); (Z.S.)
| | - Zeyu Song
- Analysis & Testing Center, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (L.B.); (Z.S.)
| | - Changpeng Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Q.H.); (H.Z.); (C.L.)
| | - Zhenqi Jiang
- Analysis & Testing Center, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (L.B.); (Z.S.)
- Correspondence: (Z.J.); (Y.Z.)
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Q.H.); (H.Z.); (C.L.)
- Correspondence: (Z.J.); (Y.Z.)
| |
Collapse
|
3
|
Chen Z, Wang X, Shi L, Liu Q, Gao Y, Chen W, Yang J, Yuan X, Feng J. Fabrication and Characterization of Prochloraz Nanoemulsion against Penicillium citrinum for the Postharvest Storage of Navel Oranges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13757-13766. [PMID: 34748347 DOI: 10.1021/acs.langmuir.1c02528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoemulsions have become extremely popular water-insoluble pesticide delivery systems in recent years. In this study, prochloraz nanoemulsions were obtained by selecting the mixing ratio of surfactants (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, and 1:6), surfactant concentration, and shearing time. The optimal formula was 10 wt % prochloraz, 6 wt % surfactant (2 wt % CO-100 + 4 wt % CO-360) dissolved in 6 wt % hydrocarbon solvent (S-100A), and deionized water replenished to 100 wt %. This formula meets the quality index standards of the Food and Agriculture Organization. Compared with oil-in-water emulsion (EW), the prochloraz nanoemulsion exhibited higher antifungal activity against Penicillium citrinum in vitro (lower LC50 of 1.17 mg L-1) and in vivo (fewer lesions). In addition, the L02 cells treated with the nanoemulsion had a higher survival rate and lower apoptosis rate at the same concentration. Results showed that the toxicity of the prochloraz nanoemulsion on L02 cells was lower than that of EW. The findings provide an important method for developing an efficient, safe, and environment-friendly nanoemulsion for postharvest fruit storage.
Collapse
Affiliation(s)
- Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinlian Wang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Liyin Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qi Liu
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Yuan Gao
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyong Yuan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Physicochemical studies on the interfacial and aggregation behavior of immidazolium- and pyrrolinidium-dodecyl sulfate in aqueous medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Afzal S, Lone MS, Nazir N, Dar AA. pH Changes in the Micelle-Water Interface of Surface-Active Ionic Liquids Dictate the Stability of Encapsulated Curcumin: An Insight Through a Unique Interfacial Reaction between Arenediazonium Ions and t-Butyl Hydroquinone. ACS OMEGA 2021; 6:14985-15000. [PMID: 34151080 PMCID: PMC8209824 DOI: 10.1021/acsomega.1c01119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
The chemical kinetic (CK) method, which involves the reduction of 4-hexadecylbenzenediazonium ions (16-ArN2 +) by antioxidants (in the present case, TBHQ) occurring exclusively at the interface of the association colloids, was employed to establish the changes in the chemical reactivity of anionic surface-active ionic liquids (SAILs) as a function of the concentration and the composition in their mixed states. We used sodium dodecyl sulfate and different SAILs based on the dodecylsulfate surfactant containing 1-alkyl-3-methylimidazolium cations as counterions having a varying alkyl chain length of 4 (bmim), 8 (omim), and 12 (ddmim) carbon atoms. The structural transitions of aggregates of the SAILs from the micellar to vesicular form were observed as a function of concentration in single surfactant systems and as a function of composition in mixed surfactant systems. Results of the reduction kinetics of 16-ArN2 + at the interface of such aggregates, which depends on the acid/base equilibria at the interface, gave an insight into the changes in the interfacial H+ ions with the change in the hydrophobicity of the counterions of SAILs and the morphological changes from micelles to vesicles as a function of concentration or composition. These changes in the interfacial pH correlate very well with the stability of curcumin within these self-assemblies, which exclusively depends on the pH of the medium and highlights the importance of the results obtained from the CK method in selecting the appropriate medium/conditions for the stabilization of the bioactive molecules.
Collapse
Affiliation(s)
- Saima Afzal
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mohd Sajid Lone
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Nighat Nazir
- Department
of Chemistry, Islamia College of Science
and Commerce, Hawal, Srinagar 190002, Jammu and Kashmir, India
| | - Aijaz Ahmad Dar
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
6
|
Sultana H, Barai M, Mandal MK, Manna E, Maiti DK, Dhara D, Panda AK. Effect of ionic liquid on the micellization behavior of bile salts in aqueous medium. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1915155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Manas Kumar Mandal
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Emili Manna
- Centre for Life Science, Vidyasagar University, Midnapore, West Bengal, India
| | - Dilip Kumar Maiti
- Department of Chemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
7
|
Mapossa AB, Focke WW, Tewo RK, Androsch R, Kruger T. Mosquito-repellent controlled-release formulations for fighting infectious diseases. Malar J 2021; 20:165. [PMID: 33761967 PMCID: PMC7988998 DOI: 10.1186/s12936-021-03681-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria is a principal cause of illness and death in countries where the disease is endemic. Personal protection against mosquitoes using repellents could be a useful method that can reduce and/or prevent transmission of mosquito-borne diseases. The available repellent products, such as creams, roll-ons, and sprays for personal protection against mosquitoes, lack adequate long-term efficacy. In most cases, they need to be re-applied or replaced frequently. The encapsulation and release of the repellents from several matrices has risen as an alternative process for the development of invention of repellent based systems. The present work reviews various studies about the development and use of repellent controlled-release formulations such as polymer microcapsules, polymer microporous formulations, polymer micelles, nanoemulsions, solid-lipid nanoparticles, liposomes and cyclodextrins as new tools for mosquito-borne malaria control in the outdoor environment. Furthermore, investigation on the mathematical modelling used for the release rate of repellents is discussed in depth by exploring the Higuchi, Korsmeyer-Peppas, Weibull models, as well as the recently developed Mapossa model. Therefore, the studies searched suggest that the final repellents based-product should not only be effective against mosquito vectors of malaria parasites, but also reduce the biting frequency of other mosquitoes transmitting diseases, such as dengue fever, chikungunya, yellow fever and Zika virus. In this way, they will contribute to the improvement in overall public health and social well-being.
Collapse
Affiliation(s)
- António B Mapossa
- Department of Chemical Engineering, Institute of Applied Materials , University of Pretoria, Lynnwood Road, Pretoria, South Africa.
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Walter W Focke
- Department of Chemical Engineering, Institute of Applied Materials , University of Pretoria, Lynnwood Road, Pretoria, South Africa
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Robert K Tewo
- Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, 1911, Vanderbijlpark, South Africa
| | - René Androsch
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06099, Halle/Saale, Germany
| | - Taneshka Kruger
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| |
Collapse
|
8
|
Mandal MK, Barai M, Sultana H, Manna E, Musib D, Maiti DK, Panda AK. Interfacial and Aggregation Behaviour of Sodium Dodecyl Sulphate Induced by Ionic Liquids. J Oleo Sci 2021; 70:185-194. [PMID: 33456012 DOI: 10.5650/jos.ess20303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aggregation studies of anionic surfactant sodium dodecyl sulphate (SDS) was investigated in aqueous 1-butyl-3-methylimidazolium chloride [bmim]Cl and N-butyl-N-methyl pyrrolidinium tetrafluoroborate [bmp]BF4 ionic liquid (IL) solutions respectively. Systems were studied by surface tension, conductance, UV-VIS absorption/emission spectroscopy and dynamic light scattering. Critical micelle concentration (CMC) values gradually decreased with increasing IL concentration which indicates synergistic interaction between ILs and SDS. Gibbs free energy change results demonstrated spontaneous micellization induced by ILs; however the effect of ILs were not similar to the corresponding regular salts (NaCl and NaBF4). Aggregation number (n) of micelles, determined by fluorescence quenching method, indicate that the 'n' values increase with increasing ILs concentration, induced by the oppositely charged IL cation. Size of the micelles, determined by dynamic light scattering studies, increased with increasing ILs concentration, which were due to the formation of larger aggregates; the aggregates are considered to be comprised of the anionic surfactant with a substantial proportion of ILs cation as the bound counter ions. Such studies are considered to shed further light in the fundamentals of IL induced micellization as well as in different practical applications.
Collapse
Affiliation(s)
| | - Manas Barai
- Department of Chemistry, Vidyasagar University
| | | | - Emili Manna
- Department of Chemistry, Vidyasagar University
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur
| | | | | |
Collapse
|
9
|
Abbot V, Sharma P. Thermodynamic and acoustic studies of quercetin with sodium dodecyl sulfate in hydro-ethanolic solvent systems: A flavonoid-surfactant interaction study. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Feng J, Wang R, Chen Z, Zhang S, Yuan S, Cao H, Jafari SM, Yang W. Formulation optimization of D-limonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124746] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
12
|
Banjare MK, Behera K, Kurrey R, Banjare RK, Satnami ML, Pandey S, Ghosh KK. Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-methylimidazolium bromide: A comparative study and potential application in antidepressants drug aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:376-386. [PMID: 29635182 DOI: 10.1016/j.saa.2018.03.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Aggregation behavior of bio-surfactants (BS) sodium cholate (NaC) and sodium deoxycholate (NaDC) within aqueous solution of ionic liquid (IL) 1-ethyl-3-methylimidazolium bromide [Emim][Br] has been investigated using surface tension, conductivity, steady state fluorescence, FT-IR and dynamic light scattering (DLS) techniques. Various interfacial and thermodynamic parameters are determined in the presence of different wt% of IL [Emim][Br]. Information regarding the local microenvironment and size of the aggregates is obtained from fluorescence and DLS, respectively. FT-IR spectral response is used to reveal the interactions taking place within aqueous NaC/NaDC micellar solutions. It is noteworthy to mention that increasing wt% of [Emim][Br] results in an increase in the spontaneity of micelle formation and the hydrophilic IL shows more affinity for NaC as compared to NaDC. Further, the micellar solutions of BS-[Emim][Br] are utilized for studying the aggregation of antidepressants drug promazine hydrochloride (pH). UV-vis spectroscopic investigation reveals interesting outcomes and the results show changes in spectral absorbance of PH drug on the addition of micellar solution (BS-[Emim][Br]). Highest binding affinity and most promising activity are shown for NaC as compared to NaDC.
Collapse
Affiliation(s)
- Manoj Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Kamalakanta Behera
- Centre for Interdisciplinary Research in Basic Sciences, JMI, Jamia Nagar, New Delhi 110 025, India
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Ramesh Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India.
| |
Collapse
|
13
|
Banjare MK, Behera K, Kurrey R, Banjare RK, Satnami ML, Pandey S, Ghosh KK. Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-methylimidazolium bromide: A comparative study and potential application in antidepressants drug aggregation. SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:376-386. [DOI: https:/doi.org/10.1016/j.saa.2018.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
14
|
Jafari M, Mehrnejad F, Rahimi F, Asghari SM. The Molecular Basis of the Sodium Dodecyl Sulfate Effect on Human Ubiquitin Structure: A Molecular Dynamics Simulation Study. Sci Rep 2018; 8:2150. [PMID: 29391595 PMCID: PMC5794983 DOI: 10.1038/s41598-018-20669-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
To investigate the molecular interactions of sodium dodecyl sulfate (SDS) with human ubiquitin and its unfolding mechanisms, a comparative study was conducted on the interactions of the protein in the presence and absence of SDS at different temperatures using six independent 500 ns atomistic molecular dynamics (MD) simulations. Moreover, the effects of partial atomic charges on SDS aggregation and micellar structures were investigated at high SDS concentrations. The results demonstrated that human ubiquitin retains its native-like structure in the presence of SDS and pure water at 300 K, while the conformation adopts an unfolded state at a high temperature. In addition, it was found that both SDS self-assembly and the conformation of the resulting protein may have a significant effect of reducing the partial atomic charges. The simulations at 370 K provided evidence that the SDS molecules disrupted the first hydration shell and expanded the hydrophobic core of ubiquitin, resulting in complete protein unfolding. According to these results, SDS and temperature are both required to induce a completely unfolded state under ambient conditions. We believe that these findings could be useful in protein folding/unfolding studies and structural biology.
Collapse
Affiliation(s)
- Majid Jafari
- Nanobiotechnology Lab, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14395-1561, Tehran, Iran
| | - Faramarz Mehrnejad
- Nanobiotechnology Lab, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14395-1561, Tehran, Iran.
| | - Fereshteh Rahimi
- Nanobiotechnology Lab, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14395-1561, Tehran, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, 4193833697, Rasht, Iran
| |
Collapse
|
15
|
Tong Y, Wu Y, Zhao C, Xu Y, Lu J, Xiang S, Zong F, Wu X. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7371-7378. [PMID: 28783335 DOI: 10.1021/acs.jafc.7b02197] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pesticide formulation is highly desirable for effective utilization of pesticide and environmental pollution reduction. Studies of pesticide delivery system such as microcapsules are developing prosperously. In this work, we chose polymeric nanoparticles as a pesticide delivery system and metolachlor was used as a hydrophobic pesticide model to study water-based mPEG-PLGA nanoparticle formulation. Preparation, characterization results showed that the resulting nanoparticles enhanced "water solubility" of hydrophobic metolachlor and contained no organic solvent or surfactant, which represent one of the most important sources of pesticide pollution. After the release study, absorption of Cy5-labeled nanoparticles into rice roots suggested a possible transmitting pathway of this metolachlor formulation and increased utilization of metolachlor. Furthermore, the bioassay test demonstrated that this nanoparticle showed higher effect than non-nano forms under relatively low concentrations on Oryza sativa, Digitaria sanguinalis. In addition, a simple cytotoxicity test involving metolachlor and metolachlor-loaded nanoparticles was performed, indicating toxicity reduction of the latter to the preosteoblast cell line. All of these results showed that those polymeric nanoparticles could serve as a pesticide carrier with lower environmental impact, comparable effect, and effective delivery.
Collapse
Affiliation(s)
- Yujia Tong
- College of Science, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100083, China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yong Xu
- College of Science, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100083, China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Sheng Xiang
- College of Science, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100083, China
| | - Fulin Zong
- Institute for the Control of Agrochemicals, Ministry of Agriculture , Beijing 100125, China
| | - Xuemin Wu
- College of Science, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100083, China
| |
Collapse
|