1
|
Himmelbauer D, Müller F, Schweinzer C, Casas F, Pribanic B, Le Corre G, Thöny D, Trincado M, Grützmacher H. Selective dehydrogenation of ammonia borane to polycondensated BN rings catalysed by ruthenium olefin complexes. Chem Commun (Camb) 2024; 60:885-888. [PMID: 38165285 PMCID: PMC10795514 DOI: 10.1039/d3cc05709g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Dehydrogenation of ammonia borane to well-defined products is an important but challenging reaction. A dinuclear ruthenium complex with a Ru-Ru bond bearing a diazadiene (dad) unit and olefins as non-innocent ligands catalyzes the highly selective formation of conjugated polycondensed borazine oligomers (BxNxHy), predominantly B21N21H18, the BN analogue of superbenzene.
Collapse
Affiliation(s)
- Daniel Himmelbauer
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163Vienna A-1060Austria
| | - Fabian Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Clara Schweinzer
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Fernando Casas
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Bruno Pribanic
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Grégoire Le Corre
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Debora Thöny
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Monica Trincado
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| |
Collapse
|
2
|
Delgado Gómez M, Marazzi M, Elguero J, Ferrer M, Alkorta I. Production of Dihydrogen Using Ammonia Borane as Reagent and Pyrazole as Catalyst. Chemphyschem 2023; 24:e202300214. [PMID: 37350535 DOI: 10.1002/cphc.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/24/2023]
Abstract
Theoretical chemistry (DLPNO-CCSD(T)/def2-TZVP//M06-2x/aug-cc-pVDZ) was used to design a system based on ammonia boranes catalyzed by pyrazoles with the aim of producing dihydrogen, nowadays of high interest as clean fuel. The reactivity of ammonia borane and cyclotriborazane were investigated, including catalytic activation through 1H-pyrazole, 4-methoxy-1H-pyrazole, and 4-nitro-1H-pyrazole. The results point toward a catalytic cycle by which, at the same time, ammonia borane can initially store and then, through catalysis, produce dihydrogen and amino borane. Subsequently, amino borane can trimerize to form cyclotriborazane that, in presence of the same catalyst, can also produce dihydrogen. This study proposes therefore a consistent progress in using environmentally sustainable (metal free) catalysts to efficiently extract dihydrogen from small B-N bonded molecules.
Collapse
Affiliation(s)
- Marta Delgado Gómez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
| | - Marco Marazzi
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28871 Alcalá de Henares, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Maxime Ferrer
- Instituto de Química Médica CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
- PhD Program in Theoretical Chemistry and Computational Modeling, Doctoral School, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
3
|
A Photocatalytic Hydrolysis and Degradation of Toxic Dyes by Using Plasmonic Metal–Semiconductor Heterostructures: A Review. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Converting solar energy to chemical energy through a photocatalytic reaction is an efficient technique for obtaining a clean and affordable source of energy. The main problem with solar photocatalysts is the recombination of charge carriers and the large band gap of the photocatalysts. The plasmonic noble metal coupled with a semiconductor can give a unique synergetic effect and has emerged as the leading material for the photocatalytic reaction. The LSPR generation by these kinds of materials has proved to be very efficient in the photocatalytic hydrolysis of the hydrogen-rich compound, photocatalytic water splitting, and photocatalytic degradation of organic dyes. A noble metal coupled with a low bandgap semiconductor result in an ideal photocatalyst. Here, both the noble metal and semiconductor can absorb visible light. They tend to produce an electron–hole pair and prevent the recombination of the generated electron–hole pair, which ultimately reacts with the chemicals in the surrounding area, resulting in an enhanced photocatalytic reaction. The enhanced photocatalytic activity credit could be given to the shared effect of the strong SPR and the effective separation of photogenerated electrons and holes supported by noble metal particles. The study of plasmonic metal nanoparticles onto semiconductors has recently accelerated. It has emerged as a favourable technique to master the constraint of traditional photocatalysts and stimulate photocatalytic activity. This review work focuses on three main objectives: providing a brief explanation of plasmonic dynamics, understanding the synthesis procedure and examining the main features of the plasmonic metal nanostructure that dominate its photocatalytic activity, comparing the reported literature of some plasmonic photocatalysts on the hydrolysis of ammonia borane and dye water treatment, providing a detailed description of the four primary operations of the plasmonic energy transfer, and the study of prospects and future of plasmonic nanostructures.
Collapse
|
4
|
Crawley JM, Gow IE, Lawes N, Kowalec I, Kabalan L, Catlow CRA, Logsdail AJ, Taylor SH, Dummer NF, Hutchings GJ. Heterogeneous Trimetallic Nanoparticles as Catalysts. Chem Rev 2022; 122:6795-6849. [PMID: 35263103 PMCID: PMC8949769 DOI: 10.1021/acs.chemrev.1c00493] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 12/13/2022]
Abstract
The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field.
Collapse
Affiliation(s)
- James
W. M. Crawley
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Isla E. Gow
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Naomi Lawes
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Igor Kowalec
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Lara Kabalan
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - C. Richard A. Catlow
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 OFA, U.K.
- Department
of Chemistry, University College London, Gordon Street, London WC1H 0AJ, U.K.
| | - Andrew J. Logsdail
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Stuart H. Taylor
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Nicholas F. Dummer
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Graham J. Hutchings
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 OFA, U.K.
| |
Collapse
|
5
|
Cesari C, Berti B, Calcagno F, Lucarelli C, Garavelli M, Mazzoni R, Rivalta I, Zacchini S. Bimetallic Co–M (M = Cu, Ag, and Au) Carbonyl Complexes Supported by N-Heterocyclic Carbene Ligands: Synthesis, Structures, Computational Investigation, and Catalysis for Ammonia Borane Dehydrogenation. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristiana Cesari
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Beatrice Berti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Francesco Calcagno
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Carlo Lucarelli
- Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 9, I-22100 Como, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
- Université de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d’Italie, F69364 Lyon, France
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
6
|
Chemoselective transfer hydrogenation of nitriles to secondary amines with nickel(II) catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Slot TK, Riley N, Shiju NR, Medlin JW, Rothenberg G. An experimental approach for controlling confinement effects at catalyst interfaces. Chem Sci 2020; 11:11024-11029. [PMID: 34123192 PMCID: PMC8162257 DOI: 10.1039/d0sc04118a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
Catalysts are conventionally designed with a focus on enthalpic effects, manipulating the Arrhenius activation energy. This approach ignores the possibility of designing materials to control the entropic factors that determine the pre-exponential factor. Here we investigate a new method of designing supported Pt catalysts with varying degrees of molecular confinement at the active site. Combining these with fast and precise online measurements, we analyse the kinetics of a model reaction, the platinum-catalysed hydrolysis of ammonia borane. We control the environment around the Pt particles by erecting organophosphonic acid barriers of different heights and at different distances. This is done by first coating the particles with organothiols, then coating the surface with organophosphonic acids, and finally removing the thiols. The result is a set of catalysts with well-defined "empty areas" surrounding the active sites. Generating Arrhenius plots with >300 points each, we then compare the effects of each confinement scenario. We show experimentally that confining the reaction influences mainly the entropy part of the enthalpy/entropy trade-off, leaving the enthalpy unchanged. Furthermore, we find this entropy contribution is only relevant at very small distances (<3 Å for ammonia borane), where the "empty space" is of a similar size to the reactant molecule. This suggests that confinement effects observed over larger distances must be enthalpic in nature.
Collapse
Affiliation(s)
- Thierry K Slot
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| | - Nathan Riley
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| | - N Raveendran Shiju
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| | - J Will Medlin
- Department of Chemical and Biological Engineering, University of Colorado Boulder Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue Boulder Colorado 80303 USA
| | - Gadi Rothenberg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| |
Collapse
|
8
|
Ammonia Borane: An Extensively Studied, Though Not Yet Implemented, Hydrogen Carrier. ENERGIES 2020. [DOI: 10.3390/en13123071] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ammonia borane H3N−BH3 (AB) was re-discovered, in the 2000s, to play an important role in the developing hydrogen economy, but it has seemingly failed; at best it has lagged behind. The present review aims at analyzing, in the context of more than 300 articles, the reasons why AB gives a sense that it has failed as an anodic fuel, a liquid-state hydrogen carrier and a solid hydrogen carrier. The key issues AB faces and the key challenges ahead it has to address (i.e., those hindering its technological deployment) have been identified and itemized. The reality is that preventable errors have been made. First, some critical issues have been underestimated and thereby understudied, whereas others have been disproportionally considered. Second, the potential of AB has been overestimated, and there has been an undoubted lack of realistic and practical vision of it. Third, the competition in the field is severe, with more promising and cheaper hydrides in front of AB. Fourth, AB has been confined to lab benches, and consequently its technological readiness level has remained low. This is discussed in detail herein.
Collapse
|
9
|
Shimbayashi T, Fujita KI. Metal-catalyzed hydrogenation and dehydrogenation reactions for efficient hydrogen storage. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130946] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Chacón‐Terán MA, Rodríguez‐Lugo RE, Wolf R, Landaeta VR. Transfer Hydrogenation of Azo Compounds with Ammonia Borane Using a Simple Acyclic Phosphite Precatalyst. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Miguel A. Chacón‐Terán
- Departamento de Química Universidad Simón Bolívar Valle de Sartenejas, Apartado 89000 Caracas 1020-A Venezuela
| | - Rafael E. Rodríguez‐Lugo
- Laboratorio de Química Bioinorgánica Centro de Química Instituto Venezolano de Investigaciones Científicas (IVIC) Carretera Panamericana Km. 11. Caracas 1020‐A Venezuela
| | - Robert Wolf
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Vanessa R. Landaeta
- Departamento de Química Universidad Simón Bolívar Valle de Sartenejas, Apartado 89000 Caracas 1020-A Venezuela
| |
Collapse
|
11
|
Ma G, Song G, Li ZH. Designing Metal-Free Frustrated Lewis Pairs Catalyst for the Efficient Dehydrogenation of Ammonia Borane. Chemistry 2018; 24:13238-13245. [PMID: 29938854 DOI: 10.1002/chem.201801932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Indexed: 01/08/2023]
Abstract
Ammonia borane (AB) has been in the spotlight for the chemical storage of hydrogen over the past decade. However, the development of methods for efficient and controlled hydrogen release from AB under mild conditions is still underway. Herein, using density functional theory (DFT) computations, we designed a metal-free frustrated Lewis pair (FLP) catalyst o-(BPh2 )C6 H4 (NiPr2 ) (M1) that can efficiently dehydrogenate AB to release more than two equivalents of H2 under mild conditions. Catalyst M1 can dehydrogenate not only AB to H2 N=BH2 (AOB) and H2 , but also oligomers of AOB with rather low free-energy barriers. The high dehydrogenation activity of M1 is the key of new oligomerization routes to the efficient dehydrogenation of AB to borazine (BZ) or H2 B-(NH=BH)n -NH2 (PIB) and finally to polyborazylene (PBZ) so that more than two equivalents of H2 can be released. A first-principle kinetic Monte Carlo (KMC) study reveals that the activity of our catalytic system can be tuned by varying the initial concentration of M1 and AB. This work can guide the design of catalyst for the highly efficient utilization of AB as a hydrogen storage material.
Collapse
Affiliation(s)
- Gongli Ma
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, P.R. China
| | - Guoliang Song
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, P.R. China
| | - Zhen Hua Li
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 200438, Shanghai, P.R. China
| |
Collapse
|
12
|
Chong CC, Rao B, Kinjo R. Metal-Free Catalytic Reduction of α,β-Unsaturated Esters by 1,3,2-Diazaphospholene and Subsequent C–C Coupling with Nitriles. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01338] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Che Chang Chong
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore
| | - Bin Rao
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore
| | - Rei Kinjo
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore
| |
Collapse
|
13
|
Adams H, Booth YK, Cook ES, Riley S, Morris MJ. Reactions of Tetracyclone Molybdenum Complexes with Electrophilic Alkynes: Cyclopentadienone–Alkyne Coupling and Alkyne Coordination. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harry Adams
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Yvonne K. Booth
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Elizabeth S. Cook
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Sarah Riley
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Michael J. Morris
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
14
|
Kwan EH, Ogawa H, Yamashita M. A Highly Active PBP–Iridium Catalyst for the Dehydrogenation of Dimethylamine–Borane: Catalytic Performance and Mechanism. ChemCatChem 2017. [DOI: 10.1002/cctc.201700384] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Enrique Huang Kwan
- Department of Applied Chemistry Faculty of Science and Engineering, Chuo University 1-13-27 Kasuga Bunkyo-ku 112-8551 Tokyo Japan
| | - Hayato Ogawa
- Department of Applied Chemistry Faculty of Science and Engineering, Chuo University 1-13-27 Kasuga Bunkyo-ku 112-8551 Tokyo Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku 464-8603 Nagoya Japan
- Research Development Initiative Chuo University 1-13-27 Kasuga Bunkyo-ku 112-8551 Tokyo Japan
| |
Collapse
|
15
|
Zhang X, Kam L, Trerise R, Williams TJ. Ruthenium-Catalyzed Ammonia Borane Dehydrogenation: Mechanism and Utility. Acc Chem Res 2017; 50:86-95. [PMID: 28032510 DOI: 10.1021/acs.accounts.6b00482] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
One of the greatest challenges in using H2 as a fuel source is finding a safe, efficient, and inexpensive method for its storage. Ammonia borane (AB) is a solid hydrogen storage material that has garnered attention for its high hydrogen weight density (19.6 wt %) and ease of handling and transport. Hydrogen release from ammonia borane is mediated by either hydrolysis, thus giving borate products that are difficult to rereduce, or direct dehydrogenation. Catalytic AB dehydrogenation has thus been a popular topic in recent years, motivated both by applications in hydrogen storage and main group synthetic chemistry. This Account is a complete description of work from our laboratory in ruthenium-catalyzed ammonia borane dehydrogenation over the last 6 years, beginning with the Shvo catalyst and resulting ultimately in the development of optimized, leading catalysts for efficient hydrogen release. We have studied AB dehydrogenation with Shvo's catalyst extensively and generated a detailed understanding of the role that borazine, a dehydrogenation product, plays in the reaction: it is a poison for both Shvo's catalyst and PEM fuel cells. Through independent syntheses of Shvo derivatives, we found a protective mechanism wherein catalyst deactivation by borazine is prevented by coordination of a ligand that might otherwise be a catalytic poison. These studies showed how a bidentate N-N ligand can transform the Shvo into a more reactive species for AB dehydrogenation that minimizes accumulation of borazine. Simultaneously, we designed novel ruthenium catalysts that contain a Lewis acidic boron to replace the Shvo -OH proton, thus offering more flexibility to optimize hydrogen release and take on more general problems in hydride abstraction. Our scorpionate-ligated ruthenium species (12) is a best-of-class catalyst for homogeneous dehydrogenation of ammonia borane in terms of its extent of hydrogen release (4.6 wt %), air tolerance, and reusability. Moreover, a synthetically simplified ruthenium complex supported by the inexpensive bis(pyrazolyl)borate ligand is a comparably good catalyst for AB dehydrogenation, among other reactions. In this Account, we present a detailed, concise description of how our work with the Shvo system progressed to the development of our very reactive and flexible dual-site boron-ruthenium catalysts.
Collapse
Affiliation(s)
- Xingyue Zhang
- Loker Hydrocarbon Research
Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Lisa Kam
- Loker Hydrocarbon Research
Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Ryan Trerise
- Loker Hydrocarbon Research
Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Travis J. Williams
- Loker Hydrocarbon Research
Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
16
|
Brugos J, Cabeza JA, García-Álvarez P, Pérez-Carreño E, Van der Maelen JF. Octahedral manganese(i) and ruthenium(ii) complexes containing 2-(methylamido)pyridine–borane as a tripod κ3N,H,H-ligand. Dalton Trans 2017; 46:4009-4017. [DOI: 10.1039/c7dt00378a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The borane adduct of the 2-(methylamido)pyridine anion has been incorporated into octahedral metal (Mn, Ru) complexes and their bonding has been studied by theoretical methods (DFT, QTAIM).
Collapse
Affiliation(s)
- Javier Brugos
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica-IUQOEM
- Universidad de Oviedo-CSIC
- 33071 Oviedo
- Spain
| | - Javier A. Cabeza
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica-IUQOEM
- Universidad de Oviedo-CSIC
- 33071 Oviedo
- Spain
| | - Pablo García-Álvarez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica-IUQOEM
- Universidad de Oviedo-CSIC
- 33071 Oviedo
- Spain
| | | | | |
Collapse
|
17
|
Bhunya S, Malakar T, Ganguly G, Paul A. Combining Protons and Hydrides by Homogeneous Catalysis for Controlling the Release of Hydrogen from Ammonia–Borane: Present Status and Challenges. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01704] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sourav Bhunya
- Raman Centre for Atomic,
Molecular and
Optical Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Tanmay Malakar
- Raman Centre for Atomic,
Molecular and
Optical Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Gaurab Ganguly
- Raman Centre for Atomic,
Molecular and
Optical Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Ankan Paul
- Raman Centre for Atomic,
Molecular and
Optical Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|