1
|
Iman MN, Haslam DE, Liang L, Guo K, Joshipura K, Pérez CM, Clish C, Tucker KL, Manson JE, Bhupathiraju SN, Fukusaki E, Lasky-Su J, Putri SP. Multidisciplinary approach combining food metabolomics and epidemiology identifies meglutol as an important bioactive metabolite in tempe, an Indonesian fermented food. Food Chem 2024; 446:138744. [PMID: 38432131 PMCID: PMC11247955 DOI: 10.1016/j.foodchem.2024.138744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
This study introduces a multidisciplinary approach to investigate bioactive food metabolites often overlooked due to their low concentrations. We integrated an in-house food metabolite library (n = 494), a human metabolite library (n = 891) from epidemiological studies, and metabolite pharmacological databases to screen for food metabolites with potential bioactivity. We identified six potential metabolites, including meglutol (3-hydroxy-3-methylglutarate), an understudied low-density lipoprotein (LDL)-lowering compound. We further focused on meglutol as a case study to showcase the range of characterizations achievable with this approach. Green pea tempe was identified to contain the highest meglutol concentration (21.8 ± 4.6 mg/100 g). Furthermore, we identified a significant cross-sectional association between plasma meglutol (per 1-standard deviation) and lower LDL cholesterol in two Hispanic adult cohorts (n = 1,628) (β [standard error]: -5.5 (1.6) mg/dl, P = 0.0005). These findings highlight how multidisciplinary metabolomics can serve as a systematic tool for discovering and enhancing bioactive metabolites in food, such as meglutol, with potential applications in personalized dietary approaches for disease prevention.
Collapse
Affiliation(s)
- Marvin N Iman
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | - Danielle E Haslam
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kai Guo
- Center for Clinical Research and Health Promotion, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, Puerto Rico, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Center for Clinical Research and Health Promotion, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, Puerto Rico, USA
| | - Cynthia M Pérez
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, Puerto Rico, USA
| | - Clary Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shilpa N Bhupathiraju
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Japan
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan; Osaka University-Shimadzu Omics Innovation Research Laboratories, Osaka University, Japan.
| |
Collapse
|
2
|
Iqbal I, Wilairatana P, Saqib F, Nasir B, Wahid M, Latif MF, Iqbal A, Naz R, Mubarak MS. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023; 28:6403. [PMID: 37687232 PMCID: PMC10490098 DOI: 10.3390/molecules28176403] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Fruits, vegetables, and other food items contain phytochemicals or secondary metabolites which may be considered non-essential nutrients but have medicinal importance. These dietary phytochemicals exhibit chemopreventive and therapeutic effects against numerous diseases. Polyphenols are secondary metabolites found in vegetables, fruits, and grains. These compounds exhibit several health benefits such as immune modulators, vasodilators, and antioxidants. This review focuses on recent studies on using dietary polyphenols to treat cardiovascular disorders, atherosclerosis, and vascular endothelium deficits. We focus on exploring the safety of highly effective polyphenols to ensure their maximum impact on cardiac abnormalities and discuss recent epidemiological evidence and intervention trials related to these properties. Kaempferol, quercetin, and resveratrol prevent oxidative stress by regulating proteins that induce oxidation in heart tissues. In addition, polyphenols modulate the tone of the endothelium of vessels by releasing nitric oxide (NO) and reducing low-density lipoprotein (LDL) oxidation to prevent atherosclerosis. In cardiomyocytes, polyphenols suppress the expression of inflammatory markers and inhibit the production of inflammation markers to exert an anti-inflammatory response. Consequently, heart diseases such as strokes, hypertension, heart failure, and ischemic heart disease could be prevented by dietary polyphenols.
Collapse
Affiliation(s)
- Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Fatima Saqib
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Bushra Nasir
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Ahmar Iqbal
- Department of General Surgery, Shanxi Medical University, Jinzhong 030600, China;
| | - Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | | |
Collapse
|
3
|
Jia A, Shi Y, Zhang Y, Diao Y, Chang B, Jiang M, Liu W, Qiu Z, Fu C, Qiu Y. Butanol Extract of Acanthopanax senticosus (Rupr. et Maxim.) Harms Alleviates Atherosclerosis in Apolipoprotein E-Deficient Mice Fed a High-Fat Diet. Chem Biodivers 2023; 20:e202200949. [PMID: 36869005 DOI: 10.1002/cbdv.202200949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
This study investigated the effect of butanol extract of AS (ASBUE) on atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. The mice were administered ASBUE (390 or 130 mg/kg/day) or rosuvastatin (RSV) via oral gavage for eight weeks. In ApoE-/- mice, ASBUE suppressed the abnormal body weight gain and improved serum and liver biochemical indicators. ASBUE remarkably reduced the aortic plaque area, improved liver pathological conditions, and lipid metabolism abnormalities, and altered the intestinal microbiota structure in ApoE-/- mice. In the vascular tissue of ASBUE-treated mice, P-IKKβ, P-NFκB, and P-IκBα levels tended to decrease, while IκB-α increased in high fat-diet-fed atherosclerotic mice. These findings demonstrated the anti-atherosclerotic potential of ASBUE, which is mediated by the interaction between the gut microbiota and lipid metabolism and regulated via the Nuclear Factor-kappa B (NF-κB) pathway. This work paves the groundwork for subsequent studies to develop innovative drugs to treat atherosclerosis.
Collapse
Affiliation(s)
- Ailing Jia
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China.,Pharmacy College of, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuwen Shi
- Pharmacy College of, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuhang Zhang
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yuanyuan Diao
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Baijin Chang
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengcheng Jiang
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Weipeng Liu
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhidong Qiu
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chaomei Fu
- Pharmacy College of, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ye Qiu
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
4
|
Von Dentz M, Gambato G, Ferrari A, Fontana RC, Rodrigues E, Salvador M, Camassola M, Jahn MP. Antihyperlipidemic effect of the hydroalcoholic extract of Basidiomycete Pycnoporus sanguineus (Fr.) Murr. in streptozotocin-induced diabetic rats. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Hossain MM, Tovar J, Cloetens L, Florido MTS, Petersson K, Prothon F, Nilsson A. Oat Polar Lipids Improve Cardiometabolic-Related Markers after Breakfast and a Subsequent Standardized Lunch: A Randomized Crossover Study in Healthy Young Adults. Nutrients 2021; 13:nu13030988. [PMID: 33803802 PMCID: PMC8003140 DOI: 10.3390/nu13030988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that intake of polar lipids may beneficially modulate various metabolic variables. The purpose of this study was to evaluate the effect of oat polar lipids on postprandial and second meal glycemic regulation, blood lipids, gastrointestinal hormones, and subjective appetite-related variables in healthy humans. In a randomized design, twenty healthy subjects ingested four liquid cereal-based test beverages (42 g of available carbohydrates) containing: i. 30 g of oat oil with a low concentration (4%) of polar lipids (PLL), ii. 30 g of oat oil containing a high concentration (40%) of polar lipids (PLH), iii. 30 g of rapeseed oil (RSO), and iv. no added lipids (NL). The products were served as breakfast meals followed by a standardized lunch. Test variables were measured at fasting and during 3 h after breakfast and two additional hours following a standardized lunch. PLH reduced glucose and insulin responses after breakfast (0-120 min) compared to RSO, and after lunch (210-330 min) compared to RSO and PLL (p < 0.05). Compared to RSO, PLH resulted in increased concentrations of the gut hormones GLP-1 and PYY after the standardized lunch (p < 0.05). The results suggest that oat polar lipids have potential nutraceutical properties by modulating acute and second meal postprandial metabolic responses.
Collapse
Affiliation(s)
- Mohammad Mukul Hossain
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
- Correspondence: ; Tel.: +46-46-222-95-34
| | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
| | - Lieselotte Cloetens
- Division of Pure and Applied Biochemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (L.C.); (M.T.S.F.)
| | - Maria T. Soria Florido
- Division of Pure and Applied Biochemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (L.C.); (M.T.S.F.)
| | | | | | - Anne Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
| |
Collapse
|
6
|
Lordan R, Redfern S, Tsoupras A, Zabetakis I. Inflammation and cardiovascular disease: are marine phospholipids the answer? Food Funct 2020; 11:2861-2885. [DOI: 10.1039/c9fo01742a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review presents the latest research on the cardioprotective effects of n-3 fatty acids (FA) and n-3 FA bound to polar lipids (PL). Overall, n-3 PL may have enhanced bioavailability and potentially bioactivityversusfree FA and ester forms of n-3 FA.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Shane Redfern
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Ioannis Zabetakis
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| |
Collapse
|
7
|
Olas B. Biochemistry of blood platelet activation and the beneficial role of plant oils in cardiovascular diseases. Adv Clin Chem 2019; 95:219-243. [PMID: 32122524 DOI: 10.1016/bs.acc.2019.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The main function of blood platelets is to form hemostatic plugs and enable thrombosis. These properties, however, can be greatly influenced by dietary components which may inhibit certain steps of platelet activation, including platelet aggregation. Such inhibition can play a role in the prophylaxis and treatment of cardiovascular diseases associated with blood platelet hyperactivation. In fact, plant and fish oils have been identified and specifically used for this purpose. Numerous in vivo and in vitro experiments have explored the potential use of these oils to inhibit platelet activation as well as their role in reducing oxidative stress and blood pressure, and lowering triglyceride and cholesterol. This chapter presents and compares the anti-platelet effects of fish and plant oils and their constituents, especially fatty acids. Studies on healthy subjects and patients with various cardiovascular diseases are also examined. Findings indicate that both fish and plant oils contain protective components with anti-platelet activity having clearly defined mechanisms of action. Although both are excellent sources of omega fatty acids and vitamins, plant oils contain components with cardioprotective benefit in hypercholesterolemics, i.e., phytosterols. Plant oils may hence play a key role in strategies for preventing and treating cardiovascular diseases associated with platelet hyperactivation. Further studies are clearly needed to determine the precise dose of these components needed for effective prophylaxis and treatment.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
8
|
Gadowski AM, Nanayakkara N, Heritier S, Magliano DJ, Shaw JE, Curtis AJ, Zoungas S, Owen AJ. Association between Dietary Intake and Lipid-Lowering Therapy: Prospective Analysis of Data from Australian Diabetes, Obesity, and Lifestyle Study (AusDiab) Using a Quantile Regression Approach. Nutrients 2019; 11:nu11081858. [PMID: 31405073 PMCID: PMC6724025 DOI: 10.3390/nu11081858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Lipid-lowering therapy (LLT) should be accompanied by dietary guidance for cardiovascular risk reduction; however, current evidence suggests sub-optimal dietary behaviors in those on LLT. We examined the associations between the dietary intake of key food groups (vegetables, fruit, cereal, protein, and dairy) and LLT use in Australian adults using quantile regression. We used data from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab), a prospective population-based study of adults aged ≥25 years, conducted over 5 years (1999-2005). Measurements included a 121-item food frequency questionnaire and LLT use. LLT use was categorized as: LLT users (n = 446), commenced LLT (n = 565), ceased LLT (n = 71), and non-users (n = 4813). Less than 1% of the cohort met recommended intakes of all food groups at the baseline and follow up. The median daily dietary intake at the follow up among LLT users was 2.2 serves of vegetables, 1.4 serves of fruit, 2.8 serves of cereal, 2.0 serves of protein, and 1.4 serves of dairy. Adjusted analysis showed no differences across the quantiles of intake of key food groups in LLT users and commenced LLT compared to non-users. The LLT medication status is not associated with any difference in meeting recommended intakes of key foods.
Collapse
Affiliation(s)
- Adelle M Gadowski
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Natalie Nanayakkara
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Stephane Heritier
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | | | - Jonathan E Shaw
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Andrea J Curtis
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Sophia Zoungas
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Alice J Owen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
9
|
Poutzalis S, Lordan R, Nasopoulou C, Zabetakis I. Phospholipids of goat and sheep origin: Structural and functional studies. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Tsoupras A, Lordan R, Demuru M, Shiels K, Saha SK, Nasopoulou C, Zabetakis I. Structural Elucidation of Irish Organic Farmed Salmon (Salmo salar) Polar Lipids with Antithrombotic Activities. Mar Drugs 2018; 16:E176. [PMID: 29882848 PMCID: PMC6025065 DOI: 10.3390/md16060176] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023] Open
Abstract
While several marine polar lipids (PL) have exhibited cardioprotective properties through their effects on the platelet-activating factor (PAF) pathways, salmon PL have not been tested so far. In this study, the antithrombotic activities of salmon PL were assessed in human platelets and the structural characterisation of bioactive salmon PL was performed by GC-MS and LC-MS analyses. PL from fillets of Irish organic farmed salmon (Salmo salar) were extracted and separated into several lipid subclasses by thin-layer chromatography (TLC), while their fatty acid profile was fully characterised by GC-MS. Salmon total lipids (TL), total neutral lipids (TNL), total polar lipids (TPL), and each PL subclass obtained by TLC were further assessed for their in vitro effects towards PAF-induced and thrombin-induced platelet aggregation in human platelets. Salmon PL exhibited antithrombotic effects on human platelet aggregation, mostly through their strong inhibitory effects against the PAF pathway with IC50 values comparable to other marine PL, but with lower effects towards the thrombin pathway. PL fractions corresponding to phosphatidylcholine and phosphatidylethanolamine derivatives exhibited the most potent anti-PAF effects, while LC-MS analysis putatively elucidated their structure/function relationship. Several diacyl-PC/PE and alkyl-acyl-PC/PE species containing mostly docosahexaenoic acid at their sn-2 glycerol-backbone may be responsible for the bioactivity. The data presented suggests that salmon contains PL with strong antithrombotic bioactivities.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Martina Demuru
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy.
| | - Katie Shiels
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, V94 E8YF Limerick, Ireland.
| | - Sushanta Kumar Saha
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, V94 E8YF Limerick, Ireland.
| | - Constantina Nasopoulou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, GR 81400 Myrina, Lemnos, Greece.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
11
|
Rzepecka-Stojko A, Kabała-Dzik A, Kubina R, Jasik K, Kajor M, Wrześniok D, Stojko J. Protective Effect of Polyphenol-Rich Extract from Bee Pollen in a High-Fat Diet. Molecules 2018; 23:molecules23040805. [PMID: 29614743 PMCID: PMC6017657 DOI: 10.3390/molecules23040805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 01/26/2023] Open
Abstract
We have studied a preventive effect of polyphenol-rich bee pollen ethanol extract (EEP) against histological changes in the liver and cardiac blood vessels, abnormalities of lipid profile, and the levels of oxidized low density lipoproteins (ox-LDL), asymmetric dimethylarginine (ADMA), angiotensin-converting enzyme (ACE), and angiotensin II (ANG II) caused by a high-fat diet in C57BL6 mice. Supplementing the diet with EEP in the doses of 0.1 g/kg body mass (BM) and 1 g/kg BM resulted in a decrease of total cholesterol by 31% and 35%, respectively. It also decreased the level of low density lipoproteins by 67% and 90%, respectively. No differences in the levels of high density lipoprotein and triacylglycerols were observed. EEP reduced the level of ox-LDL by 33% and 47%, ADMA by 13% and 51%, ACE by 17% and 30%, as well as ANG II by 11% and 15% in a dose-dependent manner, which proves a protective effect of EEP in a high-fat diet. EEP reduces and/or prevents hepatic steatosis and degenerative changes caused by a high-fat diet in C57BL6 mice, which indicates its hepatoprotective effect. EEP used with standard feed does not disturb a normal concentration of the assayed parameters.
Collapse
Affiliation(s)
- Anna Rzepecka-Stojko
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - Agata Kabała-Dzik
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland.
| | - Robert Kubina
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland.
| | - Krzysztof Jasik
- Department of Skin Structural Studies, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland.
| | - Maciej Kajor
- Department of Histopathology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland.
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
12
|
Semisynthesis and Biological Evaluation of Oleanolic Acid 3-O-β-d-Glucuronopyranoside Derivatives for Protecting H9c2 Cardiomyoblasts against H₂O₂-Induced Injury. Molecules 2018; 23:molecules23010044. [PMID: 29320439 PMCID: PMC5943939 DOI: 10.3390/molecules23010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
A series of novel oleanolic acid 3-O-β-d-glucuronopyranoside derivatives have been designed and synthesized. Biological evaluation has indicated that some of the synthesized compounds exhibit moderate to good activity against H2O2-induced injury in rat myocardial cells (H9c2). Particularly, derivative 28-N-isobutyl ursolic amide 3-O-β-d-galactopyranoside (8a) exhibited a greater protective effect than the positive control oleanolic acid 3-O-β-d-glucuronopyranoside, indicating that it possesses a great potential for further development as a cardiovascular disease modulator by structural modification.
Collapse
|
13
|
|
14
|
Lordan R, Tsoupras A, Zabetakis I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017; 22:E1964. [PMID: 29135918 PMCID: PMC6150200 DOI: 10.3390/molecules22111964] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 12/29/2022] Open
Abstract
In this review paper, the latest literature on the functional properties of phospholipids in relation to inflammation and inflammation-related disorders has been critically appraised and evaluated. The paper is divided into three sections: Section 1 presents an overview of the relationship between structures and biological activities (pro-inflammatory or anti-inflammatory) of several phospholipids with respect to inflammation. Section 2 and Section 3 are dedicated to the structures, functions, compositions and anti-inflammatory properties of dietary phospholipids from animal and marine sources. Most of the dietary phospholipids of animal origin come from meat, egg and dairy products. To date, there is very limited work published on meat phospholipids, undoubtedly due to the negative perception that meat consumption is an unhealthy option because of its putative associations with several chronic diseases. These assumptions are addressed with respect to the phospholipid composition of meat products. Recent research trends indicate that dairy phospholipids possess anti-inflammatory properties, which has led to an increased interest into their molecular structures and reputed health benefits. Finally, the structural composition of phospholipids of marine origin is discussed. Extensive research has been published in relation to ω-3 polyunsaturated fatty acids (PUFAs) and inflammation, however this research has recently come under scrutiny and has proved to be unreliable and controversial in terms of the therapeutic effects of ω-3 PUFA, which are generally in the form of triglycerides and esters. Therefore, this review focuses on recent publications concerning marine phospholipids and their structural composition and related health benefits. Finally, the strong nutritional value of dietary phospholipids are highlighted with respect to marine and animal origin and avenues for future research are discussed.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
15
|
Goszcz K, Duthie GG, Stewart D, Leslie SJ, Megson IL. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol 2017; 174:1209-1225. [PMID: 28071785 PMCID: PMC5429332 DOI: 10.1111/bph.13708] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Polyphenols are widely regarded to have a wide range of health-promoting qualities, including beneficial effects on cardiovascular disease. Historically, the benefits have been linked to their well-recognized powerful antioxidant activity. However, the concept that the beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly metabolized, resulting in very low bioavailability. This review explores alternative mechanisms by which polyphenols, or their metabolites, exert biological activity via mechanisms that can be activated by physiologically relevant concentrations. Evidence is presented to support the action of phenolic derivatives on receptors and signalling pathways to induce adaptive responses that drive changes in endogenous antioxidant, antiplatelet, vasodilatory and anti-inflammatory effects. The implications are that in vitro antioxidant measures as predictors of polyphenol protective activity in vivo hold little relevance and that closer attention needs to be paid to bioavailable metabolites to understand the mode of action of these diet-derived components. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
| | - Garry G Duthie
- Rowett Institute of Nutrition and HealthUniversity of AberdeenAberdeenUK
| | - Derek Stewart
- The James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
- Cardiology UnitRaigmore HospitalInvernessUK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
| |
Collapse
|
16
|
Lordan R, Zabetakis I. Invited review: The anti-inflammatory properties of dairy lipids. J Dairy Sci 2017; 100:4197-4212. [PMID: 28342603 DOI: 10.3168/jds.2016-12224] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/02/2017] [Indexed: 01/01/2023]
Abstract
Dairy product consumption is often associated with negative effects because of its naturally high levels of saturated fatty acids. However, recent research has shown that dairy lipids possess putative bioactivity against chronic inflammation. Inflammation triggers the onset of several chronic diseases, including cardiovascular disease, type 2 diabetes mellitus, obesity, and cancer. This review discusses the anti-inflammatory properties of dairy lipids found in milk, yogurt, and cheese, and it examines them in relation to their implications for human health: their protective effects and their role in pathology. We also consider the effect of lipid profile alteration in dairy products-by using ruminant dietary strategies to enrich the milk, or by lipid fortification in the products. We critically review the in vivo, in vitro, ex vivo, and epidemiological studies associated with these dairy lipids and their role in various inflammatory conditions. Finally, we discuss some suggestions for future research in the study of bioactive lipids and dairy products, with reference to the novel field of metabolomics and epidemiological studies.
Collapse
Affiliation(s)
- R Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - I Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|