1
|
Zhou S, Li R, Sun J, Gu M, Gao D, Tang L, Zhu J. Construction of a pumpless gravity-driven vascularized Skin-on-a-Chip for the study of hepatocytotoxicity in percutaneous exposure to exogenous chemicals. Biomed Microdevices 2024; 26:40. [PMID: 39302507 DOI: 10.1007/s10544-024-00723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The utilization of existing Skin-on-a-Chip (SoC) is constrained by the complex structures, the multiplicity of auxiliary devices, and the inability to evaluate exogenous chemicals that are hepatotoxic after percutaneous metabolism. In this study, a gravity-driven SoC without any auxiliary devices was constructed for the hepatocytotoxicity study of exogenous chemicals. The SoC possesses 3 layers of culture chambers, from top to bottom, for human skin equivalent (HSE), Human Umbilical Vein Endothelial Cells (HUVEC) and hepatocytes (HepG2), and the maintenance and expression capacity of the corresponding cells on the SoC were verified by specificity parameters. The reactivity of the SoC to exogenous chemicals was verified by 2-aminofluorene (2-AF). The SoC can realistically simulate the in vivo exposure process of exogenous chemicals that are percutaneously exposed and metabolized into the bloodstream and then to the liver to produce toxicity, and it can achieve the same effects on transcriptome as those of animal tests at lower exposure levels while examining multiple toxicological targets of the skin, vascular endothelial cells, and hepatocytes. Both in terms of species similarity, the principles of reduction, replacement and refinement (3R), or the level of exposure suggest that the present SoC has a degree of replacement for animal models in assessing exogenous chemicals, especially those that are hepatotoxic after percutaneous metabolism.
Collapse
Affiliation(s)
- Su Zhou
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Rui Li
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Jie Sun
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Minyang Gu
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Dan Gao
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Jiangbo Zhu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Zhang X, Su R, Wang H, Wu R, Fan Y, Bin Z, Gao C, Wang C. The promise of Synovial Joint-on-a-Chip in rheumatoid arthritis. Front Immunol 2024; 15:1408501. [PMID: 39324139 PMCID: PMC11422143 DOI: 10.3389/fimmu.2024.1408501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Rheumatoid arthritis (RA) affects millions of people worldwide, but there are limited drugs available to treat it, so acquiring a more comprehensive comprehension of the underlying reasons and mechanisms behind inflammation is crucial, as well as developing novel therapeutic approaches to manage it and mitigate or forestall associated harm. It is evident that current in vitro models cannot faithfully replicate all aspects of joint diseases, which makes them ineffective as tools for disease research and drug testing. Organ-on-a-chip (OoC) technology is an innovative platform that can mimic the microenvironment and physiological state of living tissues more realistically than traditional methods by simulating the spatial arrangement of cells and interorgan communication. This technology allows for the precise control of fluid flow, nutrient exchange, and the transmission of physicochemical signals, such as bioelectrical, mechanical stimulation and shear force. In addition, the integration of cutting-edge technologies like sensors, 3D printing, and artificial intelligence enhances the capabilities of these models. Here, we delve into OoC models with a particular focus on Synovial Joints-on-a-Chip, where we outline their structure and function, highlighting the potential of the model to advance our understanding of RA. We integrate the actual evidence regarding various OoC models and their possible integration for multisystem disease study in RA research for the first time and introduce the prospects and opportunities of the chip in RA etiology and pathological mechanism research, drug research, disease prevention and human precision medicine. Although many challenges remain, OoC holds great promise as an in vitro model that approaches physiology and dynamics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Yuxin Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Zexuan Bin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
4
|
Asbóth D, Bánfi B, Kocsis D, Erdő F. Rodent models of dermatological disorders. Ital J Dermatol Venerol 2024; 159:303-317. [PMID: 38287740 DOI: 10.23736/s2784-8671.23.07700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
To assess the possible beneficial effects of drugs and drug candidates, different dermatological disease models are available in rodents. These models are able to mimic one or more characteristic features of the disorders, but not completely recapitulate the pathogenesis of the human skin diseases. Therefore, to improve the technology many new models have been developed both by genetic engineering and by chemical or physical induction. Currently the in vivo rodent models provide the physiologically most relevant approach to produce the pathology related to the majority of dermatological diseases. In this short review some widely used animal techniques (psoriasis, allergic contact dermatitis, atopic dermatitis, wound healing, melanoma and non-melanoma type skin cancers and UV erythema) are shown which are currently applied in pharmacological, pharmacokinetic, pharmaceutical and dermatological research. First the main points of the human pathomechanism are shown and afterwards the rodent models are briefly discussed. Finally critical evaluation is provided by the authors. However, according to the 3R rule the number of experimental animals is strongly suggested to be reduced, therefore the advanced in vitro and ex vivo techniques become more and more important contrary to in vivo preclinical methods also in dermatological research. As it is described in the outlook section, although the 2D/3D in vitro and skin on-a-chip techniques are promising and have many advantages they are not able to completely substitute the animal models in their vascular, immunological, secretory and neural complexity.
Collapse
Affiliation(s)
- Dorottya Asbóth
- Pediatric Dermatology Center, Szent János Center Hospital in North Buda, Budapest, Hungary
| | - Barnabás Bánfi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary -
| |
Collapse
|
5
|
Mikimoto D, Mori M, Toyoda A, Yo K, Oda H, Takeuchi S. Culture insert device with perfusable microchannels enhances in vitroskin model development and barrier function assessment. Biofabrication 2024; 16:035006. [PMID: 38569494 DOI: 10.1088/1758-5090/ad3a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
The ever-stricter regulations on animal experiments in the field of cosmetic testing have prompted a surge in skin-related research with a special focus on recapitulation of thein vivoskin structurein vitro. In vitrohuman skin models are seen as an important tool for skin research, which in recent years attracted a lot of attention and effort, with researchers moving from the simplest 2-layered models (dermis with epidermis) to models that incorporate other vital skin structures such as hypodermis, vascular structures, and skin appendages. In this study, we designed a microfluidic device with a reverse flange-shaped anchor that allows culturing of anin vitroskin model in a conventional 6-well plate and assessing its barrier function without transferring the skin model to another device or using additional contraptions. Perfusion of the skin model through vascular-like channels improved the morphogenesis of the epidermis compared with skin models cultured under static conditions. This also allowed us to assess the percutaneous penetration of the tested caffeine permeation and vascular absorption, which is one of the key metrics for systemic drug exposure evaluation.
Collapse
Affiliation(s)
| | - Masahito Mori
- Research Center for Beauty and Health Care Product Development Department, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Akemi Toyoda
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Kazuyuki Yo
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | | | | |
Collapse
|
6
|
Ponmozhi J, Dhinakaran S, Kocsis D, Iván K, Erdő F. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barriers 2024; 12:2221632. [PMID: 37294075 PMCID: PMC11042069 DOI: 10.1080/21688370.2023.2221632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore, India
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
7
|
Akpojevwe Abafe O, Harrad S, Abou-Elwafa Abdallah M. Assessment of human dermal absorption of flame retardant additives in polyethylene and polypropylene microplastics using 3D human skin equivalent models. ENVIRONMENT INTERNATIONAL 2024; 186:108635. [PMID: 38631261 DOI: 10.1016/j.envint.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
To overcome ethical and technical challenges impeding the study of human dermal uptake of chemical additives present in microplastics (MPs), we employed 3D human skin equivalent (3D-HSE) models to provide first insights into the dermal bioavailability of polybrominated diphenyl ether (PBDEs) present in MPs; and evaluated different factors influencing human percutaneous absorption of PBDEs under real-life exposure scenario. PBDEs were bioavailable to varying degrees (up to 8 % of the exposure dose) and percutaneous permeation was evident, albeit at low levels (≤0.1 % of the exposure dose). While the polymer type influenced the release of PBDEs from the studied MPs to the skin, the polymer type was less important in driving the percutaneous absorption of PBDEs. The absorbed fraction of PBDEs was strongly correlated (r2 = 0.88) with their water solubility, while the dermal permeation coefficient Papp of PBDEs showed strong association with their molecular weight and logKOW. More sweaty skin resulted in higher bioavailability of PBDEs from dermal contact with MPs than dry skin. Overall, percutaneous absorption of PBDEs upon skin contact with MPs was evident, highlighting, for the first time, the potential significance of the dermal pathway as an important route of human exposure to toxic additive chemicals in MPs.
Collapse
Affiliation(s)
- Ovokeroye Akpojevwe Abafe
- Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
8
|
Malallah OS, Coleman L, Nasereddin SM, Lockhat M, Chen T, Jones SA. Systematic review and QSPR analysis of chemical penetration through the nail to inform onychomycosis candidate selection. Drug Discov Today 2024; 29:103844. [PMID: 38000719 DOI: 10.1016/j.drudis.2023.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Recalcitrant nail plate infections can be life-long problems because localizing antifungal agents into infected tissues is problematic. In this systematic review, guided by the SPIDER method, we extracted chemical nail permeation data for 38 compounds from 16 articles, and analyzed the data using quantitative structure-property relationships (QSPRs). Our analysis demonstrated that low-molecular weight was essential for effective nail penetration, with <120 g/mol being preferred. Interestingly, chemical polarity had little effect on nail penetration; therefore, small polar molecules, which effectively penetrate the nail, but not the skin, should be set as the most desirable target chemical property in new post-screen onychomycosis candidate selections.
Collapse
Affiliation(s)
- Osamah S Malallah
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Lucy Coleman
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Sara M Nasereddin
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK; College of Pharmacy, Amman Arab University, Mubis, Amman 11953, Jordan
| | - Mohammad Lockhat
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Tao Chen
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK; Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College, SE1 9NH, UK.
| |
Collapse
|
9
|
Govey-Scotland J, Johnstone L, Myant C, Friddin MS. Towards skin-on-a-chip for screening the dermal absorption of cosmetics. LAB ON A CHIP 2023; 23:5068-5080. [PMID: 37938128 DOI: 10.1039/d3lc00691c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Over the past few decades, there have been increasing global efforts to limit or ban the use of animals for testing cosmetic products. This ambition has been at the heart of international endeavours to develop new in vitro and animal-free approaches for assessing the safety of cosmetics. While several of these new approach methodologies (NAMs) have been approved for assessing different toxicological endpoints in the UK and across the EU, there remains an absence of animal-free methods for screening for dermal absorption; a measure that assesses the degree to which chemical substances can become systemically available through contact with human skin. Here, we identify some of the major technical barriers that have impacted regulatory recognition of an in vitro skin model for this purpose and propose how these could be overcome on-chip using artificial cells engineered from the bottom-up. As part of our future perspective, we suggest how this could be realised using a digital biomanufacturing pipeline that connects the design, microfluidic generation and 3D printing of artificial cells into user-crafted synthetic tissues. We highlight milestone achievements towards this goal, identify future challenges, and suggest how the ability to engineer animal-free skin models could have significant long-term consequences for dermal absorption screening, as well as for other applications.
Collapse
Affiliation(s)
- Jessica Govey-Scotland
- Dyson School of Design Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK.
- Institute for Molecular Sciences and Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK
| | - Liam Johnstone
- Office for Product Safety and Standards, 1 Victoria Street, SW1H 0ET, London, UK
| | - Connor Myant
- Dyson School of Design Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK.
| | - Mark S Friddin
- Dyson School of Design Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK.
- Institute for Molecular Sciences and Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK
- fabriCELL, Imperial College London and Kings College London, London, UK
| |
Collapse
|
10
|
Kim TH, Kim NY, Lee HU, Choi JW, Kang T, Chung BG. Smartphone-based iontophoresis transdermal drug delivery system for cancer treatment. J Control Release 2023; 364:383-392. [PMID: 37914000 DOI: 10.1016/j.jconrel.2023.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a leading cause of the death worldwide. However, the conventional cancer therapy still suffers from several limitations, such as systemic side effects, poor efficacy, and patient compliance due to limited accessibility to the tumor site. To address these issues, the localized drug delivery system has emerged as a promising approach. In this study, we developed an iontophoresis-based transdermal drug delivery system (TDDS) controlled by a smartphone application for cancer treatment. Iontophoresis, a low-intensity electric current-based TDDS, enhances drug permeation across the skin to provide potential for localized drug delivery and minimize systemic side effects. The fundamental mechanism of our system was modeled using finite element analysis and its performance was corroborated through the flow-through skin permeation tests using a plastic-based microfluidic chip. The results of in vitro cell experiments and skin deposition tests successfully demonstrated that our smartphone-controlled iontophoresis system significantly enhanced the drug permeation for cancer treatment. Therefore, this hand-held smartphone-based iontophoresis TDDS could be a powerful tool for self-administrated anticancer drug delivery applications.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea; Institute of Smart Biosensor, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Muniraj G, Tan RHS, Dai Y, Wu R, Alberti M, Sriram G. Microphysiological Modeling of Gingival Tissues and Host-Material Interactions Using Gingiva-on-Chip. Adv Healthc Mater 2023; 12:e2301472. [PMID: 37758297 PMCID: PMC11468103 DOI: 10.1002/adhm.202301472] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Gingiva plays a crucial barrier role at the interface of teeth, tooth-supporting structures, microbiome, and external agents. To mimic this complex microenvironment, an in vitro microphysiological platform and biofabricated full-thickness gingival equivalents (gingiva-on-chip) within a vertically stacked microfluidic device is developed. This design allowed long-term and air-liquid interface culture, and host-material interactions under flow conditions. Compared to static cultures, dynamic cultures on-chip enabled the biofabrication of gingival equivalents with stable mucosal matrix, improved epithelial morphogenesis, and barrier features. Additionally, a diseased state with disrupted barrier function representative of gingival/oral mucosal ulcers is modeled. The apical flow feature is utilized to emulate the mechanical action of mouth rinse and integrate the assessment of host-material interactions and transmucosal permeation of oral-care formulations in both healthy and diseased states. Although the gingiva-on-chip cultures have thicker and more mature epithelium, the flow of oral-care formulations induced increased tissue disruption and cytotoxic features compared to static conditions. The realistic emulation of mouth rinsing action facilitated a more physiological assessment of mucosal irritation potential. Overall, this microphysiological system enables biofabrication of human gingiva equivalents in intact and ulcerated states, providing a miniaturized and integrated platform for downstream host-material and host-microbiome applications in gingival and oral mucosa research.
Collapse
Affiliation(s)
- Giridharan Muniraj
- Faculty of DentistryNational University of SingaporeSingapore119085Singapore
| | - Rachel Hui Shuen Tan
- Singapore Institute of Manufacturing Technology (SIMTech)Agency for Science, Technology and Research (A*STAR)Singapore138634Singapore
| | - Yichen Dai
- Faculty of DentistryNational University of SingaporeSingapore119085Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology (SIMTech)Agency for Science, Technology and Research (A*STAR)Singapore138634Singapore
| | - Massimo Alberti
- Singapore Institute of Manufacturing Technology (SIMTech)Agency for Science, Technology and Research (A*STAR)Singapore138634Singapore
- REVIVO BioSystems Pte. Ltd.Singapore138623Singapore
| | - Gopu Sriram
- Faculty of DentistryNational University of SingaporeSingapore119085Singapore
- ORCHIDS: Oral Care Health Innovations and Designs SingaporeNational University of SingaporeSingapore119085Singapore
- NUS Centre for Additive Manufacturing (AM.NUS)National University of SingaporeSingapore117602Singapore
| |
Collapse
|
12
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
13
|
Tárnoki-Zách J, Bősze S, Czirók A. Quantitative Analysis of a Pilot Transwell Barrier Model with Automated Sampling and Mathematical Modeling. Pharmaceutics 2023; 15:2646. [PMID: 38004624 PMCID: PMC10675510 DOI: 10.3390/pharmaceutics15112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
In the preclinical phase of drug development, it is necessary to determine how the active compound can pass through the biological barriers surrounding the target tissue. In vitro barrier models provide a reliable, low-cost, high-throughput solution for screening substances early in the drug candidate development process, thus reducing more complex and costly animal studies. In this pilot study, the transport properties of TB501, an antimycobacterial drug candidate, were characterized using an in vitro barrier model of VERO E6 kidney cells. The compound was delivered into the apical chamber of the transwell insert, and its concentration passing through the barrier layer was measured through the automated sampling of the basolateral compartment, where media were replaced every 30 min for 6 h, and the collected samples were stored for further spectroscopic analysis. The kinetics of TB501 concentration obtained from VERO E6 transwell cultures and transwell membranes saturated with serum proteins reveal the extent to which the cell layer functions as a diffusion barrier. The large number of samples collected allows us to fit a detailed mathematical model of the passive diffusive currents to the measured concentration profiles. This approach enables the determination of the diffusive permeability, the diffusivity of the compound in the cell layer, the affinity of the compound binding to the cell membrane as well as the rate by which the cells metabolize the compound. The proposed approach goes beyond the determination of the permeability coefficient and offers a more detailed pharmacokinetic characterization of the transwell barrier model. We expect the presented method to be fruitful in evaluating other compounds with different chemical features on simple in vitro barrier models. The proposed mathematical model can also be extended to include various forms of active transport.
Collapse
Affiliation(s)
- Júlia Tárnoki-Zách
- Department of Biological Physics, Eötvös University, 1053 Budapest, Hungary;
| | - Szilvia Bősze
- National Center for Public Health and Pharmacy, 1437 Budapest, Hungary;
- HUN-REN-ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, 1052 Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eötvös University, 1053 Budapest, Hungary;
| |
Collapse
|
14
|
Mohamadali M, Ghiaseddin A, Irani S, Amirkhani MA, Dahmardehei M. Design and evaluation of a skin-on-a-chip pumpless microfluidic device. Sci Rep 2023; 13:8861. [PMID: 37258538 DOI: 10.1038/s41598-023-34796-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
The development of microfluidic culture technology facilitates the progress of study of cell and tissue biology. This technology expands the understanding of pathological and physiological changes. A skin chip, as in vitro model, consisting of normal skin tissue with epidermis and dermis layer (full thickness) was developed. Polydimethylsiloxane microchannels with a fed-batched controlled perfusion feeding system were used to create a full-thick ex-vivo human skin on-chip model. The design of a novel skin-on-a-chip model was reported, in which the microchannel structures mimic the architecture of the realistic vascular network as nutrients transporter to the skin layers. Viabilities of full-thick skin samples cultured on the microbioreactor and traditional tissue culture plate revealed that a precise controlled condition provided by the microfluidic enhanced tissue viability at least for seven days. Several advantages in skin sample features under micro-scale-controlled conditions were found such as skin mechanical strength, water adsorption, skin morphology, gene expression, and biopsy longevity. This model can provide an in vitro environment for localizing drug delivery and transdermal drug diffusion studies. The skin on the chip can be a valuable in vitro model for representing the interaction between drugs and skin tissue and a realistic platform for evaluating skin reaction to pharmaceutical materials and cosmetic products.
Collapse
Affiliation(s)
- Marjan Mohamadali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ghiaseddin
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
- Institute for Stem Cell Research and Regenerative Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mostafa Dahmardehei
- Department of Plastic and Reconstructive Surgery, Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
16
|
Li Q, Wang C, Li X, Zhang J, Zhang Z, Yang K, Ouyang J, Zha S, Sha L, Ge J, Chen Z, Gu Z. Epidermis-on-a-chip system to develop skin barrier and melanin mimicking model. J Tissue Eng 2023; 14:20417314231168529. [PMID: 37114033 PMCID: PMC10126702 DOI: 10.1177/20417314231168529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
In vitro skin models are rapidly developing and have been widely used in various fields as an alternative to traditional animal experiments. However, most traditional static skin models are constructed on Transwell plates without a dynamic three-dimensional (3D) culture microenvironment. Compared with native human and animal skin, such in vitro skin models are not completely biomimetic, especially regarding their thickness and permeability. Therefore, there is an urgent need to develop an automated biomimetic human microphysiological system (MPS), which can be used to construct in vitro skin models and improve bionic performance. In this work, we describe the development of a triple-well microfluidic-based epidermis-on-a-chip (EoC) system, possessing epidermis barrier and melanin-mimicking functions, as well as being semi-solid specimen friendly. The special design of our EoC system allows pasty and semi-solid substances to be effectively utilized in testing, as well as allowing for long-term culturing and imaging. The epidermis in this EoC system is well-differentiated, including basal, spinous, granular, and cornified layers with appropriate epidermis marker (e.g. keratin-10, keratin-14, involucrin, loricrin, and filaggrin) expression levels in corresponding layers. We further demonstrate that this organotypic chip can prevent permeation of over 99.83% of cascade blue (a 607 Da fluorescent molecule), and prednisone acetate (PA) was applied to test percutaneous penetration in the EoC. Finally, we tested the whitening effect of a cosmetic on the proposed EoC, thus demonstrating its efficacy. In summary, we developed a biomimetic EoC system for epidermis recreation, which could potentially serve as a useful tool for skin irritation, permeability, cosmetic evaluation, and drug safety tests.
Collapse
Affiliation(s)
- Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Science Researching and Training Center, Beijing, China
| | - Xiaoran Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Zilin Zhang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Keyu Yang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jun Ouyang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Shaohui Zha
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Lifeng Sha
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jianjun Ge
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Zaozao Chen, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou #2, Nanjing 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
| |
Collapse
|
17
|
Rahimnejad M, Rasouli F, Jahangiri S, Ahmadi S, Rabiee N, Ramezani Farani M, Akhavan O, Asadnia M, Fatahi Y, Hong S, Lee J, Lee J, Hahn SK. Engineered Biomimetic Membranes for Organ-on-a-Chip. ACS Biomater Sci Eng 2022; 8:5038-5059. [PMID: 36347501 DOI: 10.1021/acsbiomaterials.2c00531] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Organ-on-a-chip (OOC) systems are engineered nanobiosystems to mimic the physiochemical environment of a specific organ in the body. Among various components of OOC systems, biomimetic membranes have been regarded as one of the most important key components to develop controllable biomimetic bioanalysis systems. Here, we review the preparation and characterization of biomimetic membranes in comparison with the features of the extracellular matrix. After that, we review and discuss the latest applications of engineered biomimetic membranes to fabricate various organs on a chip, such as liver, kidney, intestine, lung, skin, heart, vasculature and blood vessels, brain, and multiorgans with perspectives for further biomedical applications.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Fariba Rasouli
- Bioceramics and Implants Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174-66191, Iran
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Sanghoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jungho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
18
|
Liu M, Sharma M, Lu GL, Zhang Z, Yin N, Wen J. Full factorial design, physicochemical characterization, ex vivo investigation, and biological assessment of glutathione-loaded solid lipid nanoparticles for topical application. Int J Pharm 2022; 630:122381. [PMID: 36427694 DOI: 10.1016/j.ijpharm.2022.122381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022]
Abstract
l-Glutathione (GSH) has exceptional antioxidant activities against UVA irradiation-induced oxidative stress and is used widely for combatting skin ageing. However, topical administration of GSH is challenging due to its inability to penetrate the stratum corneum (SC). This study aims to evaluate the solid lipid nanoparticles (SLNs) carrier system for improving the skin penetration and stability of GSH. The GSH-loaded SLNs (GSH-SLNs) were prepared by the double emulsion technique and were optimized by a full factorial design. The optimized GSH-SLNs formulation had a mean particle size of 305 ± 0.6 nm and a zeta potential of + 20.1 ± 9.5 mV, suitable for topical delivery. The ex-vivo penetration study using human skin demonstrated a 3.7-fold improvement of GSH penetration across SC with GSH-SLNs when compared with aqueous GSH. GSH-SLNs prolonged antioxidant activity on UVA irradiated fibroblast cells when compared to GSH solution, preventing UVA-induced cell death and promoting cell growth for times over 48 h. This research has illustrated that as a carrier system, SLNs were able to enhance the physicochemical stability, skin penetration, and drug deposition in the viable epidermis and dermis layers of the skin for GSH, while also maintaining the ability to protect human skin fibroblast cells against oxidative stress caused by UVA irradiation. This delivery system shows future promise as a topical delivery platform for the topical delivery of GSH and other chemically similar bioactive compounds for improving skin health.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Zhiwen Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
19
|
Kouassi MC, Grisel M, Gore E. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids Surf B Biointerfaces 2022; 217:112676. [DOI: 10.1016/j.colsurfb.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
|
20
|
Hu S, Muniraj G, Mishra A, Hong K, Lum JL, Hong CHL, Rosa V, Sriram G. Characterization of silver diamine fluoride cytotoxicity using microfluidic tooth-on-a-chip and gingival equivalents. Dent Mater 2022; 38:1385-1394. [PMID: 35778310 DOI: 10.1016/j.dental.2022.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE This study aims to characterize the cytotoxicity potential of silver diamine fluoride (SDF) on dental pulp stem cells (DPSC) and gingival equivalents. METHODS DPSC cultured on 96-well plates was exposed directly to SDF (0.0001-0.01%) and cell viability (IC50) quantified. Effect of SDF on DPSC viability under flow (with dentin barrier) conditions was evaluated using a custom-designed microfluidic "tooth-on-a-chip". Permeability of dentin discs (0.5-1.5 mm thickness) was evaluated using lucifer yellow permeation assay. Dentin discs were treated with 38% SDF (up to 3 h), and cell viability (live/dead assay) of the DPSC cultured in the inlet (unexposed) and outlet (exposed) regions of the pulp channel was evaluated. To assess the mucosal corrosion potential, gingival equivalents were treated with 38% SDF for 3 or 60 min (OECD test guideline 431) and characterized by MTT assay and histomorphometric analysis. RESULTS DPSC exposed directly to SDF showed a dose-dependent reduction in cell viability (IC50: 0.001%). Inlet channels (internal control) of the tooth-on-a-chip exposed to PBS and SDF-exposed dentin discs showed> 85% DPSC viability. In contrast, the outlet channels of SDF-exposed dentin discs showed a decreased viability of< 31% and 0% (1.5 and ≤1.0 mm thick dentin disc, respectively) (p < 0.01). The gingiva equivalents treated with SDF for 3 and 60 min demonstrated decreased epithelial integrity, loss of intercellular cohesion and corneal layer detachment with significant reduction in intact epithelial thickness (p < 0.05). SIGNIFICANCE SDF penetrated the dentin (≤1 mm thick) inducing significant death of the pulp cells. SDF also disrupted gingival epithelial integrity resulting in mucosal corrosion.
Collapse
Affiliation(s)
- Shijia Hu
- Faculty of Dentistry, National University of Singapore, Singapore.
| | | | - Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Kanglun Hong
- National University Centre for Oral Health Singapore, National University Hospital, Singapore
| | - Jing Li Lum
- National University Centre for Oral Health Singapore, National University Hospital, Singapore
| | | | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
21
|
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022; 96:711-741. [PMID: 35103818 PMCID: PMC8850248 DOI: 10.1007/s00204-022-03234-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Collapse
Affiliation(s)
- Katharina S Nitsche
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul L Carmichael
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
22
|
Rosa V, Sriram G, McDonald N, Cavalcanti BN. A critical analysis of research methods and biological experimental models to study pulp regeneration. Int Endod J 2022; 55 Suppl 2:446-455. [PMID: 35218576 PMCID: PMC9311820 DOI: 10.1111/iej.13712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
With advances in knowledge and treatment options, pulp regeneration is now a clear objective in clinical dental practice. For this purpose, many methodologies have been developed in attempts to address the putative questions raised both in research and in clinical practice. In the first part of this review, laboratory‐based methods will be presented, analysing the advantages, disadvantages, and benefits of cell culture methodologies and ectopic/semiorthotopic animal studies. This will also demonstrate the need for alignment between two‐dimensional and three‐dimensional laboratory techniques to accomplish the range of objectives in terms of cell responses and tissue differentiation. The second part will cover observations relating to orthotopic animal studies, describing the current models used for this purpose and how they contribute to the translation of regenerative techniques to the clinic.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Neville McDonald
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Bruno Neves Cavalcanti
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Varga-Medveczky Z, Kocsis D, Naszlady MB, Fónagy K, Erdő F. Skin-on-a-Chip Technology for Testing Transdermal Drug Delivery-Starting Points and Recent Developments. Pharmaceutics 2021; 13:1852. [PMID: 34834264 PMCID: PMC8619496 DOI: 10.3390/pharmaceutics13111852] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
During the last decades, several technologies were developed for testing drug delivery through the dermal barrier. Investigation of drug penetration across the skin can be important in topical pharmaceutical formulations and also in cosmeto-science. The state-of- the-art in the field of skin diffusion measurements, different devices, and diffusion platforms used, are summarized in the introductory part of this review. Then the methodologies applied at Pázmány Péter Catholic University are shown in detail. The main testing platforms (Franz diffusion cells, skin-on-a-chip devices) and the major scientific projects (P-glycoprotein interaction in the skin; new skin equivalents for diffusion purposes) are also presented in one section. The main achievements of our research are briefly summarized: (1) new skin-on-a-chip microfluidic devices were validated as tools for drug penetration studies for the skin; (2) P-glycoprotein transport has an absorptive orientation in the skin; (3) skin samples cannot be used for transporter interaction studies after freezing and thawing; (4) penetration of hydrophilic model drugs is lower in aged than in young skin; (5) mechanical sensitization is needed for excised rodent and pig skins for drug absorption measurements. Our validated skin-on-a-chip platform is available for other research groups to use for testing and for utilizing it for different purposes.
Collapse
Affiliation(s)
| | | | | | | | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary; (Z.V.-M.); (D.K.); (M.B.N.); (K.F.)
| |
Collapse
|
24
|
Cui M, Wiraja C, Zheng M, Singh G, Yong K, Xu C. Recent Progress in Skin‐on‐a‐Chip Platforms. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Continental‐NTU Corporate Lab Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Mengjia Zheng
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 00000 China
| | - Gurvinder Singh
- School of Biomedical Engineering The University of Sydney Sydney New South Wales 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
- The Biophotonics and MechanoBioengineering Lab The University of Sydney Sydney New South Wales 2006 Australia
| | - Ken‐Tye Yong
- School of Biomedical Engineering The University of Sydney Sydney New South Wales 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
- The Biophotonics and MechanoBioengineering Lab The University of Sydney Sydney New South Wales 2006 Australia
| | - Chenjie Xu
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 00000 China
| |
Collapse
|
25
|
Zhang J, Chen Z, Zhang Y, Wang X, Ouyang J, Zhu J, Yan Y, Sun X, Wang F, Li X, Ye H, Sun S, Yu Q, Sun J, Ge J, Li Q, Han Q, Pu Y, Gu Z. Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation. LAB ON A CHIP 2021; 21:3804-3818. [PMID: 34581381 DOI: 10.1039/d1lc00099c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
3D skin equivalents have been increasingly used in the pharmaceutical and cosmetic industries, but the troublesome operation procedure and low throughput restricted their applications as in vitro safety evaluation models. Organ-on-a-chip, an emerging powerful tool in tissue/organ modeling, could be utilized to improve the function of the skin model compared with that of traditional static skin models, as well as innovate an automatic and modular way for construction or detection. In this research, we grew and differentiated human keratinocytes within a microfluidic chip to construct an integrated epidermis-on-a-chip (iEOC) system, which is specially designed to integrate multi-culture units with integrated bubble removal structures as well as trans-epithelial electrical resistance (TEER) electrodes for barrier function detection in situ. After 14 days of culture at the air-liquid interface (ALI), the constructed epidermis-on-a-chip demonstrated histological features similar to those observed in normal human epidermis: a proliferating basal layer and differentiating spinous, granular, and cornified layers, especially the TEER value reached 3 kΩ cm2 and prevented more than 99% of Cascade Blue-607 Da permeation owing to the enhanced barrier function. Further immunofluorescence analysis also indicated typical keratin expression including keratin-14, keratin-10, loricrin, involucrin, and filaggrin. With the TEER monitoring integration in the chip, it could be convenient for scale-up high-quality epidermis-on-chip fabrication and correlated investigation. Additionally, the iEOC can distinguish all the 10 known toxins and non-toxins in irritation measurement by MTT assay, which is consistent with animal testing according to the OECD. Preliminarily detection of irritation responses like inflammatory cytokines also predicted different irritation reactions. This high fidelity epidermis-on-a-chip could be a potential alternative in in vitro skin irritation evaluation. This microchip and automated microfluidic systems also pave the way for scalable testing in multidisciplinary industrial applications.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Yaoyao Zhang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xingchi Wang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jun Ouyang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jianfeng Zhu
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Yuchuan Yan
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiaowei Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Fei Wang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiaoran Li
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Huan Ye
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Shiqi Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Qingdong Yu
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jiawei Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jianjun Ge
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| |
Collapse
|
26
|
Development and Evaluation of a Human Skin Equivalent in a Semiautomatic Microfluidic Diffusion Chamber. Pharmaceutics 2021; 13:pharmaceutics13060910. [PMID: 34202971 PMCID: PMC8235028 DOI: 10.3390/pharmaceutics13060910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 01/11/2023] Open
Abstract
There is an increasing demand for transdermal transport measurements to optimize topical drug formulations and to achieve proper penetration profile of cosmetic ingredients. Reflecting ethical concerns the use of both human and animal tissues is becoming more restricted. Therefore, the focus of dermal research is shifting towards in vitro assays. In the current proof-of-concept study a three-layer skin equivalent using human HaCaT keratinocytes, an electrospun polycaprolactone mesh and a collagen-I gel was compared to human excised skin samples. We measured the permeability of the samples for 2% caffeine cream using a miniaturized dynamic diffusion cell (“skin-on-a-chip” microfluidic device). Caffeine delivery exhibits similar transport kinetics through the artificial skin and the human tissue: after a rapid rise, a long-lasting high concentration steady state develops. This is markedly distinct from the kinetics measured when using cell-free constructs, where a shorter release was observable. These results imply that both the established skin equivalent and the microfluidic diffusion chamber can serve as a suitable base for further development of more complex tissue substitutes.
Collapse
|
27
|
Rothbauer M, Bachmann BE, Eilenberger C, Kratz SR, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. MICROMACHINES 2021; 12:470. [PMID: 33919242 PMCID: PMC8143089 DOI: 10.3390/mi12050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.
Collapse
Affiliation(s)
- Mario Rothbauer
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-22, 1090 Vienna, Austria
| | - Barbara E.M. Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Christoph Eilenberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sebastian R.A. Kratz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Drug Delivery and 3R-Models Group, Buchmann Institute for Molecular Life Sciences & Institute for Pharmaceutical Technology, Goethe University Frankfurt Am Main, 60438 Frankfurt, Germany
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Höll
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
28
|
Correia Carreira S, Taghavi M, Pavez Loriè E, Rossiter J. FleXert: A Soft, Actuatable Multiwell Plate Insert for Cell Culture under Stretch. ACS Biomater Sci Eng 2021; 7:2225-2245. [PMID: 33843187 DOI: 10.1021/acsbiomaterials.0c01448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Porous multiwell plate inserts are widely used in biomedical research to study transport processes or to culture cells/tissues at the air-liquid interface. These inserts are made of rigid materials and used under static culture conditions, which are unrepresentative of biological microenvironments. Here, we present FleXert, a soft, actuatable cell culture insert that interfaces with six-well plates. It is made of polydimethylsiloxane (PDMS) and comprises a porous PDMS membrane as cell/tissue support. FleXerts can be pneumatically actuated using a standard syringe pump, imparting tensile strains of up to 30%. A wide range of actuation patterns can be achieved by varying the air pressure and pumping rate. Facile surface functionalization of FleXert's porous PDMS membrane with fibronectin enables adhesion of human dermal fibroblasts and strains developing on FleXert's membrane are successfully transduced to the cell layer. 3D tissue models, such as fibroblast-laden collagen gels, can also be anchored to PDMS following polydopamine coating. Furthermore, collagen-coated FleXert membranes support the establishment of a human skin model, demonstrating the material's excellent biocompatibility required for tissue engineering. In contrast to existing technologies, FleXerts do not require costly fabrication equipment or custom-built culture chambers, making them a versatile and low-cost solution for tissue engineering and biological barrier penetration studies under physiological strain. This paper is an extensive toolkit for multidisciplinary mechanobiology studies, including detailed instructions for a wide variety of methods such as device fabrication, theoretical modeling, cell culture, and image analysis techniques.
Collapse
Affiliation(s)
- Sara Correia Carreira
- School of Cellular and Molecular Medicine, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Majid Taghavi
- Bristol Robotics Laboratory, University of Bristol, T Block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Elizabeth Pavez Loriè
- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany
| | - Jonathan Rossiter
- Bristol Robotics Laboratory, University of Bristol, T Block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
29
|
Sklenářová H, Rosecká M, Horstkotte B, Pávek P, Miró M, Solich P. 3D printed permeation module to monitor interaction of cell membrane transporters with exogenic compounds in real-time. Anal Chim Acta 2021; 1153:338296. [PMID: 33714442 DOI: 10.1016/j.aca.2021.338296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 01/25/2023]
Abstract
A new design of permeation module based on 3D printing was developed to monitor the interaction of exogenic compounds with cell membrane transporters in real-time. The fluorescent marker Rhodamine 123 (Rho123) was applied as a substrate to study the activity of the P-glycoprotein membrane transporter using the MDCKII-MDR1 genetically modified cell line. In addition, the inhibitory effect of verapamil (Ver), a prototype P-glycoprotein inhibitor, was examined in the module, demonstrating an enhanced Rho123 transfer and accumulation into cells as well as the applicability of the module for P-glycoprotein inhibitor testing. Inhibition was demonstrated for different ratios of Rho123 and Ver, and their competition in terms of interaction with the P-glycoprotein transporter was monitored in real-time. Employing the 3D-printed module, permeation testing was shortened from 8 h in the conventional module to 2 h and evaluation based on kinetic profiles in every 10 min was possible in both donor and acceptor compartments. We also show that monitoring Rho123 levels in both compartments enables calculate the amount of Rho123 accumulated inside cells without the need of cell lysis.
Collapse
Affiliation(s)
- Hana Sklenářová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Michaela Rosecká
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Burkhard Horstkotte
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Manuel Miró
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; FI-TRACE Group, Department of Chemistry, University of Balearic Islands, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| | - Petr Solich
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
30
|
Ponmozhi J, Dhinakaran S, Varga-Medveczky Z, Fónagy K, Bors LA, Iván K, Erdő F. Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered. MICROMACHINES 2021; 12:mi12030294. [PMID: 33802208 PMCID: PMC8001759 DOI: 10.3390/mi12030294] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in miniaturized technologies in diagnostics, therapeutic testing, and biomedicinal fundamental research. The same is true for the dermal studies in topical drug development, dermatological disease pathology testing, and cosmetic science. This review aims to collect the recent scientific literature and knowledge about the application of skin-on-a-chip technology in drug diffusion studies, in pharmacological and toxicological experiments, in wound healing, and in fields of cosmetic science (ageing or repair). The basic mathematical models are also presented in the article to predict physical phenomena, such as fluid movement, drug diffusion, and heat transfer taking place across the dermal layers in the chip using Computational Fluid Dynamics techniques. Soon, it can be envisioned that animal studies might be at least in part replaced with skin-on-a-chip technology leading to more reliable results close to study on humans. The new technology is a cost-effective alternative to traditional methods used in research institutes, university labs, and industry. With this article, the authors would like to call attention to a new investigational family of platforms to refresh the researchers’ theranostics and preclinical, experimental toolbox.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore 452012, India;
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore 453552, India;
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Katalin Fónagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Luca Anna Bors
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Heart and Vascular Centre, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Correspondence:
| |
Collapse
|
31
|
Dancik Y, Kichou H, Eklouh-Molinier C, Soucé M, Munnier E, Chourpa I, Bonnier F. Freezing Weakens the Barrier Function of Reconstructed Human Epidermis as Evidenced by Raman Spectroscopy and Percutaneous Permeation. Pharmaceutics 2020; 12:E1041. [PMID: 33143093 PMCID: PMC7694161 DOI: 10.3390/pharmaceutics12111041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
The development and characterization of reconstructed human epidermis (RHE) is an active area of R&D. RHE can replace animal tissues in pharmaceutical, toxicological and cosmetic sciences, yielding scientific and ethical advantages. RHEs remain costly, however, due to consumables and time required for their culture and a short shelf-life. Storing, i.e., freezing RHE could help reduce costs but to date, little is known on the effects of freezing on the barrier function of RHE. We studied such effects using commercial EpiSkin™ RHE stored at -20, -80 and -150 °C for 1 and 10 weeks. We acquired intrinsic Raman spectra in the stratum corneum (SC) of the RHEs as well as spectra obtained following topical application of resorcinol in an aqueous solution. In parallel, we quantified the effects of freezing on the permeation kinetics of resorcinol from time-dependent permeation experiments. Principal component analyses discriminated the intrinsic SC spectra and the spectra of resorcinol-containing RHEs, in each case on the basis of the freezing conditions. Permeation of resorcinol through the frozen RHE increased 3- to 6-fold compared to fresh RHE, with the strongest effect obtained from freezing at -20 °C for 10 weeks. Due to the extensive optimization and standardization of EpiSkin™ RHE, the effects observed in our work may be expected to be more pronounced with other RHEs.
Collapse
Affiliation(s)
- Yuri Dancik
- Le STUDIUM Institute of Advanced Studies, 1 rue Dupanloup, 45000 Orléans, France
- Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, EA 6295 NanoMédicaments et NanoSondes, 37200 Tours, France; (H.K.); (C.E.-M.); (M.S.); (E.M.); (I.C.)
| | - Hichem Kichou
- Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, EA 6295 NanoMédicaments et NanoSondes, 37200 Tours, France; (H.K.); (C.E.-M.); (M.S.); (E.M.); (I.C.)
| | - Christophe Eklouh-Molinier
- Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, EA 6295 NanoMédicaments et NanoSondes, 37200 Tours, France; (H.K.); (C.E.-M.); (M.S.); (E.M.); (I.C.)
| | - Martin Soucé
- Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, EA 6295 NanoMédicaments et NanoSondes, 37200 Tours, France; (H.K.); (C.E.-M.); (M.S.); (E.M.); (I.C.)
| | - Emilie Munnier
- Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, EA 6295 NanoMédicaments et NanoSondes, 37200 Tours, France; (H.K.); (C.E.-M.); (M.S.); (E.M.); (I.C.)
| | - Igor Chourpa
- Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, EA 6295 NanoMédicaments et NanoSondes, 37200 Tours, France; (H.K.); (C.E.-M.); (M.S.); (E.M.); (I.C.)
| | - Franck Bonnier
- Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, EA 6295 NanoMédicaments et NanoSondes, 37200 Tours, France; (H.K.); (C.E.-M.); (M.S.); (E.M.); (I.C.)
| |
Collapse
|
32
|
3D In Vitro Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6187048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few decades have shown significant advancement as complex in vitro humanized systems have substituted animal trials and 2D in vitro studies. 3D humanized platforms mimic the organs of interest with their stimulations (physical, electrical, chemical, and mechanical). Organ-on-chip devices, including in vitro modelling of 3D organoids, 3D microfabrication, and 3D bioprinted platforms, play an essential role in drug discovery, testing, and assessment. In this article, a thorough review is provided of the latest advancements in the area of organ-on-chip devices targeting liver, kidney, lung, gut, heart, skin, and brain mimicry devices for drug discovery, development, and/or assessment. The current strategies, fabrication methods, and the specific application of each device, as well as the advantages and disadvantages, are presented for each reported platform. This comprehensive review also provides some insights on the challenges and future perspectives for the further advancement of each organ-on-chip device.
Collapse
|
33
|
Ramadan Q, Zourob M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. BIOMICROFLUIDICS 2020; 14:041501. [PMID: 32699563 PMCID: PMC7367691 DOI: 10.1063/5.0011583] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Organ-on-a-chip (OOC) is a very ambitious emerging technology with a high potential to revolutionize many medical and industrial sectors, particularly in preclinical-to-clinical translation in the pharmaceutical arena. In vivo, the function of the organ(s) is orchestrated by a complex cellular structure and physiochemical factors within the extracellular matrix and secreted by various types of cells. The trend in in vitro modeling is to simplify the complex anatomy of the human organ(s) to the minimal essential cellular structure "micro-anatomy" instead of recapitulating the full cellular milieu that enables studying the absorption, metabolism, as well as the mechanistic investigation of drug compounds in a "systemic manner." However, in order to reflect the human physiology in vitro and hence to be able to bridge the gap between the in vivo and in vitro data, simplification should not compromise the physiological relevance. Engineering principles have long been applied to solve medical challenges, and at this stage of organ-on-a-chip technology development, the work of biomedical engineers, focusing on device engineering, is more important than ever to accelerate the technology transfer from the academic lab bench to specialized product development institutions and to the increasingly demanding market. In this paper, instead of presenting a narrative review of the literature, we systemically present a synthesis of the best available organ-on-a-chip technology from what is found, what has been achieved, and what yet needs to be done. We emphasized mainly on the requirements of a "good in vitro model that meets the industrial need" in terms of the structure (micro-anatomy), functions (micro-physiology), and characteristics of the device that hosts the biological model. Finally, we discuss the biological model-device integration supported by an example and the major challenges that delay the OOC technology transfer to the industry and recommended possible options to realize a functional organ-on-a-chip system.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| | - Mohammed Zourob
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Touloumes GJ, Ardoña HAM, Casalino EK, Zimmerman JF, Chantre CO, Bitounis D, Demokritou P, Parker KK. Mapping 2D- and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues. NANOIMPACT 2020; 17:100208. [PMID: 33251378 PMCID: PMC7687853 DOI: 10.1016/j.impact.2020.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An increasing number of commercial skincare products are being manufactured with engineered nanomaterials (ENMs), prompting a need to fully understand how ENMs interact with the dermal barrier as a major biodistribution entry route. Although animal studies show that certain nanomaterials can cross the skin barrier, physiological differences between human and animal skin, such as the lack of sweat glands, limit the translational validity of these results. Current optical microscopy methods have limited capabilities to visualize ENMs within human skin tissues due to the high amount of background light scattering caused by the dense, ubiquitous extracellular matrix (ECM) of the skin. Here, we hypothesized that organic solvent-based tissue clearing ("immunolabeling-enabled three-dimensional imaging of solvent-cleared organs", or "iDISCO") would reduce background light scattering from the extracellular matrix of the skin to sufficiently improve imaging contrast for both 2D mapping of unlabeled metal oxide ENMs and 3D mapping of fluorescent nanoparticles. We successfully mapped the 2D distribution of label-free TiO2 and ZnO nanoparticles in cleared skin sections using correlated signals from darkfield, brightfield, and confocal microscopy, as well as micro-spectroscopy. Specifically, hyperspectral microscopy and Raman spectroscopy confirmed the identity of label-free ENMs which we mapped within human skin sections. We also measured the 3D distribution of fluorescently labeled Ag nanoparticles in cleared skin biopsies with wounded epidermal layers using light sheet fluorescence microscopy. Overall, this study explores a novel strategy for quantitatively mapping ENM distributions in cleared ex vivo human skin tissue models using multiple imaging modalities. By improving the imaging contrast, we present label-free 2D ENM tracking and 3D ENM mapping as promising capabilities for nanotoxicology investigations.
Collapse
Affiliation(s)
- George J. Touloumes
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Herdeline Ann M. Ardoña
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Evan K. Casalino
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - John F. Zimmerman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Christophe O. Chantre
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115 USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
35
|
de Mello CPP, Rumsey J, Slaughter V, Hickman JJ. A human-on-a-chip approach to tackling rare diseases. Drug Discov Today 2019; 24:2139-2151. [PMID: 31412288 PMCID: PMC6856435 DOI: 10.1016/j.drudis.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Drug development for rare diseases, classified as diseases with a prevalence of < 200 000 patients, is limited by the high cost of research and low target population. Owing to a lack of representative disease models, research has been challenging for orphan drugs. Human-on-a-chip (HoaC) technology, which models human tissues in interconnected in vitro microfluidic devices, has the potential to lower the cost of preclinical studies and increase the rate of drug approval by introducing human phenotypic models early in the drug discovery process. Advances in HoaC technology can drive a new approach to rare disease research and orphan drug development.
Collapse
Affiliation(s)
| | | | - Victoria Slaughter
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Hesperos, Inc., Orlando, FL 32826, USA.
| |
Collapse
|
36
|
Ng WL, Yeong WY. The future of skin toxicology testing - Three-dimensional bioprinting meets microfluidics. Int J Bioprint 2019; 5:237. [PMID: 32596546 PMCID: PMC7310273 DOI: 10.18063/ijb.v5i2.1.237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/20/2019] [Indexed: 01/06/2023] Open
Abstract
Over the years, the field of toxicology testing has evolved tremendously from the use of animal models to the adaptation of in vitro testing models. In this perspective article, we aim to bridge the gap between the regulatory authorities who performed the testing and approval of new chemicals and the scientists who designed and fabricated these in vitro testing models. An in-depth discussion of existing toxicology testing guidelines for skin tissue models (definition, testing models, principle, and limitations) is first presented to have a good understanding of the stringent requirements that are necessary during the testing process. Next, the ideal requirements of toxicology testing platform (in terms of fabrication, testing, and screening process) are then discussed. We envisioned that the integration of three-dimensional bioprinting within miniaturized microfluidics platform would bring about a paradigm shift in the field of toxicology testing; providing standardization in the fabrication process, accurate, and rapid deposition of test chemicals, real-time monitoring, and high throughput screening for more efficient skin toxicology testing.
Collapse
Affiliation(s)
- Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, 639798 Singapore
| | - Wai Yee Yeong
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, 639798 Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
37
|
Lukács B, Bajza Á, Kocsis D, Csorba A, Antal I, Iván K, Laki AJ, Erdő F. Skin-on-a-Chip Device for Ex Vivo Monitoring of Transdermal Delivery of Drugs-Design, Fabrication, and Testing. Pharmaceutics 2019; 11:pharmaceutics11090445. [PMID: 31480652 PMCID: PMC6781558 DOI: 10.3390/pharmaceutics11090445] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
To develop proper drug formulations and to optimize the delivery of their active ingredients through the dermal barrier, the Franz diffusion cell system is the most widely used in vitro/ex vivo technique. However, different providers and manufacturers make various types of this equipment (horizontal, vertical, static, flow-through, smaller and larger chambers, etc.) with high variability and not fully comparable and consistent data. Furthermore, a high amount of test drug formulations and large size of diffusion skin surface and membranes are important requirements for the application of these methods. The aim of our study was to develop a novel Microfluidic Diffusion Chamber device and compare it with the traditional techniques. Here the design, fabrication, and a pilot testing of a microfluidic skin-on-a chip device are described. Based on this chip, further developments can also be implemented for industrial purposes to assist the characterization and optimization of drug formulations, dermal pharmacokinetics, and pharmacodynamic studies. The advantages of our device, beside the low costs, are the small drug and skin consumption, low sample volumes, dynamic arrangement with continuous flow mimicking the dermal circulation, as well as rapid and reproducible results.
Collapse
Affiliation(s)
- Bence Lukács
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Ágnes Bajza
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Attila Csorba
- Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre u. 7, H-1092 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - András József Laki
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47. H-1094 Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary.
| |
Collapse
|
38
|
Ding D, Pan J, Yeo SH, Wagholikar V, Lim SH, Wu C, Fuh JYH, Kang L. A miniaturized device for biomembrane permeation analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109772. [PMID: 31349518 DOI: 10.1016/j.msec.2019.109772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 01/06/2023]
Abstract
Transdermal drug delivery is widely investigated as an alternative drug administration route to oral delivery and hypodermic injections. Owing to the availability of human skin samples, in vitro tests are used to predict the in vivo delivery of transdermal drugs. The most widely used validation method is skin permeation using diffusion cells. Traditional diffusion cells, however, are capacious and often require large amounts of skin sample and drugs, which is undesirable, given the scarcity of new drug entities and the limitation of skin sample supply. In this study, we fabricated miniaturized multichannel devices (MCDs) by 3D printing, to minimize the use of skin and drug samples. The MCDs were compared with conventional static diffusion cells and achieved comparable drug permeation profiles. The finite element method-based simulation revealed the efficient carry-off of permeated ingredients by the multichannel devices, and a critical role of distance between the buffer stream and skin sample in determining the flow velocity inside the chamber. The results support these devices as qualified alternatives to Franz cells for in vitro permeation studies using biomembranes, with reduced use of skin and drug samples.
Collapse
Affiliation(s)
- Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Jing Pan
- Skinetrate Pte Ltd, 79 Ayer Rajah Crescent, Singapore 139955, Singapore
| | - Shih Hui Yeo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Vishal Wagholikar
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Lifeng Kang
- School of Pharmacy, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| |
Collapse
|
39
|
Dancik Y, Sriram G, Rout B, Zou Y, Bigliardi-Qi M, Bigliardi PL. Physical and compositional analysis of differently cultured 3D human skin equivalents by confocal Raman spectroscopy. Analyst 2019; 143:1065-1076. [PMID: 29368763 DOI: 10.1039/c7an01675a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional skin equivalents are increasingly gaining acceptance as non-animal based experimental models of human skin. They are particularly suited to studying differences in physical and compositional properties of normal and diseased skin and their impact on the skin's barrier function. Typically, a culture protocol yielding a model of normal skin is modified to create a model simulating a pathology. Skin layer thicknesses and lipid/protein contents are compared using methods that are invasive, precluding further experiments on the same replicates, and which may be prone to artefacts. We show here that confocal Raman spectroscopy (CRS) is a valuable method for non-invasive discrimination of skin equivalents grown under different culture conditions. Using 3D full-thickness skin equivalents developed in-house, we measure significant differences in stratum corneum and viable epidermis apparent thicknesses resulting from a 7-day difference in the cultures' air-lift phase and from supplementation of the culture medium with interleukin 4. Furthermore, stratum corneum thicknesses obtained by CRS are up to 2.6-fold higher than values measured from histological photomicrographs. Regarding composition, CRS reveals the differential effects of the culture protocol modifications on ceramide, cholesterol and protein composition as a function of depth in the stratum corneum.
Collapse
Affiliation(s)
- Y Dancik
- Experimental Dermatology Laboratory, Institute of Medical Biology, A*STAR, 8a Biomedical Grove, #06-06, Singapore 138648.
| | | | | | | | | | | |
Collapse
|
40
|
Torras N, García-Díaz M, Fernández-Majada V, Martínez E. Mimicking Epithelial Tissues in Three-Dimensional Cell Culture Models. Front Bioeng Biotechnol 2018; 6:197. [PMID: 30619844 PMCID: PMC6305315 DOI: 10.3389/fbioe.2018.00197] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future.
Collapse
Affiliation(s)
- Núria Torras
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María García-Díaz
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vanesa Fernández-Majada
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Zhang Q, Sito L, Mao M, He J, Zhang YS, Zhao X. Current advances in skin-on-a-chip models for drug testing. ACTA ACUST UNITED AC 2018; 2. [PMID: 33521629 DOI: 10.21037/mps.2018.08.01] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin-on-a-chip models are highly desirable in drug testing compared to conventional 2D cell culture and animal models as they can replicate organ-specific 3D structural organization and physiological functions at a relatively low cost. To engineer a physiologically relevant skin model, human skin structures have been integrated onto microfluidic platforms to construct skin-on-a-chip systems that can mimic the complex in vivo situation. In this mini-review, we first briefly introduce some critical technologies employed to develop in vitro skin-on-a-chip models. We then review the applications of the state-of-the-art skin-on-a-chip models in drug testing, with a focus on using models of full-thickness skin equivalents (FTSEs), skin models with additional components such as vasculature, immune cells and hair follicles as well as multi-organ-on-a-chip models. Finally, we discuss some current challenges and future directions of development of complex, and in vivo-like skin-on-a-chip models.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Linda Sito
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Mao Mao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.,State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
42
|
Bioengineering of a Full-Thickness Skin Equivalent in a 96-Well Insert Format for Substance Permeation Studies and Organ-On-A-Chip Applications. Bioengineering (Basel) 2018; 5:bioengineering5020043. [PMID: 29880746 PMCID: PMC6027510 DOI: 10.3390/bioengineering5020043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/24/2022] Open
Abstract
The human skin is involved in protecting the inner body from constant exposure to outer environmental stimuli. There is an evident need to screen for toxicity and the efficacy of drugs and cosmetics applied to the skin. To date, animal studies are still the standard method for substance testing, although they are currently controversially discussed Therefore, the multi-organ chip is an attractive alternative to replace animal testing. The two-organ chip is designed to hold 96-well cell culture inserts (CCIs). Small-sized skin equivalents are needed for this. In this study, full-thickness skin equivalents (ftSEs) were generated successfully inside 96-well CCIs. These skin equivalents developed with in vivo-like histological architecture, with normal differentiation marker expressions and proliferation rates. The 96-well CCI-based ftSEs were successfully integrated into the two-organ chip. The permeation of fluorescein sodium salt through the ftSEs was monitored during the culture. The results show a decreasing value for the permeation over time, which seems a promising method to track the development of the ftSEs. Additionally, the permeation was implemented in a computational fluid dynamics simulation, as a tool to predict results in long-term experiments. The advantage of these ftSEs is the reduced need for cells and substances, which makes them more suitable for high throughput assays.
Collapse
|
43
|
Nawroth J, Rogal J, Weiss M, Brucker SY, Loskill P. Organ-on-a-Chip Systems for Women's Health Applications. Adv Healthc Mater 2018; 7. [PMID: 28985032 DOI: 10.1002/adhm.201700550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Indexed: 12/19/2022]
Abstract
Biomedical research, for a long time, has paid little attention to the influence of sex in many areas of study, ranging from molecular and cellular biology to animal models and clinical studies on human subjects. Many studies solely rely on male cells/tissues/animals/humans, although there are profound differences in male and female physiology, which can significantly impact disease mechanisms, toxicity of compounds, and efficacy of pharmaceuticals. In vitro systems have been traditionally very limited in their capacity to recapitulate female-specific physiology and anatomy such as dynamic sex-hormone levels and the complex interdependencies of female reproductive tract organs. However, the advent of microphysiological organ-on-a-chip systems, which attempt to recreate the 3D structure and function of human organs, now gives researchers the opportunity to integrate cells and tissues from a variety of individuals. Moreover, adding a dynamic flow environment allows mimicking endocrine signaling during the menstrual cycle and pregnancy, as well as providing a controlled microfluidic environment for pharmacokinetic modeling. This review gives an introduction into preclinical and clinical research on women's health and discusses where organ-on-a-chip systems are already utilized or have the potential to deliver new insights and enable entirely new types of studies.
Collapse
Affiliation(s)
| | - Julia Rogal
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstrasse 12 70569 Stuttgart Germany
| | - Martin Weiss
- Department of Gynecology and Obstetrics; University Medicine Tübingen; Calwerstrasse 7 72076 Tübingen Germany
| | - Sara Y. Brucker
- Department of Gynecology and Obstetrics; University Medicine Tübingen; Calwerstrasse 7 72076 Tübingen Germany
| | - Peter Loskill
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstrasse 12 70569 Stuttgart Germany
| |
Collapse
|