1
|
Hwang HJ, Kang D, Shin J, Jung J, Ko S, Jung KH, Hong SS, Park JE, Oh MJ, An HJ, Yang WH, Ko YG, Cha JH, Lee JS. Therapy-induced senescent cancer cells contribute to cancer progression by promoting ribophorin 1-dependent PD-L1 upregulation. Nat Commun 2025; 16:353. [PMID: 39753537 PMCID: PMC11699195 DOI: 10.1038/s41467-024-54132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/02/2024] [Indexed: 01/06/2025] Open
Abstract
Conventional chemotherapy- and radiotherapy-induced cancer senescence, which is characterized by poor proliferation, drug resistance, and senescence-associated secretory phenotype, has gained attention as contributing to cancer relapse and the development of an immunosuppressive tumor microenvironment. However, the association between cancer senescence and anti-tumor immunity is not fully understood. Here, we demonstrate that senescent cancer cells increase the level of PD-L1 by promoting its transcription and glycosylation. We identify ribophorin 1 as a key regulator of PD-L1 glycosylation during cancer senescence. Ribophorin 1 depletion reduces this elevated level of PD-L1 through the ER-lysosome-associated degradation pathway, thereby increasing the susceptibility of senescent cancer cells to T-cell-mediated killing. Consistently, ribophorin 1 depletion suppresses tumor growth by decreasing PD-L1 levels and boosting cytotoxic T lymphocyte activity in male mice. Moreover, ribophorin 1-targeted or anti-PD-1 therapy reduces the number of senescent cancer cells in irradiated tumors and suppresses cancer recurrence through the activation of cytotoxic T lymphocytes. These results provide crucial insights into how senescent cancer cells can escape T-cell immunity following cancer treatment and thereby contribute to cancer recurrence. Our findings also highlight the therapeutic promise of targeting senescent cancer cells for cancer treatment.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Department of Molecular Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
| | - Jisoo Shin
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Jonghun Jung
- Department of Molecular Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
| | - Soyeon Ko
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Kyung Hee Jung
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Soon-Sun Hong
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia-Pacific Glycomics Reference Site, Daejeon, Republic of Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia-Pacific Glycomics Reference Site, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia-Pacific Glycomics Reference Site, Daejeon, Republic of Korea
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jong-Ho Cha
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Biohybrid Systems Research Center, Inha University, Incheon, Republic of Korea.
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Cai XH, Zhao SQ, Zhang K, Liu WT. Progress in research of proteomics related to digestive system tumor markers. Shijie Huaren Xiaohua Zazhi 2024; 32:716-726. [DOI: 10.11569/wcjd.v32.i10.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The incidence and mortality of digestive system tumors are high. Even though the number of methods for tumor diagnosis and treatment is increasing, most of these tumors still cannot be diagnosed early, and their prognosis is poor. The lack of effective biomarkers and therapeutic targets is the reason why they cannot be diagnosed early and treated effectively. With the continuous development of proteomics technology, proteomics has become increasingly valuable in exploring the mechanisms of tumorigenesis and searching for biomarkers and drug targets. This article reviews the application progress of proteomics technology in screening of biomarkers for digestive system tumors, with an aim to provide new ideas for early diagnosis, prognosis, and treatment of digestive system tumors.
Collapse
Affiliation(s)
- Xiao-Han Cai
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Si-Qi Zhao
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kai Zhang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wen-Tian Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Bazin T, Nozeret K, Julié C, Lamarque D, Touati E. Protein Biomarkers of Gastric Preneoplasia and Cancer Lesions in Blood: A Comprehensive Review. Cancers (Basel) 2024; 16:3019. [PMID: 39272877 PMCID: PMC11394471 DOI: 10.3390/cancers16173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. It is often associated with a bad prognosis because of its asymptomatic phenotype until advanced stages, highlighting the need for its prevention and early detection. GC development is preceded by the emergence of gastric preneoplasia lesions (GPNLs), namely atrophic gastritis (AG), intestinal metaplasia (IM), and dysplasia (DYS). GC is currently diagnosed by endoscopy, which is invasive and costly and has limited effectiveness for the detection of GPNLs. Therefore, the discovery of non-invasive biomarkers in liquid biopsies, such as blood samples, in order to identify the presence of gastric preneoplasia and/or cancer lesions at asymptomatic stages is of paramount interest. This comprehensive review provides an overview of recently identified plasma/serum proteins and their diagnostic performance for the prediction of GPNLs and early cancer lesions. Autoantibodies appear to be promising biomarkers for AG, IM and early gastric cancer detection, along with inflammation and immunity-related proteins and antibodies against H. pylori virulence factors. There is a lack of specific protein biomarkers with which to detect DYS. Despite the need for further investigation and validation, some emerging candidates could pave the way for the development of reliable, non-invasive diagnostic tests for the detection and prevention of GC.
Collapse
Affiliation(s)
- Thomas Bazin
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre of Rare Disease MarDI, Assistance Publique-Hôpitaux de Paris (AP-HP) Beaujon Hospital, University Paris Cité, F-92110 Clichy, France
- Infection & Inflammation, Unité Mixte de Recherche (UMR) 1173, Inserm, Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ)/Université Paris Saclay, F-78180 Montigny-le-Bretonneux, France
| | - Karine Nozeret
- Équipe DMic01-Infection, Génotoxicité et Cancer, Département de Microbiologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | - Catherine Julié
- Department of Anatomical Pathology, Université Paris Saclay/Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Ambroise Paré, F-92100 Boulogne-Billancourt, France
| | - Dominique Lamarque
- Infection & Inflammation, Unité Mixte de Recherche (UMR) 1173, Inserm, Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ)/Université Paris Saclay, F-78180 Montigny-le-Bretonneux, France
- Department of Gastroenterology, Université Paris Saclay/Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Ambroise Paré, F-92100 Boulogne Billancourt, France
| | - Eliette Touati
- Équipe DMic01-Infection, Génotoxicité et Cancer, Département de Microbiologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| |
Collapse
|
4
|
Mikami M, Tanabe K, Imanishi T, Ikeda M, Hirasawa T, Yasaka M, Machida H, Yoshida H, Hasegawa M, Shimada M, Kato T, Kitamura S, Kato H, Fujii T, Kobayashi Y, Suzuki N, Tanaka K, Murakami I, Katahira T, Hayashi C, Matsuo K. Comprehensive serum glycopeptide spectra analysis to identify early-stage epithelial ovarian cancer. Sci Rep 2024; 14:20000. [PMID: 39198565 PMCID: PMC11358426 DOI: 10.1038/s41598-024-70228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is widely recognized as the most lethal gynecological malignancy; however, its early-stage detection remains a considerable clinical challenge. To address this, we have introduced a new method, named Comprehensive Serum Glycopeptide Spectral Analysis (CSGSA), which detects early-stage cancer by combining glycan alterations in serum glycoproteins with tumor markers. We detected 1712 glycopeptides using liquid chromatography-mass spectrometry from the sera obtained from 564 patients with EOC and 1149 controls across 13 institutions. Furthermore, we used a convolutional neural network to analyze the expression patterns of the glycopeptides and tumor markers. Using this approach, we successfully differentiated early-stage EOC (Stage I) from non-EOC, with an area under the curve (AUC) of 0.924 in receiver operating characteristic (ROC) analysis. This method markedly outperforms conventional tumor markers, including cancer antigen 125 (CA125, 0.842) and human epididymis protein 4 (HE4, 0.717). Notably, our method exhibited remarkable efficacy in differentiating early-stage ovarian clear cell carcinoma from endometrioma, achieving a ROC-AUC of 0.808, outperforming CA125 (0.538) and HE4 (0.557). Our study presents a promising breakthrough in the early detection of EOC through the innovative CSGSA method. The integration of glycan alterations with cancer-related tumor markers has demonstrated exceptional diagnostic potential.
Collapse
Affiliation(s)
- Mikio Mikami
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Kazuhiro Tanabe
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan.
| | - Tadashi Imanishi
- Genome Diversity Research Center, Graduate School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Masae Ikeda
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takeshi Hirasawa
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Miwa Yasaka
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroko Machida
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Yoshida
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masanori Hasegawa
- Department of Urology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shoichi Kitamura
- Department of Gynecology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Hisamori Kato
- Department of Gynecologic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoichi Kobayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kyoko Tanaka
- Department of Obstetrics and Gynecology, Toho University Ohashi Medical Center, Meguro-ku, Tokyo, Japan
| | - Isao Murakami
- Department of Obstetrics and Gynecology, Toho University Ohashi Medical Center, Meguro-ku, Tokyo, Japan
| | - Tomoko Katahira
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Chihiro Hayashi
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Repetto O, Vettori R, Steffan A, Cannizzaro R, De Re V. Circulating Proteins as Diagnostic Markers in Gastric Cancer. Int J Mol Sci 2023; 24:16931. [PMID: 38069253 PMCID: PMC10706891 DOI: 10.3390/ijms242316931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a highly malignant disease affecting humans worldwide and has a poor prognosis. Most GC cases are detected at advanced stages due to the cancer lacking early detectable symptoms. Therefore, there is great interest in improving early diagnosis by implementing targeted prevention strategies. Markers are necessary for early detection and to guide clinicians to the best personalized treatment. The current semi-invasive endoscopic methods to detect GC are invasive, costly, and time-consuming. Recent advances in proteomics technologies have enabled the screening of many samples and the detection of novel biomarkers and disease-related signature signaling networks. These biomarkers include circulating proteins from different fluids (e.g., plasma, serum, urine, and saliva) and extracellular vesicles. We review relevant published studies on circulating protein biomarkers in GC and detail their application as potential biomarkers for GC diagnosis. Identifying highly sensitive and highly specific diagnostic markers for GC may improve patient survival rates and contribute to advancing precision/personalized medicine.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Roberto Vettori
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (R.V.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (R.V.); (A.S.)
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
6
|
Lai Z, Wang Z, Yuan Z, Zhang J, Zhou J, Li D, Zhang D, Li N, Peng P, Zhou J, Li Z. Disease-Specific Haptoglobin N-Glycosylation in Inflammatory Disorders between Cancers and Benign Diseases of 3 Types of Female Internal Genital Organs. Clin Chim Acta 2023:117420. [PMID: 37285951 DOI: 10.1016/j.cca.2023.117420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND N-glycosylation of the haptoglobin is closely related to pathological states. This study aims to evaluate the association of glycosylation of disease-specific Hp (DSHp) β chain with different pathological states of the cervix, uterus, and ovary to explore differences in their inflammatory responses and to screen potential biomarkers to distinguish cancer from benign diseases. METHODS DSHp-β chains of 1956 patients with cancers and benign diseases located in the cervix, uterus, and ovary organs were separated from serum immunoinflammatory-related protein complexes (IIRPCs). The N-glycopeptides from DSHp-β chains were detected using mass spectrometry, followed by an analysis of machine learning algorithms. RESULTS 55 N-glycopeptides at N207/N211, 19 at N241, and 21 at N184 glycosylation sites of DSHp for each sample were identified. Fucosylation and sialylation of DSHp in cervix, uterus, and ovary cancer were significantly increased compared to their corresponding benign diseases (p < 0.001). The cervix diagnostic model, a combination of G2N3F, G4NFS, G7N2F2S5, GS-N&GS-N, G2N2&G4N3FS, G7N2F2S5, G2S2&G-N, and GN2F&G2F at N207/N211 sites, G3NFS2 and G3NFS at N241site, G9N2S, G6N3F6, G4N3F5S, G4N3F4S2, and G6N3F4S at N184 site), has shown a good diagnostic capability to distinguish cancer from benign diseases, with the area under curve (AUC) of 0.912. The uterus diagnostic model including G4NFS, G2S2&G2S2, G3N2S2, GG5N2F5, G2&G3NFS, and G5N2F3S3 at N207/N211 sites, and G2NF3S2 at N184 site, with an AUC of 0.731. The ovary diagnostic model including G2N3F, GF2S-N &G2F3S2, G2S&G2, and G2S&G3NS at N207/N211 sites; G2S and G3NFS at N241 site, G6N3F4S at N184 site, with an AUC of 0.747. CONCLUSIONS These findings provide insights into differences in organ-specific inflammatory responses of DSHp for different pathological states among the organs of the cervix, uterus, and ovary.
Collapse
Affiliation(s)
- Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhigang Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Na Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
7
|
Li S, Xin K, Pan S, Wang Y, Zheng J, Li Z, Liu X, Liu B, Xu Z, Chen X. Blood-based liquid biopsy: insights into early detection, prediction, and treatment monitoring of bladder cancer. Cell Mol Biol Lett 2023; 28:28. [PMID: 37016296 PMCID: PMC10074703 DOI: 10.1186/s11658-023-00442-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Bladder cancer (BC) is a clinical challenge worldwide with late clinical presentation, poor prognosis, and low survival rates. Traditional cystoscopy and tissue biopsy are routine methods for the diagnosis, prognosis, and monitoring of BC. However, due to the heterogeneity and limitations of tumors, such as aggressiveness, high cost, and limited applicability of longitudinal surveillance, the identification of tumor markers has attracted significant attention in BC. Over the past decade, liquid biopsies (e.g., blood) have proven to be highly efficient methods for the discovery of BC biomarkers. This noninvasive sampling method is used to analyze unique tumor components released into the peripheral circulation and allows serial sampling and longitudinal monitoring of tumor progression. Several liquid biopsy biomarkers are being extensively studied and have shown promising results in clinical applications of BC, including early detection, detection of microscopic residual disease, prediction of recurrence, and response to therapy. Therefore, in this review, we aim to provide an update on various novel blood-based liquid biopsy markers and review the advantages and current limitations of liquid biopsy in BC therapy. The role of blood-based circulating tumor cells, circulating tumor DNA, cell-free RNA, exosomes, metabolomics, and proteomics in diagnosis, prognosis, and treatment monitoring, and their applicability to the personalized management of BC, are highlighted.
Collapse
Affiliation(s)
- Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
8
|
Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:496-518. [PMID: 34037272 DOI: 10.1002/mas.21707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Sung Hyeon Lee
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Unyoung Kim
- Division of Bioanalysis, Biocomplete Inc., Seoul, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
9
|
Li S, Zhu J, Lubman DM, Zhou H, Tang H. GlycoSLASH: Concurrent Glycopeptide Identification from Multiple Related LC-MS/MS Data Sets by Using Spectral Clustering and Library Searching. J Proteome Res 2023; 22:1501-1509. [PMID: 36802412 PMCID: PMC10164058 DOI: 10.1021/acs.jproteome.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Liquid chromatography coupled with tandem mass spectrometry is commonly adopted in large-scale glycoproteomic studies involving hundreds of disease and control samples. The software for glycopeptide identification in such data (e.g., the commercial software Byonic) analyzes the individual data set and does not exploit the redundant spectra of glycopeptides presented in the related data sets. Herein, we present a novel concurrent approach for glycopeptide identification in multiple related glycoproteomic data sets by using spectral clustering and spectral library searching. The evaluation on two large-scale glycoproteomic data sets showed that the concurrent approach can identify 105%-224% more spectra as glycopeptides compared to the glycopeptide identification on individual data sets using Byonic alone. The improvement of glycopeptide identification also enabled the discovery of several potential biomarkers of protein glycosylations in hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Sujun Li
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China.,JiangXi Key Laboratory of Transfusion Medicine, Nanchang 330000, China.,Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana 47408, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Medical Center, Ann Arbor, Michigan 48109, United States
| | - David M Lubman
- Department of Surgery, University of Michigan, Medical Center, Ann Arbor, Michigan 48109, United States
| | - He Zhou
- Shenzhen Dengding Biopharma Co. Ltd., Shenzhen 518000, China
| | - Haixu Tang
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
10
|
Ivanov DG, Yang Y, Pawlowski JW, Carrick IJ, Kaltashov IA. Rapid Evaluation of the Extent of Haptoglobin Glycosylation Using Orthogonal Intact-Mass MS Approaches and Multivariate Analysis. Anal Chem 2022; 94:5140-5148. [PMID: 35285615 PMCID: PMC11232314 DOI: 10.1021/acs.analchem.1c05585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intact-mass measurements are becoming increasingly popular in mass spectrometry (MS) based protein characterization, as they allow the entire complement of proteoforms to be evaluated within a relatively short time. However, applications of this approach are currently limited to systems exhibiting relatively modest degrees of structural diversity, as the high extent of heterogeneity frequently prevents straightforward MS measurements. Incorporation of limited charge reduction into electrospray ionization (ESI) MS is an elegant way to obtain meaningful information on most heterogeneous systems, yielding not only the average mass of the protein but also the mass range populated by the entire complement of proteoforms. Application of this approach to characterization of two different phenotypes of haptoglobin (1-1 and 2-1) provides evidence of a significant difference in their extent of glycosylation (with the glycan load of phenotype 2-1 being notably lighter) despite a significant overlap of their ionic signals. More detailed characterization of their glycosylation patterns is enabled by the recently introduced technique of cross-path reactive chromatography (XP-RC) with online MS detection, which combines chromatographic separation with in-line reduction of disulfide bonds to generate metastable haptoglobin subunits. Application of XP-RC to both haptoglobin phenotypes confirms that no modifications are present within their light chains and provides a wealth of information on glycosylation patterns of the heavy chains. N-Glycosylation patterns of both haptoglobin phenotypes were found to be consistent with bi- and triantennary structures of complex type that exhibit significant level of fucosylation and sialylation. However, multivariate analysis of haptoglobin 1-1 reveals higher number of the triantennary structures, in comparison to haptoglobin 2-1, as well as a higher extent of fucosylation. The glycosylation patterns deduced from the XP-RC/MS measurements are in agreement with the conclusions of the intact-mass analysis supplemented by limited charge reduction, suggesting that the latter technique can be employed in situations when fast assessment of protein heterogeneity is needed (e.g., process analytical technology applications).
Collapse
Affiliation(s)
- Daniil G Ivanov
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Yang Yang
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Jake W Pawlowski
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Ian J Carrick
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts─Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Lin Y, Zhang J, Arroyo A, Singal AG, Parikh ND, Lubman DM. A Fucosylated Glycopeptide as a Candidate Biomarker for Early Diagnosis of NASH Hepatocellular Carcinoma Using a Stepped HCD Method and PRM Evaluation. Front Oncol 2022; 12:818001. [PMID: 35372033 PMCID: PMC8970044 DOI: 10.3389/fonc.2022.818001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Aberrant specific N-glycosylation, especially the increase in fucosylation on specific peptide sites of serum proteins have been investigated as potential markers for diagnosis of nonalcoholic steatohepatitis (NASH)-related HCC. We have combined a workflow involving broad scale marker discovery in serum followed by targeted marker evaluation of these fucosylated glycopeptides. This workflow involved an LC-Stepped HCD-DDA-MS/MS method coupled with offline peptide fractionation for large-scale identification of N-glycopeptides directly from pooled serum samples (each n=10) as well as differential determination of N-glycosylation changes between disease states. We then evaluated the fucosylation level of the glycoprotein ceruloplasmin among 62 patient samples (35 cirrhosis, 27 early-stage NASH HCC) by LC-Stepped HCD-PRM-MS/MS to quantitatively analyze 18 targeted glycopeptides. Of these targets, we found the ratio of fucosylation of a tri-antennary glycopeptide from site N762, involving N762_ HexNAc(5)Hex(6)Fuc(2)NeuAc(3) (P=0.0486), increased significantly from cirrhosis to early HCC. This fucosylation ratio of a tri-antennary glycopeptide in CERU could be a potential biomarker for further validation in a larger sample set and could be a promising candidate for early detection of NASH HCC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Ana Arroyo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amit G. Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Neehar D. Parikh
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Smith J, Millán-Martín S, Mittermayr S, Hilborne V, Davey G, Polom K, Roviello F, Bones J. 2-Dimensional ultra-high performance liquid chromatography and DMT-MM derivatization paired with tandem mass spectrometry for comprehensive serum N-glycome characterization. Anal Chim Acta 2021; 1179:338840. [PMID: 34535264 DOI: 10.1016/j.aca.2021.338840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022]
Abstract
Glycosylation is a prominent co- and post-translational modification which contributes to a variety of important biological functions. Protein glycosylation characteristics, particularly N-glycosylation, are influenced by changes in one's pathological state, such as through the presence of disease, and as such, there is great interest in N-glycans as potential disease biomarkers. Human serum is an attractive source for N-glycan based biomarker studies as circulatory proteins are representative of one's physiology, with many serum proteins containing N-glycosylation. The difficulty in comprehensively characterizing the serum N-glycome arises from the absence of a biosynthetic template resulting in great structural heterogeneity and complexity. To help overcome these challenges we developed a 2-dimensional liquid chromatography platform which utilizes offline weak anion exchange (WAX) chromatography in the first dimension and hydrophilic interaction liquid chromatography (HILIC) in the second dimension to separate N-glycans by charge, corresponding to degree of sialylation, and size, respectively. Performing these separations offline enables subsequent derivatization with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) for sialic acid linkage determination and the identification of sialic acid linkage isomers. Subsequent tandem mass spectrometry analysis revealed the identification of 212 complete and partial N-glycan structures including low abundant N-glycans containing acetyl and sulphate modifications. The identifications obtained through this platform were then applied to N-glycans released from a set of stage 3 gastric cancer serum samples obtained from patients before (pre-op) and after (post-op) tumour resection to investigate how the serum N-glycome can facilitate differentiation between the two pathological states.
Collapse
Affiliation(s)
- Josh Smith
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Silvia Millán-Martín
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland
| | - Stefan Mittermayr
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland
| | - Vivian Hilborne
- Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Gavin Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Karol Polom
- Department of General Surgery and Surgical Oncology, University of Siena, Siena, Italy; Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Franco Roviello
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
13
|
Naryzny SN, Legina OK. Haptoglobin as a Biomarker. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2021; 15:184-198. [PMID: 34422226 PMCID: PMC8365284 DOI: 10.1134/s1990750821030069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Haptoglobin (Hp) is a glycoprotein that binds free hemoglobin (Hb) in plasma and plays a critical role in tissue protection and prevention of oxidative damage. Besides, it has some regulatory functions. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. The human Нр gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of haptoglobin: homozygous Нр1-1 and Нр2-2, and heterozygous Нр2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual predisposition of a person to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting off the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the β-chain of Hp has become the main direction in the study of pathological processes, including malignant neoplasms. These characteristics indicate the possibility of the existence of Hp in the form of a multitude of proteoforms, probably performing different functions. This review is devoted to the description of the structural and functional diversity and the potential use of Hp as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S. N. Naryzny
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| | - O. K. Legina
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| |
Collapse
|
14
|
Jeong S, Kim U, Oh M, Nam J, Park S, Choi Y, Lee D, Kim J, An H. Detection of Aberrant Glycosylation of Serum Haptoglobin for Gastric Cancer Diagnosis Using a Middle-Up-Down Glycoproteome Platform. J Pers Med 2021; 11:575. [PMID: 34207451 PMCID: PMC8235735 DOI: 10.3390/jpm11060575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is a frequently occurring cancer and is the leading cause of cancer-related deaths. Recent studies have shown that aberrant glycosylation of serum haptoglobin is closely related to gastric cancer and has enormous potential for use in diagnosis. However, there is no platform with high reliability and high reproducibility to comprehensively analyze haptoglobin glycosylation covering microheterogeneity to macroheterogeneity for clinical applications. In this study, we developed a middle-up-down glycoproteome platform for fast and accurate monitoring of haptoglobin glycosylation. This platform utilizes an online purification of LC for sample desalting, and an in silico haptoglobin glycopeptide library constructed by combining peptides and N-glycans to readily identify glycopeptides. In addition, site-specific glycosylation with glycan heterogeneity can be obtained through only a single MS analysis. Haptoglobin glycosylation in clinical samples consisting of healthy controls (n = 47) and gastric cancer patients (n = 43) was extensively investigated using three groups of tryptic glycopeptides: GP1 (including Asn184), GP2 (including Asn207 and Asn211), and GP3 (including Asn241). A total of 23 individual glycopeptides were determined as potential biomarkers (p < 0.00001). In addition, to improve diagnostic efficacy, we derived representative group biomarkers with high AUC values (0.929 to 0.977) through logistic regression analysis for each GP group. It has been found that glycosylation of haptoglobin is highly associated with gastric cancer, especially the glycosite Asn241. Our assay not only allows to quickly and easily obtain information on glycosylation heterogeneity of a target glycoprotein but also makes it an efficient tool for biomarker discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Seunghyup Jeong
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | | | - Myungjin Oh
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jihyeon Nam
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Sehoon Park
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yoonjin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Dongho Lee
- Department of Internal Medicine for Gastroenterology, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea;
| | - Hyunjoo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
15
|
Abstract
Haptoglobin (Hp) is a blood plasma glycoprotein that binds free hemoglobin (Hb) and plays a critical role in tissue protection and the prevention of oxidative damage. In addition, it has a number of regulatory functions. Haptoglobin is an acute phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. Only in humans, the Hp gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of Hp, homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting of the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the Hp β-chain has become the main direction in the study of pathological processes, including malignant neoplasms. Many studies are focused on the identification of PTM and changes in the level of the α2-chain of this protein in pathology. These characteristics of Hp indicate the possibility of the existence of this protein as different proteoforms, probably with different functions. This review is devoted to the description of the structural and functional diversity of Hp and its potential use as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S N Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| | - O K Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
16
|
Discovery of N-glycan Biomarkers for the Canine Osteoarthritis. Life (Basel) 2020; 10:life10090199. [PMID: 32937769 PMCID: PMC7555374 DOI: 10.3390/life10090199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Protein glycosylation is a post-translational modification that impacts on protein activity, stability, and interactions. It was sensitively altered by the cellular state and, therefore, is now used for a diagnostic or prognostic indicator of various human diseases such as cancer. To evaluate the clinical feasibility in the veterinary area, the N-glycan biomarkers were discovered from canine serum for the diagnosis of osteoarthritis (OA), which is one of the most common diseases of dogs. N-glycome was obtained from 20 μL of canine serum by the enzymatic cleavage followed by the purification and enrichment using solid-phase extraction. Independent compositions of 163 and 463 N-glycans were found from healthy control (n = 41) and osteoarthritis patients (n = 92), respectively. Initially, 31 of the potential biomarkers were screened by the p-values below 1.0 × 10−10 from ANOVA. Then, the area under the curve (AUC) and the intensity ratio between OA patient and healthy control (P/C ratio) were calculated. Considering the diagnostic efficacy, the AUC bigger than 0.9 and the P/C ratio larger than 3.0 were used to discover 16 N-glycans as diagnostic biomarkers. Particularly, five of the diagnostic biomarkers were AUC above 0.99 and three of N-glycans had AUC 1.0. The results suggest a clear possibility for N-glycan biomarkers to be used as a clinical tool in the veterinary medical area enabling to provide objective and non-invasive diagnostic information.
Collapse
|
17
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
18
|
Zhu J, Huang J, Zhang J, Chen Z, Lin Y, Grigorean G, Li L, Liu S, Singal AG, Parikh ND, Lubman DM. Glycopeptide Biomarkers in Serum Haptoglobin for Hepatocellular Carcinoma Detection in Patients with Nonalcoholic Steatohepatitis. J Proteome Res 2020; 19:3452-3466. [PMID: 32412768 DOI: 10.1021/acs.jproteome.0c00270] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is rising in prevalence in the United States and is a growing cause of hepatocellular carcinomas (HCCs). Site-specific glycan heterogeneity on glycoproteins has been shown as a potential diagnostic biomarker for HCC. Herein, we have performed a comprehensive screening of site-specific N-glycopeptides in serum haptoglobin (Hp), a reporter molecule for aberrant glycosylation in HCC, to characterize glycopeptide markers for NASH-related HCCs. In total, 70 NASH patients (22 early HCC, 15 advanced HCC, and 33 cirrhosis cases) were analyzed, with Hp purified from 20 μL of serum in each patient, and 140 sets of mass spectrometry (MS) data were collected using liquid chromatography coupled with electron-transfer high-energy collisional dissociation tandem MS (LC-EThcD-MS/MS) for quantitative analysis on a novel software platform, Byos. Differential quantitation analysis revealed that five N-glycopeptides at sites N184 and N241 were significantly elevated during the progression from NASH cirrhosis to HCC (p < 0.05). Receiver operating characteristic (ROC) curve analysis demonstrated that the N-glycopeptides at sites N184 and N241 bearing a monofucosylated triantennary glycan A3G3F1S3 had the best diagnostic performance in detection of early NASH HCC, area under the curve (AUC) = 0.733 and 0.775, respectively, whereas α-fetoprotein (AFP) had an AUC of 0.692. When combined with AFP, the two panels improved the sensitivity for early NASH HCC from 59% (AFP alone) to 73% while maintaining a specificity of 70%, based on the optimal cutoff. Two-dimensional (2-D) scatter plots of the AFP value and N-glycopeptides showed that these N-glycopeptide markers detected 58% of AFP-negative HCC patients as distinct from cirrhosis. These site-specific N-glycopeptides could serve as potential markers for early detection of HCC in patients with NASH-related cirrhosis.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Junfeng Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Gabriela Grigorean
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Neehar D Parikh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Shen J, Zhai J, Wu X, Xie G, Shen L. Serum proteome profiling reveals SOX3 as a candidate prognostic marker for gastric cancer. J Cell Mol Med 2020; 24:6750-6761. [PMID: 32363730 PMCID: PMC7299728 DOI: 10.1111/jcmm.15326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Searching for the novel tumour biomarkers is pressing for gastric cancer diagnostication and prognostication. The serum specimens from patients diagnosed with locally advanced gastric carcinoma before operation and 4 week after surgery were collected, respectively, and serum proteome profiling was conducted by liquid chromatography–mass spectrometry (MS)/MS. Fifty‐five proteins were identified to be up‐regulated and 16 proteins were down‐regulated, and these differentially expressed proteins participated in various biological processes. Serum levels of SOX3, one of down‐regulated proteins, in stomach cancer patients were higher than in healthy controls. SOX3 levels in cancer tissues were remarkably related to tumour differentiation, lymph node metastasis, primary tumour invasion and pTNM (pathological TNM) stage. Analysis with The Cancer Genome Atlas database indicated that SOX3 level and pTNM stage were the independent risk factors for the patient survival and that the overall survival was negatively associated with the SOX3 levels. Loss‐of‐function showed that SOX3 promoted gastric cancer cell invasion and migration in vitro and in vivo. SOX3 silence inhibits the expression of MMP9, and SOX3 is responsible for MMP9 expression transcriptionally. Our study highlights the potentiality of the paired pre‐ and post‐operation serum proteome signatures for the detection of biomarkers and reveals that SOX3 may serve as a candidate prognosis marker for gastric cancer.
Collapse
Affiliation(s)
- Jiajia Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zhai
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinqian Wu
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guiping Xie
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Jeong S, Oh MJ, Kim U, Lee J, Kim JH, An HJ. Glycosylation of serum haptoglobin as a marker of gastric cancer: an overview for clinicians. Expert Rev Proteomics 2020; 17:109-117. [DOI: 10.1080/14789450.2020.1740091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Seunghyup Jeong
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Jin Oh
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Unyong Kim
- Biocomplete Inc, Seoul, Republic of Korea
| | - Jua Lee
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Joo An
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Tao L, Zhou J, Yuan C, Zhang L, Li D, Si D, Xiu D, Zhong L. Metabolomics identifies serum and exosomes metabolite markers of pancreatic cancer. Metabolomics 2019; 15:86. [PMID: 31147790 DOI: 10.1007/s11306-019-1550-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Pancreatic cancer (PC) is one of the most aggressive malignancies, and it's difficult to diagnosis PC at an early stage, which leads to the poor prognosis of PC. OBJECTIVES To identifiy the possible prognosis or dignosis metabolite biomarkers in the serum exosome of PC patients. METHODS We employed LC-DDA-MS based untargeted lipidomic analysis to search for potential candidate biomarkers in the serum exosome of PC patients. Then LC-MRM-MS based targeted lipid quantification was used to validate the trends of the candidate biomarkers in larger sample cohorts. RESULTS About 270 lipids belonging to 20 lipid species were found significantly dysregulated between the serum exosome of PC patients and healthy controls. 61 of them were validated in larger samples size. We further analysis the correlation between these dysregulated lipids and other PC related factors, and results show that LysoPC 22:0, PC (P-14:0/22:2) and PE (16:0/18:1) are all associated with tumor stage, CA19-9, CA242 and tumor diameter. What's more, PE (16:0/18:1) is also found to be significantly correlated with the patient's overall survival. CONCLUSION These data reveal dysregulated lipids in serum exosome of PC patients, which have potential to be biomarkers for diagnosis, or unveil pathological relationship between exosome and PC progress.
Collapse
Affiliation(s)
- Lianyuan Tao
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, China
- Department of General Surgery, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing, 100191, China
| | - Juntuo Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100083, China
| | - Chunhui Yuan
- Department of General Surgery, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing, 100191, China
| | - Lingfu Zhang
- Department of General Surgery, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing, 100191, China
| | - Deyu Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, China
| | - Dandan Si
- AB Sciex Analytical Instrument Trading Co., Ltd. Beijing Office, Beijing, 100015, China
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing, 100191, China.
| | - Lijun Zhong
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
22
|
Dalal K, Dalal B, Bhatia S, Shukla A, Shankarkumar A. Analysis of serum Haptoglobin using glycoproteomics and lectin immunoassay in liver diseases in Hepatitis B virus infection. Clin Chim Acta 2019; 495:309-317. [PMID: 31014754 DOI: 10.1016/j.cca.2019.04.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) due to Hepatitis B viral (HBV) infection is a major cause in Asia-Pacific countries. Its early detection is of paramount importance using a marker having both sensitivity and specificity. The present study promises diagnostic and prognostic markers by the identification of site-specific glycoforms on Haptoglobin (Hp) using LC-MS/MS and lectin ELISA in liver diseased conditions in HBV infection. METHODS Three groups of patients: chronic, liver cirrhosis and HCC with HBV infection along with controls were enrolled. Hp was purified using affinity column chromatography and, peptide sequence, N-glycosylation site, glycan composition and glycoforms were identified using mass spectrometry. Quantitative lectin ELISA was used to measure levels of fucosylation on Hp in liver diseases due to HBV. RESULTS Hp levels were significantly lower in HCC when compared with Non-HCC cases (p < .05). Fucosylated glycoforms were significantly increased at site Asn184, Asn207 and Asn211 in liver diseased stages versus controls. A significant association was observed between the Fuc-Hp/Hp Elisa index and, advanced liver disease stages and controls using lectin Elisa (p < .001). CONCLUSION Quantitation of fucosylation levels on Hp protein using Lectin ELISA may be useful glycobiomarker either alone or in combination (AFP + DCP + FucHp; AUC = 0.94) in HBV HCC diagnosis in clinical practice.
Collapse
Affiliation(s)
- K Dalal
- Transfusion Transmitted Diseases Department, National Institute of Immunohaematology (ICMR), 13th Floor, New Multi-storeyed Bldg, KEM Hospital Campus, Parel, Mumbai 400 012, Maharashtra, India
| | - B Dalal
- Transfusion Transmitted Diseases Department, National Institute of Immunohaematology (ICMR), 13th Floor, New Multi-storeyed Bldg, KEM Hospital Campus, Parel, Mumbai 400 012, Maharashtra, India
| | - S Bhatia
- Department of Gastroenterology, Seth G S Medical College and K E M Hospital, Acharya Donde Marg, Parel, Mumbai 400 012, Maharashtra, India
| | - A Shukla
- Department of Gastroenterology, Seth G S Medical College and K E M Hospital, Acharya Donde Marg, Parel, Mumbai 400 012, Maharashtra, India
| | - A Shankarkumar
- Transfusion Transmitted Diseases Department, National Institute of Immunohaematology (ICMR), 13th Floor, New Multi-storeyed Bldg, KEM Hospital Campus, Parel, Mumbai 400 012, Maharashtra, India.
| |
Collapse
|
23
|
Wang Y, Park H, Lin H, Kitova EN, Klassen JS. Multipronged ESI–MS Approach for Studying Glycan-Binding Protein Interactions with Glycoproteins. Anal Chem 2019; 91:2140-2147. [DOI: 10.1021/acs.analchem.8b04673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yilin Wang
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Heajin Park
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Hong Lin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
24
|
Smith J, Mittermayr S, Váradi C, Bones J. Quantitative glycomics using liquid phase separations coupled to mass spectrometry. Analyst 2018; 142:700-720. [PMID: 28170017 DOI: 10.1039/c6an02715f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Post-translational modification of proteins by the attachment of glycans is governed by a variety of highly specific enzymes and is associated with fundamental impacts on the parent protein's physical, chemical and biological properties. The inherent connection between cellular physiology and specific glycosylation patterns has been shown to offer potential for diagnostic and prognostic monitoring of altered glycosylation in the disease state. Conversely, glycoprotein based biopharmaceuticals have emerged as dominant therapeutic strategies in the treatment of intricate diseases. Glycosylation present on these biopharmaceuticals represents a major critical quality attribute with impacts on both pharmacokinetics and pharmacodynamics. The structural variety of glycans, based upon their non-template driven assembly, poses a significant analytical challenge for both qualitative and quantitative analysis. Labile monosaccharide constituents, isomeric species and often low sample availability from biological sources necessitates meticulous sample handling, ultra-high-resolution analytical separation and sensitive detection techniques, respectively. In this article a critical review of analytical quantitation approaches using liquid phase separations coupled to mass spectrometry for released glycans of biopharmaceutical and biomedical significance is presented. Considerations associated with sample derivatisation strategies, ionisation, relative quantitation through isotopic as well as isobaric labelling, metabolic/enzymatic incorporation and targeted analysis are all thoroughly discussed.
Collapse
Affiliation(s)
- Josh Smith
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590, Ireland
| | - Stefan Mittermayr
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Csaba Váradi
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1 W8, Ireland
| |
Collapse
|
25
|
Lee J, Hua S, Lee SH, Oh MJ, Yun J, Kim JY, Kim JH, Kim JH, An HJ. Designation of fingerprint glycopeptides for targeted glycoproteomic analysis of serum haptoglobin: insights into gastric cancer biomarker discovery. Anal Bioanal Chem 2017; 410:1617-1629. [PMID: 29285644 DOI: 10.1007/s00216-017-0811-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/14/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide, largely because of difficulties in early diagnosis. Despite accumulating evidence indicating that aberrant glycosylation is associated with GC, site-specific localization of the glycosylation to increase specificity and sensitivity for clinical use is still an analytical challenge. Here, we created an analytical platform with a targeted glycoproteomic approach for GC biomarker discovery. Unlike the conventional glycomic approach with untargeted mass spectrometric profiling of released glycan, our platform is characterized by three key features: it is a target-protein-specific, glycosylation-site-specific, and structure-specific platform with a one-shot enzyme reaction. Serum haptoglobin enriched by immunoaffinity chromatography was subjected to multispecific proteolysis to generate site-specific glycopeptides and to investigate the macroheterogeneity and microheterogeneity. Glycopeptides were identified and quantified by nano liquid chromatography-mass spectrometry and nano liquid chromatography-tandem mass spectrometry. Ninety-six glycopeptides, each corresponding to a unique glycan/glycosite pairing, were tracked across all cancer and control samples. Differences in abundance between the two groups were marked by particularly high magnitudes. Three glycopeptides exhibited exceptionally high control-to-cancer fold changes along with receiver operating characteristic curve areas of 1.0, indicating perfect discrimination between the two groups. From the results taken together, our platform, which provides biological information as well as high sensitivity and reproducibility, may be useful for GC biomarker discovery. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Jua Lee
- Asia Glycomics Reference Site, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.,Graduate School of Analytical Science and Technology, #455 College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | - Serenus Hua
- Asia Glycomics Reference Site, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.,Graduate School of Analytical Science and Technology, #455 College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | - Sung Hyeon Lee
- GLYCAN Co. Ltd., Healthcare Innovation Park, 172 Dolma-ro, Bundang-gu, Seongnam, 13605, Republic of Korea
| | - Myung Jin Oh
- Asia Glycomics Reference Site, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.,Graduate School of Analytical Science and Technology, #455 College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | - Jaekyung Yun
- Asia Glycomics Reference Site, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.,Graduate School of Analytical Science and Technology, #455 College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | - Jin Young Kim
- Department of Mass Spectrometry, Korea Basic Science Institute, Ochang, 863-883, Republic of Korea
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | - Jung Hoe Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Joo An
- Asia Glycomics Reference Site, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea. .,Graduate School of Analytical Science and Technology, #455 College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
26
|
Glycosylation patterns of selected proteins in individual serum and cerebrospinal fluid samples. J Pharm Biomed Anal 2017; 145:431-439. [DOI: 10.1016/j.jpba.2017.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
|
27
|
Kim JH, Lee SH, Choi S, Kim U, Yeo IS, Kim SH, Oh MJ, Moon H, Lee J, Jeong S, Choi MG, Lee JH, Sohn TS, Bae JM, Kim S, Min YW, Lee H, Lee JH, Rhee PL, Kim JJ, Lee SJ, Kim ST, Lee J, Park SH, Park JO, Park YS, Lim HY, Kang WK, An HJ, Kim JH. Direct analysis of aberrant glycosylation on haptoglobin in patients with gastric cancer. Oncotarget 2017; 8:11094-11104. [PMID: 28052004 PMCID: PMC5355249 DOI: 10.18632/oncotarget.14362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023] Open
Abstract
Based on our previous studies, differential analysis of N-glycan expression bound on serum haptoglobin reveals the quantitative variation on gastric cancer patients. In this prospective case-control study, we explore the clinically relevant glycan markers for gastric cancer diagnosis. Serum samples were collected from patients with gastric cancer (n = 44) and healthy control (n = 44). N-glycans alteration was monitored by intact analysis of Hp using liquid chromatography–mass spectrometry followed by immunoaffinity purification with the serum samples. Intensity and frequency markers were defined depending on the mass spectrometry data analysis. Multiple markers were found with high diagnostic efficacy. As intensity markers (I-marker), six markers were discovered with the AUC > 0.8. The high efficiency markers exhibited AUC of 0.93 with a specificity of 86% when the sensitivity was set to 95%. We additionally established frequency marker (f-marker) panels based on the tendency of high N-glycan expression. The AUC to conclude patients and control group were 0.82 and 0.79, respectively. This study suggested that N-glycan variation of serum haptoglobin were associated with patients with gastric cancer and might be a promising marker for the cancer screening.
Collapse
Affiliation(s)
- Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Yuseong-Gu, Deajeon, Korea
| | - Sung Hyeon Lee
- GLYCAN Co., Ltd., Healthcare Innovation Park, Bundang-Gu, Seongnam, Korea
| | - Sookyung Choi
- GLYCAN Co., Ltd., Healthcare Innovation Park, Bundang-Gu, Seongnam, Korea
| | - Unyong Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-Gu, Deajeon, Korea
| | - In Seok Yeo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-Gu, Daejeon, Korea
| | - Su Hee Kim
- GLYCAN Co., Ltd., Healthcare Innovation Park, Bundang-Gu, Seongnam, Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-Gu, Deajeon, Korea
| | - Hantae Moon
- Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-Gu, Deajeon, Korea
| | - Jua Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-Gu, Deajeon, Korea
| | - Seunghyup Jeong
- Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-Gu, Deajeon, Korea
| | - Min Gew Choi
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jun Ho Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Sung Sohn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Moon Bae
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yang Won Min
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyuk Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jun Haeng Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Poong-Lyul Rhee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae J Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Jin Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-Gu, Deajeon, Korea
| | - Jung Hoe Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-Gu, Daejeon, Korea
| |
Collapse
|
28
|
Nagy G, Peng T, Pohl NLB. Recent Liquid Chromatographic Approaches and Developments for the Separation and Purification of Carbohydrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:3579-3593. [PMID: 28824713 PMCID: PMC5558844 DOI: 10.1039/c7ay01094j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbohydate purification remains a bottleneck in securing analytical standards from natural sources or by chemical or enzymatic synthesis. This review highlights the scope and remaining limitations of recent approaches and methods development in liquid chromatography for robust and higher-throughput carbohydrate separation and isolation.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|