1
|
Yamashita K, Nakayama K, Komatsu K, Ohhara T, Munakata K, Hattori T, Sano-Furukawa A, Kagi H. The hydrogen-bond network in sodium chloride tridecahydrate: analogy with ice VI. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2023; 79:414-426. [PMID: 37703290 DOI: 10.1107/s2052520623007199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
The structure of a recently found hyperhydrated form of sodium chloride (NaCl·13H2O and NaCl·13D2O) has been determined by in situ single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo-symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. An example is presented here for further insights into a hydrogen-bond network containing ionic species.
Collapse
Affiliation(s)
- Keishiro Yamashita
- Geochemical Research Center, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Nakayama
- Geochemical Research Center, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuki Komatsu
- Geochemical Research Center, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ohhara
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Koji Munakata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Building, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Takanori Hattori
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Asami Sano-Furukawa
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Martelli F. Electrolyte Permeability in Plastic Ice VII. J Phys Chem B 2023. [PMID: 37471515 DOI: 10.1021/acs.jpcb.3c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Deep brines in water-rich planets form when electrolytes diffuse from the rocky interior through layers of thick dense ice such as ice VII and the hypothesized plastic ice VII. We perform classical molecular dynamics simulations of Li+, Na+, and K+ alkali ions and F- and Cl- halide ions in plastic ice VII at conditions similar to water-rich super-Earths, icy moons, and ocean worlds. We find that plastic ice VII is permeable to electrolytes on geological timescales. Diffusion occurs via jumps between adjacent voids in the bcc crystal structure and is governed by molecular rotations. An exception to this mechanism is Na+ which, at variance with other ions, can substitute water molecules on lattice positions. The bulk modulus of pristine plastic ice VII is dependent on the pace of molecular rotations: when the rotations are slow, the bulk modulus is 1 order of magnitude lower compared to the bulk modulus at conditions of fast rotations, hence providing direct evidence of the role of molecular rotations in determining elastic properties. Electrolytes affect the bulk modulus only at high-concentration conditions and slow molecular rotations. Our results show that plastic ice VII may facilitate the development of brines in water-rich planets and ocean worlds, with a clear significance for their potential to support exobiology and for the chemical evolution of their aqueous reservoirs.
Collapse
Affiliation(s)
- Fausto Martelli
- IBM Research Europe, Hartree Centre, WA4 4AD Daresbury, U.K
- Department of Chemical Engineering, The University of Manchester, Oxford Road M13 9PL Manchester, U.K
| |
Collapse
|
3
|
Tonauer CM, Fidler LR, Giebelmann J, Yamashita K, Loerting T. Nucleation and growth of crystalline ices from amorphous ices. J Chem Phys 2023; 158:141001. [PMID: 37061482 DOI: 10.1063/5.0143343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
We here review mostly experimental and some computational work devoted to nucleation in amorphous ices. In fact, there are only a handful of studies in which nucleation and growth in amorphous ices are investigated as two separate processes. In most studies, crystallization temperatures Tx or crystallization rates RJG are accessed for the combined process. Our Review deals with different amorphous ices, namely, vapor-deposited amorphous solid water (ASW) encountered in many astrophysical environments; hyperquenched glassy water (HGW) produced from μm-droplets of liquid water; and low density amorphous (LDA), high density amorphous (HDA), and very high density amorphous (VHDA) ices produced via pressure-induced amorphization of ice I or from high-pressure polymorphs. We cover the pressure range of up to about 6 GPa and the temperature range of up to 270 K, where only the presence of salts allows for the observation of amorphous ices at such high temperatures. In the case of ASW, its microporosity and very high internal surface to volume ratio are the key factors determining its crystallization kinetics. For HGW, the role of interfaces between individual glassy droplets is crucial but mostly neglected in nucleation or crystallization studies. In the case of LDA, HDA, and VHDA, parallel crystallization kinetics to different ice phases is observed, where the fraction of crystallized ices is controlled by the heating rate. A key aspect here is that in different experiments, amorphous ices of different "purities" are obtained, where "purity" here means the "absence of crystalline nuclei." For this reason, "preseeded amorphous ice" and "nuclei-free amorphous ice" should be distinguished carefully, which has not been done properly in most studies. This makes a direct comparison of results obtained in different laboratories very hard, and even results obtained in the same laboratory are affected by very small changes in the preparation protocol. In terms of mechanism, the results are consistent with amorphous ices turning into an ultraviscous, deeply supercooled liquid prior to nucleation. However, especially in preseeded amorphous ices, crystallization from the preexisting nuclei takes place simultaneously. To separate the time scales of crystallization from the time scale of structure relaxation cleanly, the goal needs to be to produce amorphous ices free from crystalline ice nuclei. Such ices have only been produced in very few studies.
Collapse
Affiliation(s)
- Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Lilli-Ruth Fidler
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Giebelmann
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Keishiro Yamashita
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Hernandez JA, Caracas R, Labrosse S. Stability of high-temperature salty ice suggests electrolyte permeability in water-rich exoplanet icy mantles. Nat Commun 2022; 13:3303. [PMID: 35729158 PMCID: PMC9213484 DOI: 10.1038/s41467-022-30796-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
Electrolytes play an important role in the internal structure and dynamics of water-rich satellites and potentially water-rich exoplanets. However, in planets, the presence of a large high-pressure ice mantle is thought to hinder the exchange and transport of electrolytes between various liquid and solid deep layers. Here we show, using first-principles simulations, that up to 2.5 wt% NaCl can be dissolved in dense water ice at interior conditions of water-rich super-Earths and mini-Neptunes. The salt impurities enhance the diffusion of H atoms, extending the stability field of recently discovered superionic ice, and push towards higher pressures the transition to the stiffer ice X phase. Scaling laws for thermo-compositional convection show that salts entering the high pressure ice layer can be readily transported across. These findings suggest that the high-pressure ice mantle of water-rich exoplanets is permeable to the convective transport of electrolytes between the inner rocky core and the outer liquid layer. Hot cubic ice is shown to retain dissolved salt in its lattice, suggesting the mantle of water-rich exoplanets is more permeable to electrolytes than assumed, which has implications on its properties and on the element cycles inside such planets.
Collapse
Affiliation(s)
- Jean-Alexis Hernandez
- European Synchrotron Radiation Facility, Grenoble, France. .,CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR 5276, Lyon, 69364, France. .,Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, 0315, Norway.
| | - Razvan Caracas
- CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR 5276, Lyon, 69364, France.,Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, 0315, Norway.,Université de Paris, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, Paris, 75005, France
| | - Stéphane Labrosse
- CNRS, Ecole Normale Supérieure de Lyon, Université de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR 5276, Lyon, 69364, France
| |
Collapse
|
5
|
Journaux B. Salty ice and the dilemma of ocean exoplanet habitability. Nat Commun 2022; 13:3304. [PMID: 35729159 PMCID: PMC9213393 DOI: 10.1038/s41467-022-30799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Baptiste Journaux
- Earth and Space Science Department, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
7
|
Rozsa V, Galli G. Solvation of simple ions in water at extreme conditions. J Chem Phys 2021; 154:144501. [PMID: 33858154 DOI: 10.1063/5.0046193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The interaction of ions and water at high pressure and temperature plays a critical role in Earth and planetary science yet remains poorly understood. Aqueous fluids affect geochemical properties ranging from water phase stability to mineral solubility and reactivity. Here, we report first-principles molecular dynamics simulations of mono-valent ions (Li+, K+, Cl-) as well as NaCl in liquid water at temperatures and pressures relevant to the Earth's upper mantle (11 GPa, 1000 K) and concentrations in the dilute limit (0.44-0.88 m), in the regime of ocean salinity. We find that, at extreme conditions, the average structural and vibrational properties of water are weakly affected by the presence of ions, beyond the first solvation shell, similar to what was observed at ambient conditions. We also find that the ionic conductivity of the liquid increases in the presence of ions by less than an order of magnitude and that the dielectric constant is moderately reduced by at most ∼10% at these conditions. Our findings may aid in the parameterization of deep earth water models developed to describe water-rock reactions.
Collapse
Affiliation(s)
- Viktor Rozsa
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Giulia Galli
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Bove LE, Ranieri U. Salt- and gas-filled ices under planetary conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180262. [PMID: 30982457 PMCID: PMC6501915 DOI: 10.1098/rsta.2018.0262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
In recent years, evidence has emerged that solid water can contain substantial amounts of guest species, such as small gas molecules-in gas hydrate structures-or ions-in salty ice structures-and that these 'filled' ice structures can be stable under pressures of tens of Gigapascals and temperatures of hundreds of Kelvins. The inclusion of guest species can strongly modify the density, vibrational, diffusive and conductivity properties of ice under high pressure, and promote novel exotic properties. In this review, we discuss our experimental findings and molecular dynamics simulation results on the structures formed by salt- and gas-filled ices, their unusual properties, and the unexpected dynamical phenomena observed under pressure and temperature conditions relevant for planetary interiors modelling. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.
Collapse
Affiliation(s)
- Livia E. Bove
- Dipartimento di Fisica, Universitá di Roma ‘La Sapienza’, 00185Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
- EPSL, IPHYS, École polytechnique fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland
| | - Umbertoluca Ranieri
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
- EPSL, IPHYS, École polytechnique fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
9
|
Salzmann CG. Advances in the experimental exploration of water's phase diagram. J Chem Phys 2019; 150:060901. [PMID: 30770019 DOI: 10.1063/1.5085163] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Water's phase diagram displays enormous complexity with currently 17 experimentally confirmed polymorphs of ice and several more predicted computationally. For almost 120 years, it has been a stomping ground for scientific discovery, and ice research has often been a trailblazer for investigations into a wide range of materials-related phenomena. Here, the experimental progress of the last couple of years is reviewed, and open questions as well as future challenges are discussed. The specific topics include (i) the polytypism and stacking disorder of ice I, (ii) the mechanism of the pressure amorphization of ice I, (iii) the emptying of gas-filled clathrate hydrates to give new low-density ice polymorphs, (iv) the effects of acid/base doping on hydrogen-ordering phase transitions as well as (v) the formation of solid solutions between salts and the ice polymorphs, and the effect this has on the appearance of the phase diagram. In addition to continuing efforts to push the boundaries in terms of the extremes of pressure and temperature, the exploration of the "chemical" dimensions of ice research appears to now be a newly emerging trend. It is without question that ice research has entered a very exciting era.
Collapse
Affiliation(s)
- Christoph G Salzmann
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
10
|
Tschauner O, Huang S, Greenberg E, Prakapenka VB, Ma C, Rossman GR, Shen AH, Zhang D, Newville M, Lanzirotti A, Tait K. Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science 2018; 359:1136-1139. [DOI: 10.1126/science.aao3030] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/19/2018] [Indexed: 11/02/2022]
|
11
|
Pamuk B, Allen PB, Fernández-Serra MV. Insights into the Structure of Liquid Water from Nuclear Quantum Effects on the Density and Compressibility of Ice Polymorphs. J Phys Chem B 2018; 122:5694-5706. [DOI: 10.1021/acs.jpcb.8b00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Betül Pamuk
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Physics and Astronomy Department, Stony Brook University, Stony Brook, New York 11794-3800, United States
| | - P. B. Allen
- Physics and Astronomy Department, Stony Brook University, Stony Brook, New York 11794-3800, United States
| | - M.-V. Fernández-Serra
- Physics and Astronomy Department, Stony Brook University, Stony Brook, New York 11794-3800, United States
| |
Collapse
|
12
|
Zeng Q, Yao C, Wang K, Sun CQ, Zou B. Room-temperature NaI/H2O compression icing: solute–solute interactions. Phys Chem Chem Phys 2017; 19:26645-26650. [DOI: 10.1039/c7cp03919k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
H–O bond energy governs the PCx for Na/H2O liquid–VI–VII phase transition. Solute concentration affects the path of phase transitions differently with the solute type. Solute–solute interaction lessens the PC2 sensitivity to compression. The PC1 goes along the liquid–VI boundary till the triple phase joint.
Collapse
Affiliation(s)
- Qingxin Zeng
- State Key Laboratory of Superhard Materials
- College of Physics
- Jilin University
- Changchun 130012
- China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 4081410
- China
| | - Kai Wang
- State Key Laboratory of Superhard Materials
- College of Physics
- Jilin University
- Changchun 130012
- China
| | - Chang Q. Sun
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)
- Yangtze Normal University
- Chongqing 4081410
- China
- NOVITAS, Nanyang Technological University
| | - Bo Zou
- State Key Laboratory of Superhard Materials
- College of Physics
- Jilin University
- Changchun 130012
- China
| |
Collapse
|