1
|
Filipski KJ, Edmonds DJ, Garnsey MR, Smaltz DJ, Coffman K, Futatsugi K, Lee J, O’Neil SV, Wright A, Nason D, Gosset JR, Orozco CC, Blackler D, Fakhoury G, Gutierrez JA, Perez S, Ross T, Stock I, Tesz G, Dullea R. Design of Next-Generation DGAT2 Inhibitor PF-07202954 with Longer Predicted Half-Life. ACS Med Chem Lett 2023; 14:1427-1433. [PMID: 37849537 PMCID: PMC10577701 DOI: 10.1021/acsmedchemlett.3c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
Diacylglycerol O-acyltransferase 2 (DGAT2) inhibitors have been shown to lower liver triglyceride content and are being explored clinically as a treatment for non-alcoholic steatohepatitis (NASH). This work details efforts to find an extended-half-life DGAT2 inhibitor. A basic moiety was added to a known inhibitor template, and the basicity and lipophilicity were fine-tuned by the addition of electrophilic fluorines. A weakly basic profile was required to find an appropriate balance of potency, clearance, and permeability. This work culminated in the discovery of PF-07202954 (12), a weakly basic DGAT2 inhibitor that has advanced to clinical studies. This molecule displays a higher volume of distribution and longer half-life in preclinical species, in keeping with its physicochemical profile, and lowers liver triglyceride content in a Western-diet-fed rat model.
Collapse
Affiliation(s)
- Kevin J. Filipski
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - David J. Edmonds
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Michelle R. Garnsey
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel J. Smaltz
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Karen Coffman
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kentaro Futatsugi
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jack Lee
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven V. O’Neil
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ann Wright
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Deane Nason
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - James R. Gosset
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Christine C. Orozco
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dan Blackler
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Guila Fakhoury
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jemy A. Gutierrez
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Sylvie Perez
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Trenton Ross
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ingrid Stock
- Pfizer
Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory Tesz
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Robert Dullea
- Pfizer
Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Amin NB, Saxena AR, Somayaji V, Dullea R. Inhibition of Diacylglycerol Acyltransferase 2 Versus Diacylglycerol Acyltransferase 1: Potential Therapeutic Implications of Pharmacology. Clin Ther 2023; 45:55-70. [PMID: 36690550 DOI: 10.1016/j.clinthera.2022.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Hepatic steatosis due to altered lipid metabolism and accumulation of hepatic triglycerides is a hallmark of nonalcoholic fatty liver disease (NAFLD). Diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, catalyze the terminal reaction in triglyceride synthesis, making them attractive targets for pharmacologic intervention. There is a common misconception that these enzymes are related; however, despite their similar names, DGAT1 and DGAT2 differ significantly on multiple levels. As we look ahead to future clinical studies of DGAT2 inhibitors in patients with NAFLD and nonalcoholic steatohepatitis (NASH), we review key differences and include evidence to highlight and support DGAT2 inhibitor (DGAT2i) pharmacology. METHODS Three Phase I, randomized, double-blind, placebo-controlled trials assessed the safety, tolerability, and pharmacokinetic properties of the DGAT2i ervogastat (PF-06865571) in healthy adult participants (Single Dose Study to Assess the Safety, Tolerability and Pharmacokinetics of PF-06865571 [study C2541001] and Study to Assess the Safety, Tolerability, and Pharmacokinetics of Multiple Doses of PF-06865571 in Healthy, Including Overweight and Obese, Adult Subjects [study C2541002]) or participants with NAFLD (2-Week Study in People With Nonalcoholic Fatty Liver Disease [study C2541005]). Data from 2 Phase I, randomized, double-blind, placebo-controlled trials of the DGAT1i PF-04620110 in healthy participants (A Single Dose Study of PF-04620110 in Overweight and Obese, Otherwise Healthy Volunteers [study B0961001] and A Multiple Dose Study of PF-04620110 in Overweight and Obese, Otherwise Healthy Volunteers [study B0961002]) were included for comparison. Safety outcomes were the primary end point in all studies, except in study C2541005, in which safety was the secondary end point, with relative change from baseline in whole liver fat at day 15 assessed as the primary end point. Safety data were analyzed across studies by total daily dose of ervogastat (5, 15, 50, 100, 150, 500, 600, 1000, and 1500 mg) or PF-04620110 (0.3, 1, 3, 5, 7, 10, 14, and 21 mg), with placebo data pooled separately across ervogastat and PF-04620110 studies. FINDINGS Published data indicate that DGAT1 and DGAT2 differ in multiple dimensions, including gene family, subcellular localization, substrate preference, and specificity, with unrelated pharmacologic inhibition properties and differing safety profiles. Although initial nonclinical studies suggested a potentially attractive therapeutic profile with DGAT1 inhibition, genetic and pharmacologic data suggest otherwise, with common gastrointestinal adverse events, including nausea, vomiting, and diarrhea, limiting further clinical development. Conversely, DGAT2 inhibition, although initially not pursued as aggressively as a potential target for pharmacologic intervention, has consistent efficacy in nonclinical studies, with reduced triglyceride synthesis accompanied by reduced expression of genes essential for de novo lipogenesis. In addition, early clinical data indicate antisteatotic effects with DGAT2i ervogastat, in participants with NAFLD, accompanied by a well-tolerated safety profile. IMPLICATIONS Although pharmacologic DGAT1is are limited by an adverse safety profile, data support use of DGAT2i as an effective and well-tolerated therapeutic strategy for patients with NAFLD, NASH, and NASH with liver fibrosis. CLINICALTRIALS gov identifiers: NCT03092232, NCT03230383, NCT03513588, NCT00799006, and NCT00959426.
Collapse
Affiliation(s)
- Neeta B Amin
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Aditi R Saxena
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Veena Somayaji
- Early Clinical Development, Pfizer Inc, Cambridge, Massachusetts
| | - Robert Dullea
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts.
| |
Collapse
|
3
|
Futatsugi K, Cabral S, Kung DW, Huard K, Lee E, Boehm M, Bauman J, Clark RW, Coffey SB, Crowley C, Dechert-Schmitt AM, Dowling MS, Dullea R, Gosset JR, Kalgutkar AS, Kou K, Li Q, Lian Y, Loria PM, Londregan AT, Niosi M, Orozco C, Pettersen JC, Pfefferkorn JA, Polivkova J, Ross TT, Sharma R, Stock IA, Tesz G, Wisniewska H, Goodwin B, Price DA. Discovery of Ervogastat (PF-06865571): A Potent and Selective Inhibitor of Diacylglycerol Acyltransferase 2 for the Treatment of Non-alcoholic Steatohepatitis. J Med Chem 2022; 65:15000-15013. [PMID: 36322383 DOI: 10.1021/acs.jmedchem.2c01200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Discovery efforts leading to the identification of ervogastat (PF-06865571), a systemically acting diacylglycerol acyltransferase (DGAT2) inhibitor that has advanced into clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis, are described herein. Ervogastat is a first-in-class DGAT2 inhibitor that addressed potential development risks of the prototype liver-targeted DGAT2 inhibitor PF-06427878. Key design elements that culminated in the discovery of ervogastat are (1) replacement of the metabolically labile motif with a 3,5-disubstituted pyridine system, which addressed potential safety risks arising from a cytochrome P450-mediated O-dearylation of PF-06427878 to a reactive quinone metabolite precursor, and (2) modifications of the amide group to a 3-THF group, guided by metabolite identification studies coupled with property-based drug design.
Collapse
Affiliation(s)
- Kentaro Futatsugi
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Shawn Cabral
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Kung
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kim Huard
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Esther Lee
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Markus Boehm
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jonathan Bauman
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ronald W Clark
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Steven B Coffey
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Collin Crowley
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | | | - Matthew S Dowling
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert Dullea
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - James R Gosset
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kou Kou
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Qifang Li
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yajing Lian
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paula M Loria
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Allyn T Londregan
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Niosi
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christine Orozco
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John C Pettersen
- Pfizer Inc. Drug Safety R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey A Pfefferkorn
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jana Polivkova
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Trenton T Ross
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Raman Sharma
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ingrid A Stock
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory Tesz
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Hanna Wisniewska
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bryan Goodwin
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - David A Price
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Pabst B, Futatsugi K, Li Q, Ahn K. Mechanistic Characterization of Long Residence Time Inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2). Biochemistry 2018; 57:6997-7010. [DOI: 10.1021/acs.biochem.8b01096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
McLaren DG, Han S, Murphy BA, Wilsie L, Stout SJ, Zhou H, Roddy TP, Gorski JN, Metzger DE, Shin MK, Reilly DF, Zhou HH, Tadin-Strapps M, Bartz SR, Cumiskey AM, Graham TH, Shen DM, Akinsanya KO, Previs SF, Imbriglio JE, Pinto S. DGAT2 Inhibition Alters Aspects of Triglyceride Metabolism in Rodents but Not in Non-human Primates. Cell Metab 2018; 27:1236-1248.e6. [PMID: 29706567 DOI: 10.1016/j.cmet.2018.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/12/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022]
Abstract
Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in triglyceride (TG) synthesis and has been shown to play a role in regulating hepatic very-low-density lipoprotein (VLDL) production in rodents. To explore the potential of DGAT2 as a therapeutic target for the treatment of dyslipidemia, we tested the effects of small-molecule inhibitors and gene silencing both in vitro and in vivo. Consistent with prior reports, chronic inhibition of DGAT2 in a murine model of obesity led to correction of multiple lipid parameters. In contrast, experiments in primary human, rhesus, and cynomolgus hepatocytes demonstrated that selective inhibition of DGAT2 has only a modest effect. Acute and chronic inhibition of DGAT2 in rhesus primates recapitulated the in vitro data yielding no significant effects on production of plasma TG or VLDL apolipoprotein B. These results call into question whether selective inhibition of DGAT2 is sufficient for remediation of dyslipidemia.
Collapse
Affiliation(s)
| | - Seongah Han
- Division of Cardio Metabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | | | - Larissa Wilsie
- Division of Cardio Metabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Steven J Stout
- Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Haihong Zhou
- Division of Cardio Metabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Thomas P Roddy
- Division of Cardio Metabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | | | - Myung K Shin
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Heather H Zhou
- Division of Cardio Metabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | - Steven R Bartz
- Business Development and Licensing, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | - Thomas H Graham
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Dong-Ming Shen
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Karen O Akinsanya
- Business Development and Licensing, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Stephen F Previs
- Division of Cardio Metabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | - Shirly Pinto
- Division of Cardio Metabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| |
Collapse
|
6
|
Bader SJ, Herr M, Aspnes GE, Cabral S, Li Q, Bian J, Coffey SB, Dowling MS, Fernando DP, Jiao W, Lavergne SY, Kung DW. Route Selection and Optimization in the Synthesis of Two Imidazopyridine Inhibitors of DGAT-2. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Scott J. Bader
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael Herr
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gary E. Aspnes
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shawn Cabral
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Qifang Li
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jianwei Bian
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven B. Coffey
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew S. Dowling
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dilinie P. Fernando
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Wenhua Jiao
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sophie Y. Lavergne
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W. Kung
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|