1
|
Ta X, Wang B, Bai J, Yu J, Chen H, Wang C. The source, extraction, purification, physiological function, and application of stachyose in the food industry. Food Chem 2024; 461:140791. [PMID: 39163721 DOI: 10.1016/j.foodchem.2024.140791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/14/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
Stachyose is a new functional oligosaccharide that exists naturally in plants, including Stachys sieboldii and Rehmannia glutinosa. Because of its low sweetness, low-calorie content, and robust stability, it has been used to improve food quality and develop functional foods. In addition, owing to its targeted regulatory effect on beneficial microorganisms in the gut and its influence on body health, evidence suggests that stachyose's physiological function may be attributed to its interaction with the host. Notably, stachyose's physiological characteristics and functions are largely affected by its extraction process, purity, physical composition, and chemical structure. Therefore, the present review mainly describes the source, extraction, and purification processes, physiological functions, and applications of stachyose in the food processing industry, which would aid in elucidating the biochemical reactions of stachyose in the body, and its future application prospects in the field of food.
Collapse
Affiliation(s)
- Xitao Ta
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong 250000, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| | - Jielin Yu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hangyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Wang R, Pan Y, Zhang L, Wang J, Ni J, Ding Y, Wang S, Yin J, Ding L, Ran X, Fan S, Sun Q, Tan SY, Koeffler HP, Li J, Mi Y, Chen YQ. Prebiotic stachyose inhibits PRDX5 activity and castration-resistant prostate cancer development. Int J Biol Macromol 2024; 278:134844. [PMID: 39168191 DOI: 10.1016/j.ijbiomac.2024.134844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Stachyose (STA) is a prebiotic with poor oral bioavailability. In this study, we developed stachyose caproate (C6-STA), as a novel STA derivative, to demonstrate its high adsorption rate via oral administration. Pharmacokinetic analysis reveals that after absorption, the STA derived from C6-STA reaches its highest peak in the blood, liver, and kidney at 20 min, 30 min, and 12-24 h, with approximate levels of 1200 μg/mL, 0.14 μg/mL, and 0.2-0.3 μg/mL, respectively. In addition, the accumulation of STA in prostate tissues of mice with castration-resistant prostate cancer (CRPC) (1.75 μg/mg) is 10-fold higher than that in normal prostate tissues (0.14 μg/mg). The analysis also reveals that C6-STA has t1/2 of 12.8 h and Tmax of 0.25 h, indicating that it has the potential to be used as a promising drug in clinical practice. The toxicological evaluation shows no obvious side effects of C6-STA in mice administered with a 0.2 g/kg intragastric dose. Pharmacodynamic analysis and mechanism investigation of C6-STA show its ability to inhibit peroxiredoxin 5 (PRDX5) enzyme activity, disrupt PRDX5-nuclear factor erythroid 2-related factor 2 (NRF2) interaction, and decrease NAD(P)H quinone dehydrogenase 1 (NQO1) levels. NQO1 decrease further causes the accumulation of quinone radicals, which ultimately leads to the apoptosis of LNCaP cell-derived drug-tolerant persister (DTP) cells and slows CRPC progression. Our study discovered the anti-tumor activity of stachyose and shows that prebiotics have biological functions in vivo besides in the gut. Further investigation of C6-STA, especially in CRPC patients, is warranted.
Collapse
Affiliation(s)
- Rong Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yu Pan
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lan Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jun Wang
- First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jiang Ni
- Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Yang Ding
- College of Pharmacy, Pharmaceutical Series, China Pharmaceutical University, Nanjing, China
| | - Shaopeng Wang
- Jiangnan University Medical Center, Jiangnan University, Wuxi, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xuebin Ran
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiaoyang Sun
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, CA, Los Angeles, USA
| | - Jie Li
- First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Yuanyuan Mi
- Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China.
| | - Yong Q Chen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Li H, Zhang S, Zhao Y, He J, Chen X. Identification of raffinose family oligosaccharides in processed Rehmannia glutinosa Libosch using matrix-assisted laser desorption/ionization mass spectrometry image combined with machine learning. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9635. [PMID: 37817339 DOI: 10.1002/rcm.9635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 10/12/2023]
Abstract
RATIONALE Currently, research on oligosaccharides primarily focuses on the physiological activity and function, with a few studies elaborating on the spatial distribution characterization and variation in the processing of Rehmannia glutinosa Libosch. Thus, imaging the spatial distributions and dynamic changes in oligosaccharides during the steaming process is significant for characterizing the metabolic networks of R. glutinosa. It will be beneficial to characterize the impact of steaming on the active ingredients and distribution patterns in different parts of the plant. METHODS A highly sensitive matrix-assisted laser desorption/ionization mass spectrometry image (MALDI-MSI) method was used to visualize the spatial distribution of oligosaccharides in processed R. glutinosa. Furthermore, machine learning was used to distinguish the processed R. glutinosa samples obtained under different steaming conditions. RESULTS Imaging results showed that the oligosaccharides in the fresh R. glutinosa were mainly distributed in the cortex and xylem. As steaming progressed, the tetra- and pentasaccharides were hydrolyzed and diffused gradually into the tissue section. MALDI-MS profiling combined with machine learning was used to identify the processed R. glutinosa samples accurately at different steaming intervals. Eight algorithms were used to build classification machine learning models, which were evaluated for accuracy, precision, recall, and F1 score. The linear discriminant analysis and random forest models performed the best, with prediction accuracies of 0.98 and 0.97, respectively, and thus can be considered for identifying the steaming durations of R. glutinosa. CONCLUSIONS MALDI-MSI combined with machine learning can be used to visualize the distribution of oligosaccharides and identify the processed samples after steaming for different durations. This can enhance our understanding of the metabolic changes that occur during the steaming process of R. glutinosa; meanwhile, it is expected to provide a theoretical reference for the standardization and modernization of processing in the field of medicinal plants.
Collapse
Affiliation(s)
- Huizhi Li
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shishan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanfang Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jixiang He
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
4
|
Zhang W, Cui N, Su F, Sun Y, Li B, Zhang Z, Zeng Y, Guan W, Yang B, Wang Q, Kuang H. Therapeutic impact of stachyose on hyperlipidaemia caused by a high-fat diet in mice as revealed by gut microbiota and metabolomics. Curr Res Food Sci 2023; 7:100638. [PMID: 38045511 PMCID: PMC10692757 DOI: 10.1016/j.crfs.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Hyperlipidaemia, which is characterized by an excess of lipids or fats in the bloodstream, is a high-risk factor and critical indicator of many metabolic diseases. This study used 16 S rRNA gene sequencing and metabolomics to determine that stachyose (ST) has a therapeutic effect and is a mechanism of hyperlipidaemia. These results show that ST significantly attenuated high-fat diet-induced weight gain and fat deposition while also adjusting the gut microbial composition. Untargeted serum metabolomics identified 12 biomarkers, which suggests that ST may function by regulating metabolic pathways. These results highlight the potential of ST in treating hyperlipidaemia and provides directions for future research including an in-depth investigation of the bioactive components, dosage, and treatment strategies of ST.
Collapse
Affiliation(s)
- Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yuanning Zeng
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong, 510006, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong, 510006, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| |
Collapse
|
5
|
Li W, Zhang W, Fan X, Xu H, Yuan H, Wang Y, Yang R, Tian H, Wu Y, Yang H. Fructo-oligosaccharide enhanced bioavailability of polyglycosylated anthocyanins from red radish via regulating gut microbiota in mice. Food Chem X 2023; 19:100765. [PMID: 37780282 PMCID: PMC10534114 DOI: 10.1016/j.fochx.2023.100765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 10/03/2023] Open
Abstract
The anthocyanins from red radish (ARR) rich in polyglycosylated pelargonidin glucosides were used as pigment. However, bioavailability of anthocyanins was considered at low level. This work examined the intensive effects of fructo-oligosaccharide (FOS) on ARR bioavailability. Pelargonidin, cyanidin and pelargonidin-3-glucoside showed higher level in serum of mice fed with FOS together with ARR for 8 weeks than that fed with only ARR. Co-ingestion of FOS and ARR more effectively elevated the hepatic antioxidant activity by increase in total antioxidant capacity and activities of superoxide dismutase and glutathione peroxidase when compared with intake of ARR. FOS also markedly increased pelargonidin level in cecum of mice. 16S RNA sequencing found that Bacteroides genus play an important role in FOS elevating bioavailability of ARR. Fecal bacteria transplantation verified the positive effects of FOS on ARR bioavailability. These results suggested that combined ingestion of FOS and ARR is effective strategy for bioactivity of ARR.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Wanjie Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Xin Fan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hai Xu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hong Yuan
- Medical School, Xi’an Peihua University, Xi’an, Shaanxi 710125, China
| | - Yimeng Wang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Rui Yang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hua Tian
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Yinmei Wu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hongyan Yang
- School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
6
|
Gallic acid impairs fructose-driven de novo lipogenesis and ameliorates hepatic steatosis via AMPK-dependent suppression of SREBP-1/ACC/FASN cascade. Eur J Pharmacol 2023; 940:175457. [PMID: 36529278 DOI: 10.1016/j.ejphar.2022.175457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that de novo lipogenesis is a typical characteristic facilitating nonalcoholic fatty liver disease (NAFLD) progression. Gallic acid (GA) is a naturally occurring phenolic acid with metabolic disease-related clinical significance and preclinical benefits. This study aimed to evaluate the anti-steatotic potentials of GA in a fructose-induced NAFLD mouse model featuring a hepatic lipogenic phenotype. The results revealed that GA alleviated hepatic steatosis, oxidative stress, and inflammatory response in fructose-fed mice. Mechanistically, GA treatment restored AMP-activated protein kinase α (AMPKα) phosphorylation, resulting in downregulations of pro-lipogenic factors, including sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthetase (FASN), and acetyl-CoA carboxylase (ACC), in hepatocytes of mice and in vitro. Furthermore, computational docking analysis indicated that GA could directly interact with AMPKα/β subunits to stabilize its activation. These results suggest that GA ameliorates fructose-induced hepatosteatosis by restraining hepatic lipogenesis via AMPK-dependent suppression of the SREBP-1/ACC/FASN cascade. Altogether, this study demonstrates that GA supplement may be a promising therapeutic strategy in NAFLD, especially in the subset with enhanced hepatic lipogenesis.
Collapse
|
7
|
Li L, Tian Y, Feng Y, Zhang S, Jiang Y, Zhang Y, Zhan Y, Wang C. Improvement in Mung Bean Peptide on High-Fat Diet-Induced Insulin Resistance Mice Using Untargeted Serum Metabolomics. Front Nutr 2022; 9:893270. [PMID: 35571892 PMCID: PMC9101312 DOI: 10.3389/fnut.2022.893270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
This study aimed to elucidate the potential regulatory mechanism of mung bean peptides (MBPs) on glucolipid metabolism in insulin-resistant mice induced by high-fat diet (HFD) using untargeted serum metabolomics, enzyme linked immunosorbent assay (ELISA), intraperitoneal injection glucose tolerance test (IPGTT), insulin tolerance test (IPITT), and hematoxylin-eosin staining (H&E). The regulatory effect of MBPs for alleviating insulin resistance was studied by measuring body weight, fasting blood glucose (FBG) and serum insulin levels, C-Peptide levels, inflammatory and antioxidant factors, and histopathological observation of C57BL/6 mice. The experimental results showed that dietary intervention with MBPs (245 mg/kg/d) for 5 weeks significantly relieved insulin resistance in HFD mice. The body weight, insulin resistance index, and the levels of FBG, C-Peptide, IL-6, TNF-α, and MDA in the serum of HFD mice significantly decreased (P < 0.05). Conversely, SOD content and pancreatic β cell function index significantly increased (P < 0.05), and the damaged pancreatic tissue was repaired. One biomarker associated with insulin resistance was glycine. In addition, there were four important differential metabolites: pyroglutamate, D-glutamine, aminoadipic acid, and nicotinamide, involved in 12 metabolic pathway changes. It was found that MBPs may regulate amino acid, glycerol phospholipid, fatty acid, alkaloid, and nicotinamide metabolism to regulate the metabolic profile of HFD mice in a beneficial direction.
Collapse
Affiliation(s)
- Lina Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Library, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yingjun Jiang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yiwei Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanyuan Zhan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Changyuan Wang
| |
Collapse
|
8
|
Fan L, Wu L, Yu XH, Chen YB, Lin L, Li SG. The ethnopharmacology, phytochemistry, pharmacology and toxicology of the genus Erycibe (Convolvulaceae). JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114312. [PMID: 34107330 DOI: 10.1016/j.jep.2021.114312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Erycibe belongs to the Convolvulaceae family that contains approximately 70 species mainly distributed from tropical and subtropical Asia to north of Australia. Several Erycibe species are traditionally used in folk medicine for the treatment of various ailments, including rheumatic arthralgia, primary glaucoma, hepatopathies, and infectious and malignant diseases. AIM OF THE REVIEW This review aims to summarize comprehensive and updated information on traditional medicinal uses, phytochemistry, pharmacology, and toxicology of Erycibe species to provide a reference for the further research and application of the Erycibe genus. MATERIALS AND METHODS The scientific and extensive literatures between 1975 and 2020 were systematically gathered from scientific databases such as SciFinder Scholar, Science Direct, Web of Science, PubMed, Google Scholar, Scopus, Springer Link and China National Knowledge Infrastructure (CNKI), as well as Chinese herbal classic books, PhD and MSc theses, and several official websites. RESULTS Erycibe species have been used for the treatment of various rheumatoid diseases, glaucoma, a variety of hepatic diseases, infectious diseases and various malignancies in the traditional and local medicine. Since the 1970s, 153 compounds, including coumarins, quinic acid derivatives, flavonoids, alkaloids, lignans, and others have been isolated from five species of the Erycibe genus. Pharmacological studies have shown that these extracts and compounds from the Erycibe genus have extensive activities consistent with the traditional and local applications, such as anti-glaucoma, anti-arthritic, hepatoprotective and anti-cancer activities, as well as anti-inflammatory, anti-respiratory syncytial virus (RSV), and neuroprotective properties. CONCLUSIONS Although there are extensive data on the genus Erycibe, certain specific gaps still exist. For herbal preparations containing Erycibe species, clinical toxicological investigation is required for the safety of these herbal preparation therapies, as well as further investigations on pharmacokinetics and bioavailability for guideline for clinical application. Furthermore, more detailed pharmacological, toxicological and clinical researches are needed to assess the alternatives to Erycibe species. Systematic and comprehensive pre-clinical studies are similarly required to estimate the possibility of extracts and compounds from the genus Erycibe with bioactivity developing into new drugs.
Collapse
Affiliation(s)
- Long Fan
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xu-Hua Yu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuan-Bin Chen
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin Lin
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shuo-Guo Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Liu H, Xu J, Xu X, Yuan Z, Song H, Yang L, Zhu D. Structure/function relationships of bean polysaccharides: A review. Crit Rev Food Sci Nutr 2021; 63:330-344. [PMID: 34256630 DOI: 10.1080/10408398.2021.1946480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Beans are a rich source of high quality protein and oil, and have attracted increasing interest from both nutrition researchers and health-conscious consumers. This review aims to provide a foundation for the future research and development of bean polysaccharides, by summarizing the sources, structure, and functions of bioactive bean polysaccharides. Structure/function relationships are described, for biological activities, such as immunological, antioxidant and anti-diabetes. This will provide useful guidance for further optimization of polysaccharide structure and the development of bean polysaccharides as a novel functional material.
Collapse
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
10
|
Yin M, Matsuoka R, Xi Y, Wang X. Comparison of Egg Yolk and Soybean Phospholipids on Hepatic Fatty Acid Profile and Liver Protection in Rats Fed a High-Fructose Diet. Foods 2021; 10:1569. [PMID: 34359438 PMCID: PMC8307941 DOI: 10.3390/foods10071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022] Open
Abstract
Perturbed lipid metabolism leads to ectopic lipid accumulation in tissues, such as the liver, thereby causing nonalcoholic fatty liver disease (NAFLD) and negatively influencing circulating lipid profile-inducing dyslipidemia. Phospholipids (PLs) with special biological activity are used to treat chronic diseases such as cardiovascular and cerebrovascular disease. PLs derived from egg yolk and soya bean have significant antioxidant and lipid-lowering abilities. This study examined the therapeutic effects of them on hyperlipidemia using a high-fructose-fed rat model; lipid metabolism and anti-inflammatory effects were also analyzed. The results showed that both egg yolk and soya bean phospholipids (EPLs and SPLs) reduced liver weight, hepatic TG, and MDA content as well as serum ALT, AST, TBA, and CRP levels (p < 0.05). The PLs also showed hypolipidemic and anti-inflammatory effects. EPLs and SPLs could inhibit the accumulation of hepatic fatty acids C18:1N9C, C18:0, and C22:6NS of rats fed a high-fat-and-sucrose diet. The intake of EPLs could significantly increase acetylcholine content in the blood and brain tissue. Histological examination showed that PLs intake could ameliorate the damage to liver tissue. This study suggested that EPLs and SPLs had a certain capacity of hypolipidemic and liver protection, and the therapeutic benefits of EPLs tended to be more effective than that of soybean phospholipids.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Rd, Nanhui New City, Pudong New District, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Ryosuke Matsuoka
- College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Rd, Nanhui New City, Pudong New District, Shanghai 201306, China
| | - Yinci Xi
- College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Rd, Nanhui New City, Pudong New District, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Rd, Nanhui New City, Pudong New District, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
11
|
Liu X, Zhao K, Jing N, Zhao Y, Yang X. EGCG regulates fatty acid metabolism of high-fat diet-fed mice in association with enrichment of gut Akkermansia muciniphila. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Akçay NC, Ömeroğlu S, Dizakar SÖA, Kavutçu M, Türkoğlu İ, Eşmekaya MA, Peker TV. The effects of melatonin on possible damage that will occur on adipocytokines and liver tissue by coadministration of fructose and bisphenol a (BPA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16231-16245. [PMID: 32124283 DOI: 10.1007/s11356-020-08041-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
BPA, one of the environmental endocrine disruptors, and fructose, reason of liver steatosis which is frequently encountered in the daily diet, contribute to the formation of metabolic syndrome (MetS). This study examines the possible effects of concurrent fructose and BPA administration on MetS and determines the effects of melatonin on this process. In the seven identified groups, a total of forty-two adult male Sprague Dawley rats were treated by following fructose, BPA, and melatonin amounts, separately and together: group 1 (control), group 2 (10% aqueous fructose), group 3 (25 mg/kg BPA), group 4 (10% fructose + 25 mg/kg BPA), group 5 (10% fructose + 20 mg/kg melatonin), group 6 (25 mg/kg BPA + 20 mg/kg melatonin), and group 7 (10% fructose + 25 mg/kg BPA + 20 mg/kg melatonin). At the end of 60 days, histochemical, immunohistochemical, and biochemical procedures were performed on liver tissue. As a result, it was seen that BPA and fructose + BPA induced morphological alteration and inflammation and increased intracellular lipid quantity and amount of collagen and reticular fibers. The percentage of apoptotic liver cells stained by annexin V-FITC/PI was lower in group 7 compared to the group 4 (p < 0,001) and also in group 6 compared to the group 3 (p = 0.014). Both BPA and fructose application caused an increase in lipid peroxidation level due to the increase of oxidative stress. Application of melatonin induced antioxidant enzyme activity and reduced lipid peroxidation level. Our results indicate that fructose and BPA administration triggered the formation of MetS, whereas melatonin healed these variations, although not entirely.
Collapse
Affiliation(s)
- Neslihan Coşkun Akçay
- Department of Obstetrics and Gynecology, In Vitro Fertilization Unit, Hacettepe University Faculty of Medicine, 2th Floor, 06230, Ankara, Turkey.
| | - Suna Ömeroğlu
- Department of Histology and Embryology, Gazi University Medical Faculty. Gazi University Faculty of Medicine Dean's Building, 4th Floor, Beşevler, Yenimahalle, 06560, Ankara, Turkey
| | - Saadet Özen Akarca Dizakar
- Department of Histology and Embryology, Gazi University Medical Faculty. Gazi University Faculty of Medicine Dean's Building, 4th Floor, Beşevler, Yenimahalle, 06560, Ankara, Turkey
| | - Mustafa Kavutçu
- Department of Biochemistry, Gazi University Medical Faculty. Gazi University Faculty of Medicine Dean's Building, 5th Floor, Beşevler, Yenimahalle, 06560, Ankara, Turkey
| | - İsmail Türkoğlu
- Department of Histology and Embryology, Gazi University Medical Faculty. Gazi University Faculty of Medicine Dean's Building, 4th Floor, Beşevler, Yenimahalle, 06560, Ankara, Turkey
| | - Meriç Arda Eşmekaya
- Department of Biophysics, Gazi University Medical Faculty. Gazi University Faculty of Medicine Dean's Building, 5th Floor, Beşevler, Yenimahalle, 06560, Ankara, Turkey
| | - Tuncay Veysel Peker
- Department of Anatomy, Gazi University Medical Faculty. Gazi University Faculty of Medicine Dean's Building, 2th Floor, Beşevler, Yenimahalle, 06560, Ankara, Turkey
| |
Collapse
|
13
|
Zhu LF, Chen X, Ahmad Z, Peng Y, Chang MW. A core–shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing. Biofabrication 2020; 12:025026. [DOI: 10.1088/1758-5090/ab782c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Liu X, Zhao K, Yang X, Zhao Y. Gut Microbiota and Metabolome Response of Decaisnea insignis Seed Oil on Metabolism Disorder Induced by Excess Alcohol Consumption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10667-10677. [PMID: 31483636 DOI: 10.1021/acs.jafc.9b04792] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study investigated the modulatory effects of Decaisnea insignis seed oil (DISO), which was rich in palmitoleic acid (55.25%), palmitic acid (12.25%), and oleic acid (28.74%), on alcohol-induced metabolism disorder in mice. Fifty mice were orally administered with 38% alcohol (0.4 mL/day) and without or with DISO (3, 6, and 12 g/kg) for consecutive 12 weeks. DISO inhibited the alcohol-induced weight loss and liver function abnormality (p < 0.01) and shifted the profiles of cecal microbiome: elevating the abundance of Lactobacillus, Ruminoccoceae_UCG_004 (p < 0.05) and decreasing abundance of Parabacteroides (p < 0.05). This treatment also regulated metabolome response of amino acid and lipid metabolism in cecal content: upregulating 5-hydroxyindole-3-acetic acid (p < 0.05), 6-hydroxynicotinic acid, 5-methoxytryptamine, nicotinamide, and nicotinic acid (p < 0.1) and downregulating androsterone, tryptophan, and indole-3-acetamide (p < 0.05). DISO protected against alcoholic liver injury and gut microbiota dysbiosis by enriching the relative abundance of Lactobacillus, which was positively associated with the improvement of intestinal permeability and tryptophan metabolism.
Collapse
|
15
|
Xin X, Chen C, Hu YY, Feng Q. Protective effect of genistein on nonalcoholic fatty liver disease (NAFLD). Biomed Pharmacother 2019; 117:109047. [PMID: 31176163 DOI: 10.1016/j.biopha.2019.109047] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
NAFLD is a vital health problem worldwide; however, no effective treatment is currently available for NAFLD. Intensive studies have indicated the efficacy of genistein (GE), a bioactive isoflavone extracted from soy, in treating NAFLD. In addition to its oestrogen-like effects, GE is known to have multiple molecular effects, for instance, lipid and glucose metabolism-promoting effects and activities against lipid peroxidation, inflammation, fibrosis, and NAFLD-related tumours. Here, this review summarizes the potential role of GE in the treatment and prevention of NAFLD and some of the currently known targets and signalling pathways of GE in NAFLD.
Collapse
Affiliation(s)
- Xin Xin
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Chen
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Yang Hu
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
| | - Qin Feng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
16
|
Li W, Wang X, Zhang J, Zhao X, Wu Y, Tan S, Zheng Q, Gao X. Multivariate Analysis Illuminates the Effects of Vacuum Drying on the Extractable and Nonextractable Polyphenols Profile of Loquat Fruit. J Food Sci 2019; 84:726-737. [PMID: 30875438 DOI: 10.1111/1750-3841.14500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
The current study evaluated the effects of vacuum drying on the whole polyphenol profile of loquat fruit, including extractive and nonextractive polyphenols. Absorbance analysis determined that total polyphenol content and antioxidant levels were higher in loquat fruit vacuum dried at 140 °C than in loquat fruit vacuum dried at 70 °C. The results of ultra-HPLC-triple quadruple mass spectrum analysis showed that 15 phenolic acids and 17 flavonoids were found in dried loquat fruit. Multivariate integrative (MINT) sparse partial least square-discriminant analysis showed that vacuum drying affects the polyphenol profile of loquat fruit. Co-analysis of principal component analysis, partial least square-discriminant analysis, and orthometric partial least square-discriminant analysis revealed that vacuum drying mainly changed the content of chlorogenic acid, cryptochlorogenic acid, protocatechuic acid, phloretin, and hesperidin in loquat fruit. Chlorogenic acid (12.020 to 39.153 µg/g d.b. [dried base weight]), the main polyphenol in dried loquat fruit, was degraded to caffeic acid (0.028 to 2.365 µg/g d.b.) and protocatechuic acid (0.014 to 18.285 µg/g d.b.) during vacuum drying. Moreover, vacuum drying also induced the isomerization of chlorogenic acid into cryptochlorogenic acid (1.628 to 12.737 µg/g d.b.). These results might be used to develop dried loquat fruit with high levels of polyphenols and antioxidant activity. PRACTICAL APPLICATION: Interests in polyphenols of loquat fruit had increased greatly because of their possible role in health benefits. This work provided a holistic insight in the effects of vacuum drying on polyphenols profile of loquat fruit. Current results have contributed to the development of vacuum-drying method, which produced loquat fruit rich in polyphenols. Furthermore, it also suggested that multivariate analysis was a feasible method to reveal the important changes of polyphenols profile during food processing.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal Univ., Chongqing, 408100, China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing Univ. of Education, Chongqing, 400067, China
| | - Xv Wang
- School of Life Science and Biotechnology, Yangtze Normal Univ., Chongqing, 408100, China
| | - Jing Zhang
- School of Life Science and Biotechnology, Yangtze Normal Univ., Chongqing, 408100, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Univ. of Education, Chongqing, 400067, China
| | - Yingmei Wu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering, Chongqing Three Gorges Univ., Chongqing, 404100, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal Univ., Chongqing, 408100, China
| | - Qiaoran Zheng
- School of Life Science and Biotechnology, Yangtze Normal Univ., Chongqing, 408100, China
| | - Xiaoxv Gao
- School of Life Science and Biotechnology, Yangtze Normal Univ., Chongqing, 408100, China
| |
Collapse
|
17
|
Yin Y, Liu H, Zheng Z, Lu R, Jiang Z. Genistein can ameliorate hepatic inflammatory reaction in nonalcoholic steatohepatitis rats. Biomed Pharmacother 2019; 111:1290-1296. [PMID: 30841442 DOI: 10.1016/j.biopha.2019.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Genistein plays an active role in improving nonalcoholic fatty liver disease (NAFLD). This study is designed to investigate the effect of genistein on liver inflammation in rats with nonalcoholic steatohepatitis (NASH). Forty SPF male SD rats were randomly divided into normal group, model group, genistein low-dose group (0.1% wt/wt) and high-dose group (0.2% wt/wt) with 10 rats in each group. After 12 weeks' feeding, liver tissues and serum samples of rats were taken, and HE staining was used to perform pathological examination of liver tissues, then the degree of inflammatory infiltration was observed and NAFLD activity score(NAS) was calculated. With corresponding kits, several indicators were detected, namely, serum triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), liver TC and TG, and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood glucose and serum endotoxin. The levels of tumor necrosis factor (TNFα) in liver and insulin in blood of rats were detected by enzyme linked immunosorbent assay (ELISA), then the HOMA-IR index was calculated. Immunohistochemistry staining was used to observe the expression level of TLR4 protein and the RT-PCR was used to detect Tlr4 mRNA expression in liver tissue. The results showed that genistein could reduce TLR4 protein and gene expression, decrease the endotoxin and TNFα, alleviate the inflammatory reaction and make the indicators detected in blood and liver stay near normal in NASH rats. In conclusion, genistein can ameliorate hepatic inflammatory reaction in nonalcoholic steatohepatitis rats.
Collapse
Affiliation(s)
- Yimin Yin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Huanhuan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Zicong Zheng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Rongrong Lu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Effects of Stachyose on Synbiotic Yogurt Obtained from Goat Milk with Lactobacillus acidophilus and Lactobacillus casei. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2019. [DOI: 10.2478/aucft-2018-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Development of synbiotic yogurt having multiple health benefits has become a new trend. The purpose of this study was to obtain the optimum stachyose concentration of the goat yogurt fermented by probiotics including Lactobacillus acidophilus (LA) or Lactobacillus casei (LC) besides Streptococcus thermophilus and Lactobacillus bulgaricus by measuring pH, acidity, viable counts and the change of stachyose content. The optimal stachyose concentration of goat LA-yogurt and goat LC-yogurt were 0.4% and 0.8%. Under the above concentrations, the total bacteria number and the viable counts of LA were 2.02×109cfu/mL, 3×107cfu/mL, respectively; the total bacteria number and the viable counts of LC were 2.55×109cfu/mL, 2.53×108cfu/mL, respectively. The results indicate that stachyose can effectively improve the vitality and the viable counts of strains in goat yogurt.
Collapse
|
19
|
Li W, Zhang K, Zhao Q. Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice. Int J Food Sci Nutr 2019; 70:311-322. [DOI: 10.1080/09637486.2018.1511688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Kun Zhang
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Qiang Zhao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, China
| |
Collapse
|
20
|
Zhang B, Ren D, Zhao Y, Liu Y, Zhai X, Yang X. Artemisia sphaerocephala Krasch polysaccharide prevents hepatic steatosis in high fructose-fed mice associated with changes in the gut microbiota. Food Funct 2019; 10:8137-8148. [DOI: 10.1039/c9fo01890e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High fructose (HF) diet-induced liver steatosis is associated with intestinal microbiota dysbiosis.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Life Sciences
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Xichuan Zhai
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| |
Collapse
|
21
|
Wang Q, Huang J, Shao H, Zhou Y, Xia K, Huang F, Zhang H, Yang X. Chemical Profile, Quality and Antioxidant Properties of Palmitoleic Acid Rich Oil from Decaisnea insignis Seeds by Different Extraction Techniques. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Qi Wang
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University
| | - Jiayin Huang
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University
| | - Hongjun Shao
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University
| | - Yuhao Zhou
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University
| | - Kangxuan Xia
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University
| | - Feng Huang
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing
| | - Hong Zhang
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University
| |
Collapse
|
22
|
Li W, Zhang K, Yang H. Pectin Alleviates High Fat (Lard) Diet-Induced Nonalcoholic Fatty Liver Disease in Mice: Possible Role of Short-Chain Fatty Acids and Gut Microbiota Regulated by Pectin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8015-8025. [PMID: 29987933 DOI: 10.1021/acs.jafc.8b02979] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Consumption of pectin contributes to changes in the gut microbiota and the metabolism of short-chain fatty acids (SCFAs). We aimed to investigate the effects of and mechanism by which pectin prevented nonalcoholic fatty liver disease (NAFLD) in mice that were fed a high-fat diet containing 30% lard (HF). HF-fed mice that orally ingested pectin for 8 weeks exhibited improvements in lipid metabolism and decreased oxidative stress and inflammation through a mechanism regulated by the mitogen-activated protein kinase pathway. Pectin dose-dependently generated an increase in acetic acid (from 566.4 ± 26.6 to 694.6 ± 35.9 μmol/mL, p < 0.05) and propionic acid (from 474.1 ± 84.3 to 887.0 ± 184.7 μmol/mL, p < 0.05) contents and significantly increased the relative abundance of Bacteroides (from 0.27% to 11.6%), Parabacteroides (from 3.9‰ to 5.3%), Olsenella (from 2.9‰ to 1.3%), and Bifidobacterium (from 0.03% to 1.9%) in the gut of HF-fed mice. Intestinal microbiota and SCFAs may thus contribute to the well-established link between pectin consumption and NAFLD.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology , Yangtze Normal University , Chongqing 408100 , China
| | - Kun Zhang
- School of Clinical Medicine , Jining Medical University , Jining 272067 , China
| | - Hongyan Yang
- School of Aerospace Medicine , Fourth Military Medical University , Xi'an 710032 , China
| |
Collapse
|
23
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
24
|
Li W, Lu Y. Hepatoprotective Effects of Sophoricoside against Fructose-Induced Liver Injury via
Regulating Lipid Metabolism, Oxidation, and Inflammation in Mice. J Food Sci 2018; 83:552-558. [DOI: 10.1111/1750-3841.14047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology; Yangtze Normal Univ.; Chongqing 408100 China
| | - Yalong Lu
- College of Food Engineering and Nutritional Science; Shaanxi Normal Univ.; Xi'an 710062 China
| |
Collapse
|
25
|
Zhong XF, Zhang YB, Huang GD, Ouyang YZ, Liao DJ, Peng JW, Huang WZ. Proteomic analysis of stachyose contribution to the growth of Lactobacillus acidophilus CICC22162. Food Funct 2018; 9:2979-2988. [DOI: 10.1039/c8fo00528a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stachyose is a functional oligosaccharide, acting as a potential prebiotic for colonic fermentation.
Collapse
Affiliation(s)
- Xian-feng Zhong
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| | - Yu-bo Zhang
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| | - Gui-dong Huang
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| | - Yong-zhong Ouyang
- School of Environmental and Chemical Engineering
- Foshan University
- Foshan 528231
- China
| | | | - Jia-wei Peng
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| | - Wei-zhi Huang
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| |
Collapse
|
26
|
Lu Y, Li W, Yang X. Soybean soluble polysaccharide enhances absorption of soybean genistein in mice. Food Res Int 2018; 103:273-279. [PMID: 29389615 DOI: 10.1016/j.foodres.2017.10.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/18/2017] [Accepted: 10/28/2017] [Indexed: 02/01/2023]
Abstract
This study was designed to probe the promoting effects of soybean soluble polysaccharide (SSPS) on bioavailability of genistein in mice and the underlying molecular mechanism. Male Kunming mice (n=8) were administered intragastrically with either saline, SSPS (5mg/kgbw), genistein (100mg/kgbw), or SSPS (5 or 50mg/kgbw) together with genistein (100mg/kgbw) for consecutive 28days. UPLC-qTOF/MS analysis showed that co-administration of SSPS and genistein in mice caused significant elevation in the urinary levels of genistein and its metabolites (p<0.05). Furthermore, the fecal excretion of genistein was also enhanced by co-administration of SSPS. However, the feces level of dihydrogenistein, a characteristic metabolite of genistein degraded by gut microorganism, was dose-dependently decreased by the combined treatment of SSPS. Additionally, co-treatment of SSPS with genistein also decreased the small intestinal levels of uridinediphosphate-glucuronosyltransferase (UGT), sulfotransferase (SULT), P-glycoprotein (P-gp), multidrug resistance-associated protein-1 (MRP1), and multidrug resistance-associated protein-2 (MRP2) in mice. These findings suggest that the inhibition of SSPS against small intestinal first-pass metabolism of genistein is involved in the promoting effect of genistein bioavailability in mice.
Collapse
Affiliation(s)
- Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Wenfeng Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; School of life science and biotechnology, Yangtze Normal University, Chongqing 408100, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
27
|
Lu Y, Li W, Yang X. Soluble soybean polysaccharides enhance the protective effects of genistein against hepatic injury in high l-carnitine-fed mice. Food Funct 2017; 8:4364-4373. [PMID: 29067388 DOI: 10.1039/c7fo00907k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
This study was to develop a novel strategy for the simultaneous consumption of soluble soybean polysaccharides (SSPS) to enhance the absorption of genistein and its protective effects against high l-carnitine-induced hepatic injury in mice. UPLC-qTOP/MS measurements showed that SSPS observably increased the urinary concentration of genistein and its metabolites in mice. The mice fed with 3% l-carnitine water for 12 weeks experienced a disturbance of the hepatic lipid metabolism, oxidative stress and inflammation, which was evidenced by abnormal TC, LDL, RAHFR and MDA levels, unusual AST, ALT, ALP, SOD and GSP-Px activities, and increased IF-1, IF-6 and TNF-α expressions. Interestingly, the co-supplementation of SSPS and genistein was capable of regulating these imbalances more effectively than the administration of SSPS or genistein alone, which was also confirmed by histological observations of the mouse liver. These findings suggest that the co-ingestion of SSPS and genistein is a feasible strategy for improving liver protection in mice.
Collapse
Affiliation(s)
- Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | | | | |
Collapse
|
28
|
Lu Y, Lin D, Li W, Yang X. Non-digestible stachyose promotes bioavailability of genistein through inhibiting intestinal degradation and first-pass metabolism of genistein in mice. Food Nutr Res 2017; 61:1369343. [PMID: 28970781 PMCID: PMC5613906 DOI: 10.1080/16546628.2017.1369343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022] Open
Abstract
This study was designed to explore the molecular mechanism of stachyose in enhancing the gastrointestinal stability and absorption of soybean genistein in mice. Male Kunming mice in each group (n = 8) were administered by intragastric gavage with saline, stachyose (250 mg/kg·bw), genistein (100 mg/kg·bw), and stachyose (50, 250, and 500 mg/kg·bw) together with genistein (100 mg/kg·bw) for 4 consecutive weeks, respectively, and then their urine, feces, blood, gut, and liver were collected. UPLC-qTOF/MS analysis showed that levels of genistein and its metabolites (dihydrogenistein, genistein 7-sulfate sodium salt, genistein 4'-β-D-glucuronide, and genistein 7-β-D-glucuronide) in serum and urine were increased with an increase in stachyose dosages in mice. Furthermore, the feces level of genistein aglycone was also elevated by co-treatment of stachyose with genistein. However, the feces concentration of dihydrogenistein, a characteristic metabolite of genistein by gut microorganism, was decreased by stachyose administration in a dose-dependent manner. Additionally, the simultaneous administration with stachyose and genistein in mice could decrease intestinal SULT, UGT, P-gp, and MRP1 expression, relative to the treatment with individual stachyose or genistein. These results demonstrate that stachyose-mediated inhibition against the intestinal degradation of genistein and expression of phase II enzymes and efflux transporters can largely contribute to the elevated bioavailability of soybean genistein.
Collapse
Affiliation(s)
- Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenfeng Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Chongqing Municipality for Protection and Utility of Unique Plant Resources in the Wulingshan Region, Life Science and Technology Institute, Yangtze Normal University, Chongqing, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
29
|
Chen Q, Wang T, Li J, Wang S, Qiu F, Yu H, Zhang Y, Wang T. Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 9:nu9020096. [PMID: 28146130 PMCID: PMC5331527 DOI: 10.3390/nu9020096] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/22/2017] [Indexed: 01/21/2023] Open
Abstract
As a sugar additive, fructose is widely used in processed foods and beverages. Excessive fructose consumption can cause hepatic steatosis and dyslipidemia, leading to the development of metabolic syndrome. Recent research revealed that fructose-induced nonalcoholic fatty liver disease (NAFLD) is related to several pathological processes, including: (1) augmenting lipogenesis; (2) leading to mitochondrial dysfunction; (3) stimulating the activation of inflammatory pathways; and (4) causing insulin resistance. Cellular signaling research indicated that partial factors play significant roles in fructose-induced NAFLD, involving liver X receptor (LXR)α, sterol regulatory element binding protein (SREBP)-1/1c, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), peroxisome proliferator–activated receptor α (PPARα), leptin nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), c-Jun amino terminal kinase (JNK), phosphatidylinositol 3-kinase (PI3K) and adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK). Until now, a series of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the natural products (e.g., curcumin, resveratrol, and (−)-epicatechin) and their mechanisms of ameliorating fructose-induced NAFLD over the past years. Although, as lead compounds, natural products usually have fewer activities compared with synthesized compounds, it will shed light on studies aiming to discover new drugs for NAFLD.
Collapse
Affiliation(s)
- Qian Chen
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Tingting Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Jian Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Sijian Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Haiyang Yu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| | - Tao Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| |
Collapse
|