1
|
Tiwari A, Lee SJ, Thokchom AK. Surfactant-based interface capture towards the development of 2D-printed photonic structures. MATERIALS HORIZONS 2025; 12:2689-2700. [PMID: 39831825 DOI: 10.1039/d4mh01560f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study focuses on fabricating photonic crystals (PCs) by surfactant-based particle capture at the gas-liquid interface of evaporating sessile droplets. The captured particles form interfacial films, resulting in ordered monolayer depositions manifesting iridescent structural colors. The particle dynamics behind the ordered arrangement is delineated. This arrangement is influenced by the alteration in particles' hydrophobicity, charge, and internal flow introduced by the surfactant addition. The influence of surfactant and particle concentrations on the phenomenon is also investigated. The work demonstrates a drop-by-drop technique to scale up the formation of PCs. Furthermore, the work is extended towards demonstrating the utilization of this mechanism to fabricate arbitrary PCs efficiently by direct writing technique. The particle coverage in directly written patterns is influenced by printing speed and particle concentration, which are adjusted to achieve covert photonic patterns. Finally, the replication of colloidal PC onto a flexible polymer with minimal colloid transfer is demonstrated using soft lithography.
Collapse
Affiliation(s)
- Appurva Tiwari
- Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, 201314, India.
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, South Korea
| | - Ashish Kumar Thokchom
- Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, 201314, India.
| |
Collapse
|
2
|
Dai L, Xu Z, Tian Y. Dynamic Behavior of Liquids on Superspreading Surfaces: From Essential Mechanisms to Applications. ACS NANO 2025; 19:12626-12645. [PMID: 40146903 DOI: 10.1021/acsnano.4c18380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The interaction between liquids and surfaces is a common phenomenon in nature and has attracted extensive scientific attention. Among these interactions, the dynamic behavior of liquids on superspreading surfaces exhibits significant diversity, which can be categorized into four processes: impact, spreading, film formation, and phase transition. Traditional characterization using the equilibrium contact angle (CA) proves insufficient for describing dynamic liquid behaviors. Recent studies introduce superspreading time (ST) and the curve of the superspreading radius versus spreading time (SRST), providing a comprehensive understanding of dynamic spreading processes. This review systematically analyzes the dynamic behaviors of liquids on superspreading surfaces, including their underlying mechanisms and associated influencing factors. Furthermore, we discuss applications of superspreading surfaces by categorizing them into unsteady-state liquid films and steady-state liquid films. The unsteady-state liquid film applications leverage the dynamic processes, such as impact, spreading, and phase transition, to enhance thermal management efficiency, bubble detachment, photothermal conversion, and convective heat transfer. In contrast, the steady-state liquid film applications focus on stable thin film formation for use in areas such as antifouling coatings, drag reduction, biomaterial enhancement, and uniform film fabrication. Finally, we highlight existing challenges in understanding liquid-solid fundamental research and industrial applications. This review provides insights into both the fundamental mechanisms and practical applications of superspreading surfaces, arousing attention in the field of superspreading to strengthen mechanism research and promote practical applications.
Collapse
Affiliation(s)
- Lu Dai
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhe Xu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Ye Tian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Wakata Y, Wang F, Sun C, Lohse D. Thermal-solutal-induced bistability of evaporating multicomponent liquid thin films. Proc Natl Acad Sci U S A 2025; 122:e2418487122. [PMID: 39918948 PMCID: PMC11831166 DOI: 10.1073/pnas.2418487122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Volatile multicomponent liquid films show rich dynamics, due to the complex interplay of gradients in temperature and in solute concentrations. Here, we study the evaporation dynamics of a tricomponent liquid film, consisting of water, ethanol, and trans-anethole oil (known as "ouzo"). With the preferential evaporation of ethanol, cellular convective structures are observed both in the thermal patterns and in the nucleated oil droplet patterns. However, the feature sizes of these two patterns can differ, indicating dual instability mechanisms dominated by either temperature or solute concentration. Using numerical simulations, we quantitatively compare the contributions of temperature and solute concentration on the surface tension. Our results reveal that the thermal Marangoni effect predominates at the initial evaporation stage, resulting in cellular patterns in thermal images, while the solutal Marangoni effect gradually becomes dominant. By regulating the transition time of this thermal-solutal-induced bistability and the nucleation time of oil microdroplets in the ternary mixture, the oil droplet patterns can be well controlled. This capability not only enhances our understanding of the evaporation dynamics but also paves the way for precise manipulation of nucleation and deposition processes at larger scales.
Collapse
Affiliation(s)
- Yuki Wakata
- New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
| | - Feng Wang
- New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing100084, China
- Department of Physics of Fluids, Max Planck–Center for Complex Fluid Dynamics, J.M. Burgers Centre for Fluid Dynamics, Faculty of Science and Engineering, University of Twente, Enschede7500AE, The Netherlands
| | - Detlef Lohse
- Department of Physics of Fluids, Max Planck–Center for Complex Fluid Dynamics, J.M. Burgers Centre for Fluid Dynamics, Faculty of Science and Engineering, University of Twente, Enschede7500AE, The Netherlands
- Max Planck Institute for Dynamics and Self-Organization, Göttingen37077, Germany
| |
Collapse
|
4
|
Ruzi M, Celik N, Sahin F, Sakir M, Onses MS. Nanostructured Surfaces with Plasmonic Activity and Superhydrophobicity: Review of Fabrication Strategies and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408189. [PMID: 39757431 DOI: 10.1002/smll.202408189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Plasmonics and superhydrophobicity have garnered broad interest from academics and industry alike, spanning fundamental scientific inquiry and practical technological applications. Plasmonic activity and superhydrophobicity rely heavily on nanostructured surfaces, providing opportunities for their mutually beneficial integration. Engineering surfaces at microscopic and nanoscopic length scales is necessary to achieve superhydrophobicity and plasmonic activity. However, the dissimilar surface energies of materials commonly used in fabricating plasmonic and superhydrophobic surfaces and different length scales pose various challenges to harnessing their properties in synergy. In this review, an overview of various techniques and materials that researchers have developed over the years to overcome this challenge is provided. The underlying mechanisms of both plasmonics and superhydrophobicity are first overviewed. Next, a general classification scheme is introduced for strategies to achieve plasmonic and superhydrophobic properties. Following that, applications of multifunctional plasmonic and superhydrophobic surfaces are presented. Lastly, a future perspective is presented, highlighting shortcomings, and opportunities for new directions.
Collapse
Affiliation(s)
- Mahmut Ruzi
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - Nusret Celik
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Furkan Sahin
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, Istanbul, 34398, Turkey
| | - Menekse Sakir
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - M Serdar Onses
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
5
|
Wiemann C, Blaschke U, Schnurr-Pütz S. Understanding factors that affect dislodgeable foliar residues of pyrimethanil and their dissipation: How relevant is the crop-type for human exposure? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2025; 60:47-69. [PMID: 39840916 DOI: 10.1080/03601234.2025.2450141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/28/2024] [Indexed: 01/23/2025]
Abstract
Pesticide dislodgeable foliar residues (DFR) and their dissipation half-time (DT50) after application are important parameters for exposure and risk assessment from intended reentry activities or unintended dermal contact with treated crops. To understand the impact of agronomic factors on residue level a statistical based evaluation was conducted using ten DFR studies, with pyrimethanil applied in Scala® to strawberries, raspberries, peppers, apples, and grapes, 30 trials in total. Influences on initial DFR (DFR0) and DT50 were investigated by multivariate linear regression analysis. The application rate and the crop itself indicate a potential influence on DFR0 when related to ground area applied which is not notable for three dimensional crops regardless of indoor/outdoor cultivation, when related to leaf wall area (LWA). DFR0 values for pyrimethanil do not depend on the number of applications as the range of DT50 values determined for pyrimethanil is consistently small (0.3-2.3 days). All DT50 are significantly lower than the European default (30 days). The noted difference in DT50 of peppers to strawberries is likely attributable to indoor cultivation. A proposal is made how to refine the exposure assessment of pyrimethanil making use of the available DFR0 and DT50 data for other crop types.
Collapse
|
6
|
Hosseini M, Rodriguez A, Torres JR, Ducker WA. Evaporation from thin porous Coatings: Pore size effects and predictive equation for homogeneous coatings. J Colloid Interface Sci 2025; 678:369-379. [PMID: 39298989 DOI: 10.1016/j.jcis.2024.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Evaporation of small water droplets on solids is hindered because surface tension pulls the droplet into a spherical cap that has a small perimeter. Our solution is to coat a solid with a very thin, porous layer into which the droplet flows to create a large-area disk with concomitant high rate of evaporation. We investigate evaporation by varying factors that have not been previously considered: pore size and distribution, contact angle, temperature, and relative humidity (RH).A larger pore size resulted in faster evaporation, which we explain through faster transport within the coating. Even faster evaporation occurred for a bilayer structure with small particles on the air side and larger particles on the solid side. The water advancing contact angle had an insignificant effect in the range from < 10° through to 60°.Our results for different pore sizes, temperature, humidity, and contact angle all collapse onto a single curve when appropriately normalized. This validates an equation that can be used for the evaporation from a homogeneous coating that depends only one empirical factor and the droplet volume. Since the volume is often user-controlled, we envisage that this equation can be used to predict evaporation and guide design of fast-drying coatings.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Alejandro Rodriguez
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - James R Torres
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA.
| | - William A Ducker
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
Bhatt S, Smethurst PA, Garnier G, Routh AF. Front-Tracking and Gelation in Sessile Droplet Suspensions: What Can They Tell Us about Human Blood? Biomacromolecules 2024; 25:7594-7607. [PMID: 39486045 PMCID: PMC11632657 DOI: 10.1021/acs.biomac.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
Recently developed imaging techniques have been used to examine the redistribution of human red blood cells and comparator particles dispersed in carrier fluids within evaporating droplets. We demonstrate that progressive gelation initiates along an annular front, isolating a central pool that briefly remains open to particulate advection before gelation completes across the droplet center. Transition to an elastic solid is evidenced by cracking initiating proximal to front locations. The arrested flow of cellular components, termed a "halted front", has been investigated using a time-lapse analysis "signature". The presence of a deformable biocellular component is seen to be essential for front-halting. We show a dependence of front-halt radius on cell volume-fraction, potentially offering a low-cost means of measuring hematocrit. A simple model yields an estimate of the gel zero-shear yield-stress. This approach to understanding the drying dynamics of blood droplets may lead to a new generation of point-of-care diagnostics.
Collapse
Affiliation(s)
- Sheila Bhatt
- Institute
for Energy and Environmental Flows, University
of Cambridge, Bullard Laboratories, Madingley Road, Cambridge, CB3 0EZ, United
Kingdom
| | - Peter A. Smethurst
- Component
Development Laboratory, NHS Blood and Transplant, Cambridge Donor Centre, Cambridge, CB2 0PT, United Kingdom
| | - Gil Garnier
- BioPRIA,
Department of Chemical Engineering, Monash
University, Clayton VIC 31688, Australia
| | - Alexander F. Routh
- Institute
for Energy and Environmental Flows, University
of Cambridge, Bullard Laboratories, Madingley Road, Cambridge, CB3 0EZ, United
Kingdom
| |
Collapse
|
8
|
Bisquert L, Ruiz-Gutiérrez É, Pradas M, Ledesma-Aguilar R. Competing Bifurcations Determine Symmetry Breaking During Droplet Snaps on Smooth Patterned Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24387-24396. [PMID: 39501882 PMCID: PMC11580171 DOI: 10.1021/acs.langmuir.4c02908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
The shape and stability of a droplet in contact with a solid surface is affected by the chemical composition and topography of the solid, and crucially, by the droplet's size. During a variation in size, most often observed during evaporation, droplets on smooth patterned surfaces can undergo sudden shape and position changes. Such changes, called snaps, are prompted by the surface pattern and arise from fold and pitchfork bifurcations which respectively cause symmetric and asymmetric motions. Yet, which type of snap is likely to be observed is an open fundamental question that has relevance in the rational design of surfaces for managing droplets. Here we show that the likelihood of observing symmetric or asymmetric snaps depends on the distance between fold and pitchfork bifurcation points and on how this distance varies for droplets that grow or shrink in size on surfaces patterned with a smooth topography. Our results can help develop strategies to control droplets by exploiting smooth surface patterns but also have broader relevance in situations where different types of bifurcations compete in determining the stability of a system, for instance in snap-through instabilities observed in elastic media.
Collapse
Affiliation(s)
- Lucile Bisquert
- Institute
for Multiscale Thermofluids, School of Engineering, University of Edinburgh, The King’s Buildings Mayfield Road, Edinburgh EH9 3FB, United Kingdom
| | - Élfego Ruiz-Gutiérrez
- School
of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Marc Pradas
- School
of Mathematics and Statistics, The Open
University, Milton
Keynes, MK7 6AA, United Kingdom
| | - Rodrigo Ledesma-Aguilar
- Institute
for Multiscale Thermofluids, School of Engineering, University of Edinburgh, The King’s Buildings Mayfield Road, Edinburgh EH9 3FB, United Kingdom
| |
Collapse
|
9
|
Li W, Zhang C, Wang Y. Evaporative self-assembly in colloidal droplets: Emergence of ordered structures from complex fluids. Adv Colloid Interface Sci 2024; 333:103286. [PMID: 39232473 DOI: 10.1016/j.cis.2024.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/14/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Colloidal droplet evaporation is an intriguing and intricate phenomenon that has captured the interest of scientists across diverse disciplines, including physical chemistry, fluid dynamics, and soft matter science, over the past two decades. Despite being a non-equilibrium system with inherent challenges posed by coffee ring formation and Marangoni effects, which hinder the precise control of deposition patterns, evaporative self-assembly presents a convenient and cost-effective approach for generating arrays of well-ordered structures and functional patterns with wide-ranging applications in inkjet printing, photonic crystals, and biochemical assays. In the realm of printed electronics and photonics, effectively mitigating coffee rings while achieving uniformity and orderliness has emerged as a critical factor in realising the next generation of large-area, low-cost, flexible devices that are exceptionally sensitive and high-performance. This review highlights the evaporative self-assembly process in colloidal droplets with a focus on the intricate mechanical environment, self-assembly at diverse interfaces, and potential applications of these assembling ordered structures.
Collapse
Affiliation(s)
- Weibin Li
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Chen Zhang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuren Wang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
10
|
Arunachalam S, Lin M, Daniel D. Probing the physical origins of droplet friction using a critically damped cantilever. SOFT MATTER 2024; 20:7583-7591. [PMID: 39248408 DOI: 10.1039/d4sm00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Previously, we and others have used cantilever-based techniques to measure droplet friction on various surfaces, but typically at low speeds U < 1 mm s-1; at higher speeds, friction measurements become inaccurate because of ringing artefacts. Here, we are able to eliminate the ringing noise using a critically damped cantilever. We measured droplet friction on a superhydrophobic surface over a wide range of speeds U = 10-5-10-1 m s-1 and identified two regimes corresponding to two different physical origins of droplet friction. At low speeds U < 1 cm s-1, the droplet is in contact with the top-most solid (Cassie-Baxter), and friction is dominated by contact-line pinning with Ffric force that is independent of U. In contrast, at high speeds U > 1 cm s-1, the droplet lifts off the surface, and friction is dominated by viscous dissipation in the air layer with Ffric ∝ U2/3 consistent with Landau-Levich-Derjaguin predictions. The same scaling applies for superhydrophobic and underwater superoleophobic surfaces despite their very different surface topographies and chemistries, i.e., the friction scaling law derived here is universal.
Collapse
Affiliation(s)
- Sankara Arunachalam
- Droplet Lab, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Marcus Lin
- Droplet Lab, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Dan Daniel
- Droplet Lab, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Jiang Q, Xie Y, Zhou B, Wang Z, Ning D, Li H, Zhang J, Yin M, Shen J, Yan S. Nanomaterial inactivates environmental virus and enhances plant immunity for controlling tobacco mosaic virus disease. Nat Commun 2024; 15:8509. [PMID: 39353964 PMCID: PMC11445512 DOI: 10.1038/s41467-024-52851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Tobacco mosaic virus (TMV) is extremely pathogenic and resistant to stress There are great needs to develop methods to reduce the virus in the environment and induce plant immunity simultaneously. Here, we report a multifunctional nano-protectant to reduce the virus in the environment and induce plant immunity simultaneously. The star polycation (SPc) nanocarrier can act as an active ingredient to interact with virus coat protein via electrostatic interaction, which reduces the proportion of TMV particles to 2.9% and leads to a reduction of the amount of virus in the environment by half. SPc can act as an adjuvant to spontaneously assemble with an immune inducer lentinan (LNT) through hydrogen bonding into nanoscale (142 nm diameter) LNT/SPc complex, which improves the physicochemical property of LNT for better wetting performance on leaves and cellular uptake, and further activates plant immune responses. Finally, the LNT/SPc complex displays preventive and curative effects on TMV disease, reducing TMV-GFP relative expression by 26% in the laboratory and achieving 82% control efficacy in the field We hope the strategy reported here would be useful for control of crop virus disease.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Dekai Ning
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Hongming Li
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
12
|
Feng X, Ge C, Du H, Yang X, Fang J. Three-Dimensional Double-Layer Multi-Stage Thermal Management Fabric for Solar Desalination. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4419. [PMID: 39274808 PMCID: PMC11396556 DOI: 10.3390/ma17174419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Water scarcity is a serious threat to the survival and development of mankind. Interfacial solar steam generation (ISSG) can alleviate the global freshwater shortage by converting sustainable solar power into thermal energy for desalination. ISSG possesses many advantages such as high photothermal efficiency, robust durability, and environmental friendliness. However, conventional evaporators suffered from huge heat losses in the evaporation process due to the lack of efficient thermal management. Herein, hydrophilic Tencel yarn is applied to fabricate a three-dimensional double-layer fabric evaporator (DLE) with efficient multi-stage thermal management. DLE enables multiple solar absorptions, promotes cold evaporation, and optimizes thermal management. The airflow was utilized after structure engineering for enhanced energy evaporation efficiency. The evaporation rate can reach 2.86 kg·m-2·h-1 under 1 sun (1 kW·m-2), and 6.26 kg·m-2·h-1 at a wind speed of 3 m·s-1. After a long duration of outdoor operation, the average daily evaporation rate remains stable at over 8.9 kg·m-2, and the removal rate of metal ions in seawater reaches 99%. Overall, DLE with efficient and durable three-dimensional multi-stage thermal management exhibits excellent practicality for solar desalination.
Collapse
Affiliation(s)
- Xiao Feng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Heng Du
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Xing Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Bo X, Zhao H, Valencia A, Liu F, Li W, Daoud WA. Surfactant Self-Assembly Enhances Tribopositivity of Stretchable Ionic Conductors for Wearable Energy Harvesting and Motion Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403905. [PMID: 38806154 DOI: 10.1002/adma.202403905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Boosting stretchability and electric output is critical for high-performance wearable triboelectric nanogenerators (TENG). Herein, for the first time, a new approach for tuning the composition of surface functional groups through surfactant self-assembly to improve the tribopositivity, where the assembly increases the transferred charge density and the relative permittivity of water polyurethane (WPU). Incorporating bis(trifluoromethanesulfonyl)imide (TFSI-) and alkali metal ions into a mixture of WPU and the surfactant forms a stretchable film that simultaneously functions as positive tribolayer and electrode, preventing the conventional detachment of tribolayer and electrode in long term usage. Further, the conductivity of the crosslinked film reaches 3.3 × 10-3 mS cm-1 while the elongation at break reaches 362%. Moreover, the surfactant self-assembly impedes the adverse impact of the fluorine-containing groups on tribopositivity. Consequently, the charge density reaches 155 µC m-2, being the highest recorded for WPU and stretchable ionic conductor based TENG. This work introduces a novel approach for boosting the output charge density while avoiding the adverse effect of ionic salts in solid conductors through a universal surfactant self-assembly strategy, which can be extended to other materials. Further, the device is used to monitor and harvest the kinetic energy of human body motion.
Collapse
Affiliation(s)
- Xiangkun Bo
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hong Zhao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, China
| | - Agnes Valencia
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Fei Liu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weilu Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
14
|
Li Y, Li W, Zhang X, Lin H, Li D, Li Z. Three-dimensional morphological characterization of blood droplets during the dynamic coagulation process. JOURNAL OF BIOPHOTONICS 2024; 17:e202400116. [PMID: 38887206 DOI: 10.1002/jbio.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
In this study, we employed a method integrating optical coherence tomography (OCT) with the U-Net and Visual Geometry Group (VGG)-Net frameworks within a convolutional neural network for quantitative characterization of the three dimensional whole blood during the dynamic coagulation process. VGG-Net architecture for the identification of blood droplets across three distinct coagulation stages including drop, gelation, and coagulation achieves an accuracy of up to 99%. In addition, the U-Net architecture demonstrated proficiency in effectively segmenting uncoagulated and coagulated portions of whole blood, as well as the background. Notably, parameters such as volume of uncoagulated and coagulated segments of the whole blood were successfully employed for the precise quantification of the coagulation process, which indicates well for the potential of future clinical diagnostics and analyses.
Collapse
Affiliation(s)
- Yao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Wangbiao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaoman Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Dezi Li
- Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua University, Huaihua, Hunan, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China
- The Internet of Things and Artificial Intelligence College, Fujian Polytechnic of Information Technology, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Jaiswal AK, Jose CT, Ramesh R, Nanani VK, Sadeghi K, Joshi A, Kompally K, Pathikonda G, Emady HN, Bheda B, Kavouras SA, Rykaczewski K. Simultaneous imaging of multi-pore sweat dynamics and evaporation rate measurement using wind tunnel ventilated capsule with infrared window. iScience 2024; 27:110304. [PMID: 39040057 PMCID: PMC11261446 DOI: 10.1016/j.isci.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024] Open
Abstract
Sweat evaporation is critical to human thermoregulation, but current understanding of the process on 20 μm to 2 cm scale is limited. To this end, we introduce a wind-tunnel-shaped ventilated capsule with an infrared window for simultaneous infrared sweat imaging and evaporation rate measurement. Implementing the capsule in pilot human subject tests suggests that the common assumption of sweat being an isothermal film is only valid when the evaporation rate is low and sweat forms puddles on the skin. Before transitioning to this filmwise mode, sweating occurs in cyclic dropwise mode, displaying a 3x higher mass transfer coefficient in the same conditions. Imaging highlighted distinct phenomena occurring during and between these modes including out-of-duct evaporation, pulsating droplets, temporary and eventually lasting crevice filling, and individual drop-to-film spreading. In all, sweat evaporation is an impactful area that our results show is ripe for exploration, which can be achieved quantitatively using the introduced platform.
Collapse
Affiliation(s)
- Ankush K. Jaiswal
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA
| | - Cibin T. Jose
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rajesh Ramesh
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Vinay K. Nanani
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Kambiz Sadeghi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA
| | - Ankit Joshi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA
| | - Krishna Kompally
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Gokul Pathikonda
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Heather N. Emady
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Bhaumik Bheda
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Stavros A. Kavouras
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
16
|
Badr RGM, Hauer L, Vollmer D, Schmid F. Dynamics of Droplets Moving on Lubricated Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12368-12380. [PMID: 38834186 PMCID: PMC11192036 DOI: 10.1021/acs.langmuir.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Understanding the dynamics of drops on polymer-coated surfaces is crucial for optimizing applications such as self-cleaning materials or microfluidic devices. While the static and dynamic properties of deposited drops have been well characterized, a microscopic understanding of the underlying dynamics is missing. In particular, it is unclear how drop dynamics depends on the amount of uncross-linked chains in the brush, because experimental techniques fail to quantify those. Here we use coarse-grained simulations to study droplets moving on a lubricated polymer brush substrate under the influence of an external body force. The simulation model is based on the many body dissipative particle dynamics (MDPD) method and designed to mimic a system of water droplets on poly(dimethylsiloxane) (PDMS) brushes with chemically identical PDMS lubricant. In agreement with experiments, we find a sublinear power law dependence between the external force F and the droplet velocity v, F ∝ vα with α < 1; however, the exponents differ (α ∼ 0.6-0.7 in simulations versus α ∼ 0.25 in experiments). With increasing velocity, the droplets elongate and the receding contact angle decreases, whereas the advancing contact angle remains roughly constant. Analyzing the flow profiles inside the droplet reveals that the droplets do not slide but roll, with vanishing slip at the substrate surface. Surprisingly, adding lubricant has very little effect on the effective friction force between the droplet and the substrate, even though it has a pronounced effect on the size and structure of the wetting ridge, especially above the cloaking transition.
Collapse
Affiliation(s)
- Rodrique G. M. Badr
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 7-9, D-55099 Mainz, Germany
| | - Lukas Hauer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Doris Vollmer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Friederike Schmid
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 7-9, D-55099 Mainz, Germany
| |
Collapse
|
17
|
Wei W, Wang Z, Wang B, Pang W, Yang Q, Duan X. Concentration of Microparticles/Cells Based on an Ultra-Fast Centrifuge Virtual Tunnel Driven by a Novel Lamb Wave Resonator Array. BIOSENSORS 2024; 14:280. [PMID: 38920584 PMCID: PMC11202289 DOI: 10.3390/bios14060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
The µTAS/LOC, a highly integrated microsystem, consolidates multiple bioanalytical functions within a single chip, enhancing efficiency and precision in bioanalysis and biomedical operations. Microfluidic centrifugation, a key component of LOC devices, enables rapid capture and enrichment of tiny objects in samples, improving sensitivity and accuracy of detection and diagnosis. However, microfluidic systems face challenges due to viscosity dominance and difficulty in vortex formation. Acoustic-based centrifugation, particularly those using surface acoustic waves (SAWs), have shown promise in applications such as particle concentration, separation, and droplet mixing. However, challenges include accurate droplet placement, energy loss from off-axis positioning, and limited energy transfer from low-frequency SAW resonators, restricting centrifugal speed and sample volume. In this work, we introduce a novel ring array composed of eight Lamb wave resonators (LWRs), forming an Ultra-Fast Centrifuge Tunnel (UFCT) in a microfluidic system. The UFCT eliminates secondary vortices, concentrating energy in the main vortex and maximizing acoustic-to-streaming energy conversion. It enables ultra-fast centrifugation with a larger liquid capacity (50 μL), reduced power usage (50 mW) that is one order of magnitude smaller than existing devices, and greater linear speed (62 mm/s), surpassing the limitations of prior methods. We demonstrate successful high-fold enrichment of 2 μm and 10 μm particles and explore the UFCT's potential in tissue engineering by encapsulating cells in a hydrogel-based micro-organ with a ring structure, which is of great significance for building more complex manipulation platforms for particles and cells in a bio-compatible and contactless manner.
Collapse
Affiliation(s)
| | | | | | | | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China; (W.W.); (Z.W.); (B.W.); (W.P.)
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China; (W.W.); (Z.W.); (B.W.); (W.P.)
| |
Collapse
|
18
|
Iqbal R, Matsumoto A, Shen AQ, Sen AK. Understanding the Role of Loss Modulus of Viscoelastic Substrates in the Evaporation Dynamics of Sessile Drops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10035-10043. [PMID: 38687988 DOI: 10.1021/acs.langmuir.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Viscoelastic properties of soft substrates play a crucial role in the evaporation dynamics of sessile drops. Recent studies have revealed that the modification of the viscoelastic properties of substrates changes the dynamics of the three-phase contact line, consequently affecting the evaporation behavior of sessile drops. Notably, these modifications occur without any noticeable changes to the substrate's wetting characteristics or surface topography. However, the individual role of storage (G') and loss (G″) moduli of substrates on drop evaporation dynamics remains unexplored. In this study, we investigate the evaporation dynamics of water drops on two groups of poly(dimethylsiloxane)-based viscoelastic substrates possessing either identical G' with varying G″ or identical G″ with varying G'. Our study reveals that on a substrate with constant shear modulus (G'), a reduction of an order of magnitude in loss modulus shifts the evaporation process from the constant contact radius mode to the constant contact angle mode. We hypothesize that this observed shift in behavior stems from the varying viscoelastic dissipation influenced by the plateau modulus and characteristic relaxation time of polymer gels. Our hypothesis is further supported from the observation that the evaporation process persists on the substrate with constant loss modulus (G″). Our study advances the current understanding of drop evaporation on soft substrates that may find potential applications involving soft composites, biological entities, tissue engineering, and wearable electronics.
Collapse
Affiliation(s)
- Rameez Iqbal
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
- Micro-Nano-Biofluidics Unit, Indian Institute of Technology Madras, Chennai 600036, India
| | - Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Ashis K Sen
- Micro-Nano-Biofluidics Unit, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
19
|
Tiwari A, Lee SJ, Garg DK, Shin S, Thokchom AK. Characterizing the Microparticles Deposition Structure and its Photonic Nature in Surfactant-Laden Evaporating Colloidal Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8711-8720. [PMID: 38608175 DOI: 10.1021/acs.langmuir.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
This work presents a simple method to create photonic microstructures via the natural evaporation of surfactant-laden colloidal sessile droplets on a flat substrate. In the absence of dissolved surfactant, the evaporating colloidal droplet forms a well-known coffee ring deposition. In contrast, the presence of surfactant leads to the formation of multiple ring structures due to the repetitive pinning-depinning behavior of the droplet contact line (CL). It is found that the multiring structure shows vibrant iridescent structural colors while the coffee ring lacks a photonic nature. This difference in the structural color for the presence and absence of the surfactant is found to be dependent on the arrangement of the particles in the deposition structure. The particle arrangement in the multirings is monolayered and well-ordered. The ordering of the particles is strongly influenced by the particle dynamics, contact angle (CA), and CL dynamics of the evaporating colloidal solution droplet. Furthermore, the iridescent nature of the multiring deposition is demonstrated and explained. The dependence of the multiring deposition structure on the concentration of the dissolved surfactant and the suspended particles is also studied. The findings demonstrate that an intermediate surfactant concentration is desirable for the formation of a multiring structure. Further, the pinning-depinning CL dynamics that causes the formation of the multiring deposition structure is discussed. Finally, we demonstrate the applicability of the approach to smaller droplet volumes.
Collapse
Affiliation(s)
- Appurva Tiwari
- Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida 201314, India
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, South Korea
| | - Dhiraj Kumar Garg
- Intencity Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida 201314, India
| | - Sehyun Shin
- Department of Mechanical Engineering, Korea University, Anam Dong, Seoul 02841, South Korea
| | - Ashish Kumar Thokchom
- Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida 201314, India
| |
Collapse
|
20
|
Josyula T, Kumar Malla L, Thomas TM, Kalichetty SS, Sinha Mahapatra P, Pattamatta A. Fundamentals and Applications of Surface Wetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8293-8326. [PMID: 38587490 DOI: 10.1021/acs.langmuir.3c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In an era defined by an insatiable thirst for sustainable energy solutions, responsible water management, and cutting-edge lab-on-a-chip diagnostics, surface wettability plays a pivotal role in these fields. The seamless integration of fundamental research and the following demonstration of applications on these groundbreaking technologies hinges on manipulating fluid through surface wettability, significantly optimizing performance, enhancing efficiency, and advancing overall sustainability. This Review explores the behavior of liquids when they engage with engineered surfaces, delving into the far-reaching implications of these interactions in various applications. Specifically, we explore surface wetting, dissecting it into three distinctive facets. First, we delve into the fundamental principles that underpin surface wetting. Next, we navigate the intricate liquid-surface interactions, unraveling the complex interplay of various fluid dynamics, as well as heat- and mass-transport mechanisms. Finally, we report on the practical realm, where we scrutinize the myriad applications of these principles in everyday processes and real-world scenarios.
Collapse
Affiliation(s)
- Tejaswi Josyula
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Laxman Kumar Malla
- School of Mechanical Sciences, Odisha University of Technology and Research, Bhubaneswar 751029, India
| | - Tibin M Thomas
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Pallab Sinha Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arvind Pattamatta
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
21
|
Zhu Z, Zhu J, Chang C, Qi C, Zhu Z, Zhao H, Zhang D, Zeng XC, Wang C. Tunable Surface Wettability via Terahertz Electrowave Controlled Vicinal Subnanoscale Water Layer. NANO LETTERS 2024; 24:3243-3248. [PMID: 38427592 DOI: 10.1021/acs.nanolett.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Achieving timely, reversible, and long-range remote tunability over surface wettability is highly demanded across diverse fields, including nanofluidic systems, drug delivery, and heterogeneous catalysis. Herein, using molecular dynamic simulations, we show, for the first time, a theoretical design of electrowetting to achieve remotely controllable surface wettability via using a terahertz wave. The key idea driving the design is the unique terahertz collective vibration identified in the vicinal subnanoscale water layer, which is absent in bulk water, enabling efficient energy transfer from the terahertz wave to the rotational motion of the vicinal subnanoscale water layer. Consequently, a frequency-specific alternating terahertz electric field near the critical strength can significantly affect the local hydrogen-bonding network of the contact water layer on the solid surface, thereby achieving tunable surface wettability.
Collapse
Affiliation(s)
- Zhi Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junquan Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics, Peking University, Beijing 100871, China
| | - Chonghai Qi
- School of Physical and Intelligent Engineering, Jining University, Qufu 273155, China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chunlei Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
22
|
Zhong X, Xie S, Guo Z. The Challenge of Superhydrophobicity: Environmentally Facilitated Cassie-Wenzel Transitions and Structural Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305961. [PMID: 38145324 PMCID: PMC10933658 DOI: 10.1002/advs.202305961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Indexed: 12/26/2023]
Abstract
Superhydrophobic materials can be used in various fields to optimize production and life due to their unique surface wetting properties. However, under certain pressure and perturbation conditions, the droplets deposited on superhydrophobic materials are prone to change from Cassie state to Wenzel state, which limits the practical applications of the materials. In recent years, a large number of works have investigated the transition behavior, transition mechanism, and influencing factors of the wetting transition that occurs when a superhydrophobic surface is under a series of external environments. Based on these works, in this paper, the phenomenon and kinetic behavior of the destruction of the Cassie state and the mechanism of the wetting transition are systematically summarized under external conditions that promote the wetting transition on the material surface, including pressure, impact, evaporation, vibration, and electric wetting. In addition, superhydrophobic surface morphology has been shown to directly affect the duration of the Cassie state. Based on the published work the effects of specific morphology on the Cassie state, including structural size, structural shape, and structural level, are summarized in this paper from theoretical analyses and experimental data.
Collapse
Affiliation(s)
- Xin Zhong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei UniversityWuhan430062China
| | - Shangzhen Xie
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei UniversityWuhan430062China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei UniversityWuhan430062China
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| |
Collapse
|
23
|
Wray AW, Moore MR. High-order asymptotic methods provide accurate, analytic solutions to intractable potential problems. Sci Rep 2024; 14:4225. [PMID: 38378713 PMCID: PMC10879137 DOI: 10.1038/s41598-024-54377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
The classical problem of determining the density and capacity of arrays of potential sources is studied. This corresponds to a wide variety of physical problems such as electrostatic capacitance, stress in elastostatics and the evaporation of fluid droplets. An asymptotic solution is derived that is shown to give excellent accuracy for arbitrary arrays of sources with non-circular footprints, including polygonal footprints. The solution is extensively validated against both experimental and numerical results. We illustrate the power of the solution by showcasing a variety of newly accessible classical problems that may be solved in a rapid, accurate manner.
Collapse
Affiliation(s)
- Alexander W Wray
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, UK.
| | - Madeleine R Moore
- Department of Mathematics, School of Natural Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| |
Collapse
|
24
|
Krishna Mani S, Al-Tooqi S, Song J, Sapre A, Zarzar LD, Sen A. Dynamic Oscillation and Motion of Oil-in-Water Emulsion Droplets. Angew Chem Int Ed Engl 2024; 63:e202316242. [PMID: 37939352 DOI: 10.1002/anie.202316242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
The interplay of interfacial tensions on droplets results in a range of self-powered motions that mimic those of living systems and serve as a tunable model to understand their complex non-equilibrium behavior. Spontaneous shape deformations and oscillations are crucial features observed in nature but difficult to incorporate in synthetic artificial systems. Here, we report sessile oil-in-water emulsions that exhibit rapid oscillating behavior. The oscillations depend on the nature and concentration of the surfactant, the chemical composition of the oil, and the wettability of the solid substrate. The rapid changes in the contact angle per oscillation are observed using side-view optical microscopy. We propose that the changes in the interfacial tension of the oil droplets is due to the partitioning of the surfactant into the oil phase and the movement of self-emulsified oil out of the parent droplets giving rise to the rhythmic variation in droplet contact-line. The ability to control and understand droplet oscillation can help model similar oscillations in out-of-equilibrium systems in nature and reproduce biomimetic behavior in artificial systems for various applications, such as microfluidic lab-on-a-chip and adaptive materials.
Collapse
Affiliation(s)
- Sanjana Krishna Mani
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sulaiman Al-Tooqi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aditya Sapre
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Material Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
Liu D, Liu R, Cao L, Wang L, Saeed S, Wang Z, Bryanston-Cross P. Superhydrophobic Antifrosting 7075 Aluminum Alloy Surface with Stable Cassie-Baxter State Fabricated through Direct Laser Interference Lithography and Hydrothermal Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:950-959. [PMID: 38110298 DOI: 10.1021/acs.langmuir.3c03144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Frost formation and accumulation can have catastrophic effects on a wide range of industrial activities. Hence, a dual-scale surface with a stable Cassie-Baxter state is developed to mitigate the frosting problem by utilizing direct laser interference lithography assisted with hydrothermal treatment. The high Laplace pressure tolerance under the evaporation stimulus and prolonged Cassie-Baxter state maintenance under the condensation stimulus demonstrate the stable Cassie-Baxter state. The dual-scale surface exhibits a lengthy frost-delaying time of up to 5277 s at -7 °C due to the stable Cassie-Baxter state. The self-removal of frost is achieved by promoting the mobility of frost melts driven by the released interfacial energy. In addition, the dense flocculent frost layer is observed on the single-scale micro surface, whereas the sparse pearl-shaped frost layer with many voids is obtained on the dual-scale surface. This work will aid in understanding the frosting process on various-scale superhydrophobic surfaces and in the design of antifrosting surfaces.
Collapse
Affiliation(s)
- Dongdong Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Ri Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Liang Cao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Lu Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Sadaf Saeed
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, U.K
| | | |
Collapse
|
26
|
Song T, Jiang Z, Man X, Shi W. Joint Experimental and Theoretical Study on Deposition Morphologies in Polymer Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:860-870. [PMID: 38109327 DOI: 10.1021/acs.langmuir.3c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Although past experimental and theoretical research has made substantial progress in understanding evaporation behaviors in various suspensions, the fundamental mechanism for polymer sessile droplets is still lacking. One critical effect is the molecular weight on the evaporation behaviors. Here, systematic experiments are carried out to investigate the evaporation behavior of polymer droplets under the effects of polymer concentration, evaporation rate, and especially molecular weight. We obtain polymer films with various morphologies with molecular weights ranging from 2 orders of magnitude to 4 orders of magnitude and polymer concentration across 4 orders of magnitude. We further develop a theoretical model based on the Onsager principle to explain the evaporation mechanism from a dynamic perspective. Analysis indicates that increasing molecular weight or polymer concentration enhances the contact angle hysteresis and slows down the evaporation, resulting in the transition from multiring to coffee ring and eventually to uniform films. The findings offer a guideline for achieving the desired deposition patterns via droplet processing techniques.
Collapse
Affiliation(s)
- Tiantian Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Tianjin Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zechao Jiang
- School of Physics, Beihang University, Beijing 100191, China
| | - Xingkun Man
- School of Physics, Beihang University, Beijing 100191, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Tianjin Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
27
|
Sun J, Zhang L, Gong S, Chen J, Guo H. Mechano-Driven Tribo-Electrophoresis Enabled Human-Droplet Interaction in 3D Space. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305578. [PMID: 37477978 DOI: 10.1002/adma.202305578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Electronically controlled droplet manipulation has widespread applications in biochemistry, life sciences, and industry. However, current technologies such as electrowetting, electrostatics, and surface charge printing rely on complex electrode arrays and external power supplies, leading to inefficient manipulation. In light of these limitations, a novel method is proposed, which leverages tribo-electrophoresis (TEP) to pipette in an oil medium, thereby enabling human-droplet interactions to be constructed with greater efficiency. The approach involves the rational design of a triboelectric nanogenerator-electrostatic tweezer that generates an electric field to charge the droplet and improves the maneuverability of the charged droplet, including aligned/non-aligned pipetting and stable transport in the clamped state, which can be accomplished solely by hand motion. The TEP method not only provides droplets with freedom to move in three dimensions but also offers a feasibility case for chemical reactions in the liquid phase and non-invasive sample extraction. This breakthrough establishes a cornerstone for human-droplet interactions capitalized on triboelectric nanogenerators, opening new avenues for research in droplet manipulation.
Collapse
Affiliation(s)
- Jianfeng Sun
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, China
| | - Lingjun Zhang
- Department of Physics, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Siqi Gong
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, 400044, China
| | - Jie Chen
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Hengyu Guo
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
28
|
Ma H, Chen C, Bao J, Zhao Q, Jiang Y, Zhang Z, Tao H, Jiang Y, Geng X, Lu X, Zhu N. Portable Electrochemical Sensor for Micromotor Speed Monitoring. ACS Sens 2023; 8:3804-3811. [PMID: 37708345 DOI: 10.1021/acssensors.3c01253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Autonomous movement promotes practical applications of micromotors. Understanding the moving speeds is a crucial step in micromotor studies. The current analysis method relies on an expensive optical microscope, which is limited to laboratory settings. Herein, we have developed a lightweight (0.15 g), portable (2.0 × 3.5 cm2), and low-cost (approximately $0.26) micromotor sensor (μ-Motor sensor), composed of water-sensitive materials for micromotor speed monitoring. Moving micromotors induce fluid flow, enhancing the evaporation rate of the liquid medium. Consequently, a high correlation between motor speed and water molecule concentration above the moving medium has been established. The μ-Motor sensor enables a real-time readout of the moving speed in various settings, with high accuracy (≥95% in the lab and ≥90% in field studies at a local beach). The μ-Motor sensor opens up a new way for detecting micro/nanomachine movements, illuminating future applications of micro/nanorobotics for diverse scenarios.
Collapse
Affiliation(s)
- Hongting Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chuanrui Chen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jinhui Bao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qian Zhao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhouxiaolong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Huannuo Tao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yue Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaodong Geng
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Nan Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
29
|
Zhou F, Liang D, Liu S, Guo Z, Wang M, Zhou G. Water-Based Additive-Free Chromic Inks for Printing of Flexible Photochromics and Electrochromics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49418-49426. [PMID: 37844265 DOI: 10.1021/acsami.3c09595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Digital inkjet printing has become one of the most convenient and efficient technologies for coating chromic materials on flexible substrates with complicated patterns. However, the development of water-based, additive-free chromic inks for inkjet printing still remains a challenge. Herein, three ammonium-functionalized colorless viologen derivatives AV, APV, and AQV with excellent water solubilities are utilized as chromes in the chromic inks due to their excellent photochromic and electrochromic properties. Water, ethanol, and ethylene glycol are selected as cosolvents, and their contents in this ternary solvent system have been optimized to achieve comprehensive rheological properties. With the H2O:EtOH:EG weight ratio of 8:1:7, the chromic ink based on AV realizes a viscosity of 4.69 mPa·s, a surface tension of 45.13 mN/m, and a Z value of 3.87. Without adding any additive, the as-prepared chromic inks can be printed on flexible substrates, such as paper and poly(ethylene terephthalate) (PET) films, by a conventional inkjet printer with inherent high resolutions. The printed patterns are initially invisible due to the colorless characteristics of the chromic inks. Interestingly, the printed films are responsive to both light and electric stimuli. Upon irradiation by UV light, a series of sentences with font sizes from 5 to 12 points and four quick response codes with different lattice resolutions clearly appear on the printed paper. Meanwhile, after printing on an indium tin oxide-coated PET substrate, electrochromic devices (ECDs) can be facilely fabricated by covering a hydrogel electrolyte on the printed films. Upon application of different potentials, the assembled ECDs exhibit "Peking Opera facial makeup" patterns with different colors. Therefore, the developed water-based additive-free chromic inks can be utilized for information display and encryption applications.
Collapse
Affiliation(s)
- Fan Zhou
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2205 Songhu Road, Shanghai 200438, P.R. China
| | - Dingli Liang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2205 Songhu Road, Shanghai 200438, P.R. China
| | - Si Liu
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2205 Songhu Road, Shanghai 200438, P.R. China
| | - Zeying Guo
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2205 Songhu Road, Shanghai 200438, P.R. China
| | - Min Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2205 Songhu Road, Shanghai 200438, P.R. China
| | - Gang Zhou
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2205 Songhu Road, Shanghai 200438, P.R. China
| |
Collapse
|
30
|
Yang L, Pahlavan AA, Stone HA, Bain CD. Evaporation of alcohol droplets on surfaces in moist air. Proc Natl Acad Sci U S A 2023; 120:e2302653120. [PMID: 37695912 PMCID: PMC10515150 DOI: 10.1073/pnas.2302653120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023] Open
Abstract
Droplets of alcohol-based formulations are common in applications from sanitizing sprays to printing inks. However, our understanding of the drying dynamics of these droplets on surfaces and the influence of ambient humidity is still very limited. Here, we report the drying dynamics of picoliter droplets of isopropyl alcohol deposited on a surface under controlled humidity. Condensation of water vapor in the ambient environment onto alcohol droplets leads to unexpectedly complex drying behavior. As relative humidity (RH) increases, we observed a variety of phenomena including enhanced spreading, nonmonotonic changes in the drying time, the formation of pancake-like shapes that suppress the coffee-ring effect, and the formation of water-rich films around an alcohol-rich drop. We developed a lubrication model that accounts for the coupling between the flow field within the drop, the shape of the drop, and the vapor concentration field. The model reproduces many of the experimentally observed morphological and dynamic features, revealing the presence of unusually large spatial compositional gradients within the evaporating droplet and surface-tension-gradient-driven flows arising from water condensation/evaporation at the surface of the droplet. One unexpected feature from the simulation is that water can evaporate and condense concurrently in different parts of the drop, providing fundamental insights that simpler models based on average fluxes lack. We further observed rim instabilities at higher RH that are well-described by a model based on the Rayleigh-Plateau instability. Our findings have implications for the testing and use of alcohol-based disinfectant sprays and printing inks.
Collapse
Affiliation(s)
- Lisong Yang
- Department of Chemistry, Durham University, DurhamDH1 3LE, UK
| | - Amir A. Pahlavan
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT06511
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Colin D. Bain
- Department of Chemistry, Durham University, DurhamDH1 3LE, UK
| |
Collapse
|
31
|
Wang J, Zhang M, Wang J, Chen R. Coupling effects of human serum albumin and sodium chloride on biological desiccation patterns. Heliyon 2023; 9:e19970. [PMID: 37810140 PMCID: PMC10559562 DOI: 10.1016/j.heliyon.2023.e19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Desiccation patterns of plasma sessile drops have attracted increasing attention, not only because of the fantastic underlying physics, but also due to their potential of being health diagnostic tools. However, plasma is a multicomponent system, which contains macromolecular proteins and inorganic salts; these components have complicated interactions to define pattern morphologies. Unfortunately, mechanisms of coupling effects of main components on pattern morphologies are still not clear, thus limiting their diagnostic applications. Here we show the coupling effects of human serum albumin (HSA) and sodium chloride (NaCl) on plasma desiccation patterns. Our experiments indicate that NaCl enhances the "coffee ring" effect of HSA to promote its aggregation at the peripheral region and narrows down its aggregation area; this would influence the distribution of internal stresses, resulting in a larger number of radial cracks, with a larger width but a shorter length, than cracks in pure HSA. In the meantime, HSA experiences the gelation process that propagates from the peripheral region to central region and causes the spatiotemporal deviation in the degree of solidification, which induces a higher concentration of NaCl in the central region, thus leading to the formation of crystal patterns. Our further experiments demonstrate that these characteristic patterns are correlated to the variation in the concentration of NaCl, which can be caused by hyponatremia and hypernatremia in real biofluids. Our findings not only provide a new mechanistic insight into biological desiccation patterns, but also bridge the gap between the understanding and diagnostic applications of these desiccation patterns.
Collapse
Affiliation(s)
- Jihong Wang
- School of Physics and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhang
- School of Physics and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, China
| | - Jun Wang
- School of Physics and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, China
| | - Ruoyang Chen
- School of Physics and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, China
| |
Collapse
|
32
|
Hariharan S, Thampi SP, Basavaraj MG. Kinetics of evaporation of colloidal dispersion drops on inclined surfaces. SOFT MATTER 2023; 19:6213-6223. [PMID: 37382057 DOI: 10.1039/d3sm00375b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Evaporation of colloidal dispersion drops leaves a deposit pattern where more particles are accumulated at the edge, popularly known as the coffee-ring effect. Such patterns formed from dried sessile drops are azimuthally symmetric. When the substrate is inclined, the symmetry of the patterns is altered due to the influence of gravity. This is reflected in the changes in (i) pinning/depinning dynamics of the drop, (ii) the strength of the evaporation-driven flows, and (iii) ultimately, the lifetime of the drop. We present a systematic investigation of the kinetics of evaporation of particle-laden drops on hydrophilic inclined solid substrates. The angle of inclination of the substrate (ϕ) is varied from 0° to 90°. The temporal analysis of the drop shape profile is carried out to unearth the contribution of different processes to kinetics of evaporation of drops on inclined surfaces. The influence of particle concentration, drop volume, and angle of inclination on the kinetics of evaporation and the resulting deposit patterns are discussed.
Collapse
Affiliation(s)
- Sankar Hariharan
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Sumesh P Thampi
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
33
|
Shi W, Xia Z, Zong Y, Wang R, Liu J, Lu C. Dynamic Control over Hierarchically Dendritic Architectures of Simple Heterogenous Monomers by Living Supramolecular Assembly. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390488 DOI: 10.1021/acsami.3c05982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The successful preparation of supramolecular block copolymers (SBCPs) by living supramolecular assembly technology requires two kinetic systems in which both the seed (nucleus) and heterogenous monomer providers are in non-equilibrium. However, employing simple monomers to construct the SBCPs via this technology is almost impossible because the low spontaneous nucleation barrier of simple molecules prevents the formation of kinetic states. Here, with the help of confinement from layered double hydroxide (LDH), various simple monomers successfully form living supramolecular co-assemblies (LSCA). LDH overcomes a considerable energy barrier to obtain living seeds to support the growth of the inactivated second monomer. The ordered LDH topology is sequentially mapped to the seed, second monomer, and binding sites. Thus, the multidirectional binding sites are endowed with the ability to branch, making the branch length of dendritic LSCA reach its maximum value of 3.5 cm so far. The strategy of universality will guide exploration into the development of multi-function and multi-topology advanced supramolecular co-assemblies.
Collapse
Affiliation(s)
- Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
| | - Zhaojun Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
| | - Yingtong Zong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
| | - Ruixing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
| | - Jing Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029 Beijing, P. R. China
| |
Collapse
|
34
|
Üçüncüoğlu R, Erbil HY. Water Drop Evaporation on Slippery Liquid-Infused Porous Surfaces (SLIPS): Effect of Lubricant Thickness, Viscosity, Ridge Height, and Pattern Geometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6514-6528. [PMID: 37103333 PMCID: PMC10173461 DOI: 10.1021/acs.langmuir.3c00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Sessile drop evaporation and condensation on slippery liquid-infused porous surfaces (SLIPS) is crucial for many applications. However, its modeling is complex since the infused lubricant forms a wetting ridge around the drop close to the contact line, which partially blocks the free surface area and decreases the drop evaporation rate. Although a good model was available after 2015, the effects of initial lubricant heights (hoil)i above the pattern, and the corresponding initial ridge heights (hr)i, lubricant viscosity, and solid pattern type were not well studied. This work fills this gap where water drop evaporations from SLIPS, which are obtained by infusing silicone oils (20 and 350 cSt) onto hydrophobized Si wafer micropatterns having both cylindrical and square prism pillars, are investigated under constant relative humidity and temperature conditions. With the increase of (hoil)i, the corresponding (hr)i increased almost linearly on lower parts of the drops for all SLIPS samples, resulting in slower drop evaporation rates. A novel diffusion-limited evaporation equation from SLIPS is derived depending on the available free liquid-air interfacial area, ALV, which represents the unblocked part of the total drop surface. The calculation of the diffusion constant, D, of water vapor in air from (dALV/dt) values obtained by drop evaporation was successful up to a threshold value of (hoil)i = 8 μm within ±7%, and large deviations (13-27%) were obtained when (hoil)i > 8 μm, possibly due to the formation of thin silicone oil cloaking layers on drop surfaces, which partially blocked evaporation. The increase of infused silicone oil viscosity caused only a slight increase (12-17%) in drop lifetimes. The effects of the geometry and size of the pillars on the drop evaporation rates were minimal. These findings may help optimize the lubricant oil layer thickness and viscosity used for SLIPS to achieve low operational costs in the future.
Collapse
Affiliation(s)
- Rana Üçüncüoğlu
- Department of Chemical Engineering, Gebze Technical University, Gebze, 41400 Kocaeli, Türkiye
| | - H. Yildirim Erbil
- Department of Chemical Engineering, Gebze Technical University, Gebze, 41400 Kocaeli, Türkiye
| |
Collapse
|
35
|
Beigtan M, Hwang Y, Weon BM. Inhibiting Cracks in Latte Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5275-5283. [PMID: 37026986 DOI: 10.1021/acs.langmuir.2c03183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Latte is a mixture of coffee and milk and a model of complex fluids containing biomolecules, usually leaving complex deposit patterns after droplet evaporation. Despite the universality and applicability of biofluids, their evaporation and deposition dynamics are not fully understood and controllable because of the complexity of their components. Here we investigate latte droplet evaporation and deposition dynamics, primarily the crack development and inhibition in droplet deposit patterns. With regard to a mixture of milk and coffee, we find that the surfactant-like nature of milk and intermolecular interactions between coffee particles and milk bioparticles are responsible for achieving uniform crack-free deposits. This finding improves our understanding of pattern formation from evaporating droplets with complex biofluids, offering a clue to applications of bioinks with both printability and biocompatibility.
Collapse
Affiliation(s)
- Mohadese Beigtan
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea
| | - Yohan Hwang
- College of General Education, Seoul Women's University, Seoul 01797, South Korea
| | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
36
|
Schubotz S, Besford QA, Nazari S, Uhlmann P, Bittrich E, Sommer JU, Auernhammer GK. Influence of the Atmosphere on the Wettability of Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4872-4880. [PMID: 36995334 DOI: 10.1021/acs.langmuir.2c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Polymer brushes, i.e., end-tethered polymer chains on substrates, are sensitive to adaptation, e.g., swelling, adsorption, and reorientation of the surface molecules. This adaptation can originate from a contacting liquid or atmosphere for partially wetted substrates. The macroscopic contact angle of the aqueous drop can depend on both adaptation mechanisms. We analyze how the atmosphere around an aqueous droplet determines the resulting contact angle of the wetting droplet on polymer brush surfaces. Poly(N-isopropylacrylamide) (PNiPAAm)-based brushes are used due to their exceptional sensitivity to solvation and liquid mixture composition. We develop a method that reliably measures wetting properties when the drop and the surrounding atmosphere are not in equilibrium, e.g., when evaporation and condensation tend to contaminate the liquid of the drop and the atmosphere. For this purpose, we use a coaxial needle in the droplet, which continuously exchanges the wetting liquid, and in addition, we constantly exchange the almost saturated atmosphere. Depending on the wetting history, PNiPAAm can be prepared in two states, state A with a large water contact angle (∼65°) and state B with a small water contact angle (∼25°). With the coaxial needle, we can demonstrate that the water contact angle of a sample in state B significantly increases by ∼30° when a water-free atmosphere is almost saturated with ethanol, compared to an ethanol-free atmosphere at 50% relative humidity. For a sample in state A, the relative humidity has little influence on the water contact angle.
Collapse
Affiliation(s)
- Simon Schubotz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Technische Universität Dresden, Helmholtztraße 10, Dresden 01062, Germany
| | - Quinn A Besford
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Saghar Nazari
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Technische Universität Dresden, Helmholtztraße 10, Dresden 01062, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, Dresden 01069, Germany
| | - Günter K Auernhammer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| |
Collapse
|
37
|
Kind J, Stein M, Gambaryan-Roisman T, Stephan P, Zankel TL, Thiele CM. Construction of an active humidity regulation setup for NMR/MRI-Observation and simulation of the controlled evaporation of sessile water droplets. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107389. [PMID: 36731352 DOI: 10.1016/j.jmr.2023.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Controlling and improving processes like for example the production of organic semiconductors via printing depends on understanding the interplay of wetting and evaporation of complex fluids. Therefore, examination of the time dependent composition of complex fluid droplets during wetting or evaporation is of interest. The evaporation rate of sessile droplets containing largely water depends on the vapor pressures of the individual components and on the humidity (or partial pressure) of the surrounding gas phase. Hence, for a complete picture of an evaporation process and the comparability of the results of different measurements, it is essential to measure and control the humidity and temperature in the measurement compartment. Accordingly, climate chambers are available in different scales to fit a variety of techniques like contact angle goniometry to obtain results in a controlled atmosphere. We recently reported the application of MRI (Magnetic Resonance Imaging) and spatially resolved NMR (Nuclear Magnetic Resonance) spectroscopy for the examination of the evaporation of sessile droplets on surfaces in 10 mm NMR tubes. These are considered to be closed compartments. Here, we present an apparatus to a) measure and b) control the relative humidity within the sample compartment of the NMR setup by introducing preconditioned gas into the NMR tube. We monitored the evaporation of water droplets using RARE images and compared the volume decay with a) a simple diffusive evaporation model and b) with detailed FEM (finite element numerical model) simulations using COMSOL for validation. We find three evaporation regimes depending on the flow rate as well as on the distance of the gas outlet and the evaporating droplet. In one of the sample configurations tested the evaporation takes place in such a way that it can be described with the help of the simple diffusive model without convection. Thus, the presented approach opens comparative measurements with other methods as well as the observation of droplet evaporation in very dry or very humid environments with and without the influence of convection. Finally, using PRESS spectra, it is shown that the evaporation rate of water from a water/DMSO droplet can be controlled. This shows how the setup presented here can be used to study the evaporation of droplets of more complex mixtures.
Collapse
Affiliation(s)
- J Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, D-64287 Darmstadt, Germany.
| | - M Stein
- Institut für Technische Thermodynamik, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, D-64287 Darmstadt, Germany
| | - T Gambaryan-Roisman
- Institut für Technische Thermodynamik, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, D-64287 Darmstadt, Germany
| | - P Stephan
- Institut für Technische Thermodynamik, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, D-64287 Darmstadt, Germany
| | - T L Zankel
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, D-64287 Darmstadt, Germany
| | - C M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, D-64287 Darmstadt, Germany
| |
Collapse
|
38
|
Dynamic wetting of various liquids: Theoretical models, experiments, simulations and applications. Adv Colloid Interface Sci 2023; 313:102861. [PMID: 36842344 DOI: 10.1016/j.cis.2023.102861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Dynamic wetting is a ubiquitous phenomenon and frequently observed in our daily life, as exemplified by the famous lotus effect. It is also an interfacial process of upmost importance involving many cutting-edge applications and has hence received significantly increasing academic and industrial attention for several decades. However, we are still far away to completely understand and predict wetting dynamics for a given system due to the complexity of this dynamic process. The physics of moving contact lines is mainly ascribed to the full coupling with the solid surface on which the liquids contact, the atmosphere surrounding the liquids, and the physico-chemical characteristics of the liquids involved (small-molecule liquids, metal liquids, polymer liquids, and simulated liquids). Therefore, to deepen the understanding and efficiently harness wetting dynamics, we propose to review the major advances in the available literature. After an introduction providing a concise and general background on dynamic wetting, the main theories are presented and critically compared. Next, the dynamic wetting of various liquids ranging from small-molecule liquids to simulated liquids are systematically summarized, in which the new physical concepts (such as surface segregation, contact line fluctuations, etc.) are particularly highlighted. Subsequently, the related emerging applications are briefly presented in this review. Finally, some tentative suggestions and challenges are proposed with the aim to guide future developments.
Collapse
|
39
|
Shamim JA, Takahashi Y, Goswami A, Shaukat N, Hsu WL, Choi J, Daiguji H. Suppression of wetting transition on evaporative fakir droplets by using slippery superhydrophobic surfaces with low depinning force. Sci Rep 2023; 13:2368. [PMID: 36759577 PMCID: PMC9911698 DOI: 10.1038/s41598-023-29163-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
This study experimentally investigated the evaporation and wetting transition behavior of fakir droplets on five different microstructured surfaces. Diamond-like carbon was introduced as the substrate, and the influence of varying the width, height, and pitch of the micropillars was assessed. The experimental results showed that the interfacial properties of the surfaces change the evaporation behavior and the starting point of the wetting transition. An important result of this study is the demonstration of a slippery superhydrophobic surface with low depinning force that suppresses the transition from the Cassie-Baxter state to the Wenzel state for microdroplets less than 0.37 mm in diameter, without employing large pillar height or multiscale roughness. By selecting an appropriate pillar pitch and employing tapered micropillars with small pillar widths, the solid-liquid contact at the three-phase contact line was reduced and low depinning forces were obtained. The underlying mechanism by which slippery superhydrophobic surfaces suppress wetting transitions is also discussed. The accuracy of the theoretical models for predicting the critical transition parameters was assessed, and a numerical model was developed in the surface evolver to compute the penetration of the droplet bottom meniscus within the micropillars.
Collapse
Affiliation(s)
- Jubair A. Shamim
- grid.26999.3d0000 0001 2151 536XDepartment of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656 Japan
| | - Yukinari Takahashi
- grid.26999.3d0000 0001 2151 536XDepartment of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656 Japan
| | - Anjan Goswami
- grid.7445.20000 0001 2113 8111Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Nadeem Shaukat
- grid.420112.40000 0004 0607 7017Center for Mathematical Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650 Islamabad Pakistan
| | - Wei-Lun Hsu
- grid.26999.3d0000 0001 2151 536XDepartment of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656 Japan
| | - Junho Choi
- grid.26999.3d0000 0001 2151 536XDepartment of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656 Japan
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
40
|
Chen H, Hu H, Sun B, Zhao H, Qie Y, Luo Z, Pan Y, Chen W, Lin L, Yang K, Guo T, Li F. Dynamic Anti-Counterfeiting Labels with Enhanced Multi-Level Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2104-2111. [PMID: 36541836 DOI: 10.1021/acsami.2c17870] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Information encryption is an important means to improve the security of anti-counterfeiting labels. At present, it is still challenging to realize an anti-counterfeiting label with multi-function, high security factor, low production cost, and easy detection and identification. Herein, using inkjet and screen printing technology, we construct a multi-dimensional and multi-level dynamic optical anti-counterfeiting label based on instantaneously luminescent quantum dots and long afterglow phosphor, whose color and luminous intensity varied in response to time. Self-assembled quantum dot patterns with intrinsic fingerprint information endow the label with physical unclonable functions (PUFs), and the information encryption level of the label is significantly improved in view of the information variation in the temporal dimension. Furthermore, the convolutional residual neural networks are used to decode the massive information of PUFs, enabling fast and accurate identification of the anti-counterfeit labels.
Collapse
Affiliation(s)
- Hang Chen
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hailong Hu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Beichen Sun
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Haobing Zhao
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuan Qie
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhiqi Luo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Youjiang Pan
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Wei Chen
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lihua Lin
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Kaiyu Yang
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tailiang Guo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| |
Collapse
|
41
|
Active Loading of Pectin Hydrogels for Targeted Drug Delivery. Polymers (Basel) 2022; 15:polym15010092. [PMID: 36616442 PMCID: PMC9824191 DOI: 10.3390/polym15010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels provide a promising method for the targeted delivery of protein drugs. Loading the protein drug into the hydrogel free volume can be challenging due to limited quantities of the drug (e.g., growth factor) and complex physicochemical properties of the hydrogel. Here, we investigated both passive and active loading of the heteropolysaccharide hydrogel pectin. Passive loading of glass phase pectin films was evaluated by contact angles and fractional thickness of the pectin films. Four pectin sources demonstrated mean contact angles of 88° with water and 122° with pleural fluid (p < 0.05). Slow kinetics and evaporative losses precluded passive loading. In contrast, active loading of the translucent pectin films was evaluated with the colorimetric tracer methylene blue. Active loading parameters were systematically varied and recorded at 500 points/s. The distribution of the tracer was evaluated by image morphometry. Active loading of the tracer into the pectin films required the optimization of probe velocity, compression force, and contact time. We conclude that active loading using pectin-specific conditions is required for the efficient embedding of low viscosity liquids into pectin hydrogels.
Collapse
|
42
|
Gelderblom H, Diddens C, Marin A. Evaporation-driven liquid flow in sessile droplets. SOFT MATTER 2022; 18:8535-8553. [PMID: 36342336 PMCID: PMC9682619 DOI: 10.1039/d2sm00931e] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The evaporation of a sessile droplet spontaneously induces an internal capillary liquid flow. The surface-tension driven minimisation of surface area and/or surface-tension differences at the liquid-gas interface caused by evaporation-induced temperature or chemical gradients set the liquid into motion. This flow drags along suspended material and is one of the keys to control the material deposition in the stain that is left behind by a drying droplet. Applications of this principle range from the control of stain formation in the printing and coating industry, to the analysis of DNA, to forensic and medical research on blood stains, and to the use of evaporation-driven self-assembly for nanotechnology. Therefore, the evaporation of sessile droplets attracts an enormous interest from not only the fluid dynamics, but also the soft matter, chemistry, biology, engineering, nanotechnology and mathematics communities. As a consequence of this broad interest, knowledge on evaporation-driven flows in drying droplets has remained scattered among the different fields, leading to various misconceptions and misinterpretations. In this review we aim to unify these views, and reflect on the current understanding of evaporation-driven liquid flows in sessile droplets in the light of the most recent experimental and theoretical advances. In addition, we outline open questions and indicate promising directions for future research.
Collapse
Affiliation(s)
- Hanneke Gelderblom
- Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands.
- J.M. Burgers Center for Fluid Dynamics, The Netherlands
| | - Christian Diddens
- Physics of Fluids, University of Twente, The Netherlands.
- J.M. Burgers Center for Fluid Dynamics, The Netherlands
| | - Alvaro Marin
- Physics of Fluids, University of Twente, The Netherlands.
- J.M. Burgers Center for Fluid Dynamics, The Netherlands
| |
Collapse
|
43
|
Goy NA, Bruni N, Girot A, Delville JP, Delabre U. Thermal Marangoni trapping driven by laser absorption in evaporating droplets for particle deposition. SOFT MATTER 2022; 18:7949-7958. [PMID: 36226682 DOI: 10.1039/d2sm01019d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controlling the deposition of particles is of great importance in many applications. In this work, we study particle deposition driven by Marangoni flows, triggered by laser absorption inside an evaporating droplet. When the laser is turned on, thermal gradients are generated and produce a toroidal Marangoni flow that concentrates the particles around the laser beam and ultimately controls the final deposition. We experimentally characterize the radius of the Marangoni flows as a function of the laser parameters. Counter-intuitively, the radius of the Marangoni region appears to remain constant and is not proportional to the thickness of the drop which decreases due to evaporation. We develop a model to predict the size of the Marangoni region that combines evaporative flows and laser-induced Marangoni flows. The experimental data are in good agreement with the predictions, allowing us to estimate the particle overconcentration factor resulting from the laser heating effects. The addition of surfactants to the solution allows the coupling of solutal Marangoni flows with thermal ones to achieve a final micron-scale deposit located at the laser spot. These results pave the way for new methods with high tunability provided by spatio-temporal light control for surface patterning applications.
Collapse
Affiliation(s)
- N-A Goy
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
| | - N Bruni
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
| | - A Girot
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
| | - J-P Delville
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
| | - U Delabre
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
| |
Collapse
|
44
|
Hao H, Ruiz Pestana L, Qian J, Liu M, Xu Q, Head‐Gordon T. Chemical transformations and transport phenomena at interfaces. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongxia Hao
- Kenneth S. Pitzer Theory Center and Department of Chemistry University of California Berkeley California USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Luis Ruiz Pestana
- Department of Civil and Architectural Engineering University of Miami Coral Gables Florida USA
| | - Jin Qian
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Meili Liu
- Department of Civil and Architectural Engineering University of Miami Coral Gables Florida USA
| | - Qiang Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Teresa Head‐Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry University of California Berkeley California USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
- Department of Bioengineering and Chemical and Biomolecular Engineering University of California Berkeley California USA
| |
Collapse
|
45
|
Iqbal R, Matsumoto A, Carlson D, Peters KT, Funari R, Sen AK, Shen AQ. Evaporation driven smart patterning of microparticles on a rigid-soft composite substrate. J Colloid Interface Sci 2022; 623:927-937. [DOI: 10.1016/j.jcis.2022.05.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
46
|
Mailleur A, Pirat C, Simon G, Fulcrand R, Colombani J. Ring shells obtained from pure water drops evaporating on a soluble substrate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
May A, Hartmann J, Hardt S. Phase separation in evaporating all-aqueous sessile drops. SOFT MATTER 2022; 18:6313-6317. [PMID: 35993409 DOI: 10.1039/d2sm00613h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The phase transition and phase distribution in an all-aqueous sessile drop containing polyethylene glycol (PEG) and dextran is studied. Evaporation of water triggers the formation of dextran-rich droplets close to the contact line of the drop that subsequently migrate towards the drop center. The likely reason for the droplet migration is Marangoni convection due to stresses at the interface between the dextran-rich droplets and the surrounding liquid.
Collapse
Affiliation(s)
- Alexander May
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Nano-und Mikrofluidik, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.
| | - Johannes Hartmann
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Nano-und Mikrofluidik, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.
| | - Steffen Hardt
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Nano-und Mikrofluidik, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.
| |
Collapse
|
48
|
Sui J, Li J, Gu L, Schmidt CA, Zhang Z, Shao Y, Gazit E, Gilbert PUPA, Wang X. Orientation-controlled crystallization of γ-glycine films with enhanced piezoelectricity. J Mater Chem B 2022; 10:6958-6964. [PMID: 35971914 DOI: 10.1039/d2tb00997h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycine, the simplest amino acid, is considered a promising functional biomaterial owing to its excellent biocompatibility and strong out-of-plane piezoelectricity. Practical applications require glycine films to be manufactured with their strong piezoelectric polar 〈001〉 direction aligned with the film thickness. Based on the recently-developed solidification approach of a polyvinyl alcohol (PVA) and glycine aqueous solution, in this work, we demonstrate that the crystal orientation of the as-synthesized film is determined by the orientation of glycine crystal nuclei. By controlling the local nucleation kinetics via surface curvature tuning, we shifted the nucleation site from the edge to the middle of the liquid film, and thereby aligned the 〈001〉 direction vertically. As a result, the PVA-glycine-PVA sandwich film exhibits the highest aver-age piezoelectric coefficient d33 of 6.13 ± 1.13 pC N-1. This work demonstrates a promising kinetic approach to achieve crystallization and property control in a scalable biocrystal manufacturing process.
Collapse
Affiliation(s)
- Jiajie Sui
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | - Long Gu
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | - Yan Shao
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, and Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA.,Departments of Chemistry, Materials Science and Engineering, Geoscience, University of Wisconsin, Madison, WI 53706, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
49
|
Pereira D, Bierlich J, Kobelke J, Pereira V, Ferreira MS. Optical Fiber Sensor for Monitoring the Evaporation of Ethanol-Water Mixtures. SENSORS (BASEL, SWITZERLAND) 2022; 22:5498. [PMID: 35898002 PMCID: PMC9331179 DOI: 10.3390/s22155498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
An inline optical fiber sensor is proposed to monitor in real time the evaporation process of ethanol-water binary mixtures. The sensor presents two interferometers, a cladding modal interferometer (CMI) and a Mach-Zehnder interferometer (MZI). The CMI is used to acquire the variations in the external medium refractive index, presenting a maximum sensitivity of 387 nm/RIU, and to attain the variation in the sample concentration profile, while the MZI monitors temperature fluctuations. For comparison purposes, an image analysis is also conducted to obtain the droplet profile. The sensor proposed in this work is a promising alternative in applications where a rigorous measurement of volatile organic compound concentrations is required, and in the study of chemical and physical properties related to the evaporation process.
Collapse
Affiliation(s)
- Diana Pereira
- i3N & Department of Physics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal; (D.P.); (V.P.)
| | - Jörg Bierlich
- Leibniz Institute of Photonic Technology IPHT, Albert-Einstein-Str. 9, 07745 Jena, Germany; (J.B.); (J.K.)
| | - Jens Kobelke
- Leibniz Institute of Photonic Technology IPHT, Albert-Einstein-Str. 9, 07745 Jena, Germany; (J.B.); (J.K.)
| | - Vanda Pereira
- i3N & Department of Physics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal; (D.P.); (V.P.)
- ISOPlexis—Sustainable Agriculture and Food Technology Center, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Marta S. Ferreira
- i3N & Department of Physics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal; (D.P.); (V.P.)
| |
Collapse
|
50
|
Jeihanipour A, Lahann J. Deep-Learning-Assisted Stratification of Amyloid Beta Mutants Using Drying Droplet Patterns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110404. [PMID: 35405768 DOI: 10.1002/adma.202110404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The development of simple and accurate methods to predict mutations in proteins remains an unsolved challenge in modern biochemistry. It is discovered that critical information about primary and secondary peptide structures can be inferred from the stains left behind by their drying droplets. To analyze the complex stain patterns, deep-learning neuronal networks are challenged with polarized light microscopy images derived from the drying droplet deposits of a range of amyloid beta (1-42) (Aβ42 ) peptides. These peptides differ in a single amino acid residue and represent hereditary mutants of Alzheimer's disease. Stain patterns are not only reproducible but also result in comprehensive stratification of eight amyloid beta (Aβ) variants with predictive accuracies above 99%. Similarly, peptide stains of a range of distinct Aβ42 peptide conformations are identified with accuracies above 99%. The results suggest that a method as simple as drying a droplet of a peptide solution onto a solid surface may serve as an indicator of minute, yet structurally meaningful differences in peptides' primary and secondary structures. Scalable and accurate detection schemes for stratification of conformational and structural protein alterations are critically needed to unravel pathological signatures in many human diseases such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Azam Jeihanipour
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jörg Lahann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, Department of Chemical Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, and the Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|