1
|
Liu J, Li K, Tang X, Zhang Y, Guan X. Grain protein function prediction based on improved FCN and bidirectional LSTM. Food Chem 2025; 482:143955. [PMID: 40209386 DOI: 10.1016/j.foodchem.2025.143955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
With the development of high-throughput sequencing technologies, predicting grain protein function from amino acid sequences based on intelligent model has become one of the significant tasks in bioinformatics. The soybean, maize, indica, and japonica are selected as grain dataset from the UniProtKB. Aiming at the problem of neglecting the sequence order of amino acids and the long-term dependence between amino acids, the PBiLSTM-FCN model is proposed for predicting grain protein function in this paper. The sequence of amino acid sequences is considered in the Fully Convolutional Networks (FCN), and the long-term dependence between amino acids is addressed by the bidirectional Long Short-Term Memory network (BiLSTM). The experimental results show that the PBiLSTM-FCN model is superior to existing models, and can predict more accurately by solving the problem of capturing long-range dependencies and the order of amino acid sequences. Finally, the interpretability analyses are performed by the actual protein function compared with the predicted protein function which proves the effectiveness of the PBiLSTM-FCN model in predicting grain protein function.
Collapse
Affiliation(s)
- Jing Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Kun Li
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xinghua Tang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
2
|
Li K, Chen H, Li D, Yang C, Zhang H, Zhu Z. Empowering DNA-Based Information Processing: Computation and Data Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68749-68771. [PMID: 39648356 DOI: 10.1021/acsami.4c13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Information processing is a critical topic in the digital age, as silicon-based circuits face unprecedented challenges such as data explosion, immense energy consumption, and approaching physical limits. Deoxyribonucleic acid (DNA), naturally selected as a carrier for storing and using genetic information, possesses unique advantages for information processing, which has given rise to the emerging fields of DNA computing and DNA data storage. To meet the growing practical demands, a wide variety of materials and interfaces have been introduced into DNA information processing technologies, leading to significant advancements. This review summarizes the advances in materials and interfaces that facilitate DNA computation and DNA data storage. We begin with a brief overview of the fundamental functions and principles of DNA computation and DNA data storage. Subsequently, we delve into DNA computing systems based on various materials and interfaces, including microbeads, nanomaterials, DNA nanostructures, hydrophilic-hydrophobic compartmentalization, hydrogels, metal-organic frameworks, and microfluidics. We also explore DNA data storage systems, encompassing encapsulation materials, microfluidics techniques, DNA nanostructures, and living cells. Finally, we discuss the current bottlenecks and obstacles in the fields and provide insights into potential future developments.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Dayang Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Hou X, Ga L, Zhang X, Ai J. Advances in the application of logic gates in nanozymes. Anal Bioanal Chem 2024; 416:5893-5914. [PMID: 38488951 DOI: 10.1007/s00216-024-05240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Nanozymes are a class of nanomaterials with biocatalytic function and enzyme-like activity, whose advantages include high stability, low cost, and mass production. They can catalyze the substrates of natural enzymes based on specific nanostructures and serve as substitutes for natural enzymes. Their applied research involves a wide range of fields such as biomedicine, environmental governance, agriculture, and food. Molecular logic gates are a new cross-disciplinary discipline, which can simulate the function of silicon circuits on a molecular scale, perform single or multiple input logic operations, and generate logic outputs. A molecular logic gate is a binary operation that converts an input signal into an output signal according to the rules of Boolean logic, generating two signals, a high level, and a low level. The high and low levels represent the "true" and "false" values of the logic gates, and their outputs correspond to "l" and "0" of the molecular logic gates, respectively. The combination of nanozymes and logic gates is a novel and attractive research direction, and the cross-application of the two brings new opportunities and ideas for various fields, such as the construction of efficient biocomputers, intelligent drug delivery systems, and the precise diagnosis of diseases. This review describes the application of logic gates based on nanozymes, which is expected to provide a certain theoretical foundation for researchers' subsequent studies.
Collapse
Affiliation(s)
- Xiangru Hou
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Xin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Road, Hohhot, 010051, China.
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
4
|
Yang Lu J, Qi Bu Z, Tao Huang W. Peptide-based sensing of Pb2+, molecular logic computing, information encoding, cryptography, and steganography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Rapid, direct, visualized and antibody-free bacterial detection with extra species identification and susceptibility evaluation capabilities. Biosens Bioelectron 2022; 221:114902. [DOI: 10.1016/j.bios.2022.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
|
6
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Bu ZQ, Yao QF, Liu QY, Quan MX, Lu JY, Huang WT. Peptide-Based Sensing, Logic Computing, and Information Security on the Antimonene Platform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8311-8321. [PMID: 35112857 DOI: 10.1021/acsami.1c23814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptides have higher information density than DNA and equivalent molecular recognition ability and durability. However, there are currently no reports on the comprehensive use of peptides' recognition ability and structural diversity for sensing, logic computing, information coding, and protection. Herein, we, for the first time, demonstrate peptide-based sensing, logic computing, and information security on the antimonene platform. The molecular recognition capability and structural diversity (amino acid sequence) of peptides (Pb2+-binding peptide DHHTQQHD as a model) adsorbed on the antimonene universal fluorescence quenching platform were comprehensively utilized to sense targets (Pb2+) and give a response (fluorescence turn-on) and then to encode, encrypt, and hide information. Fluorescently labeled peptides used as the recognition probe and the information carrier were quenched and hidden by the large-plane two-dimensional material antimonene and specifically bound by Pb2+ as the stego key, resulting in fluorescence recovery. The above interaction and signal change can be considered as a peptide-based sensing and steganographic process to further implement quantitative detection of Pb2+, complex logic operation, information coding, encrypting, and hiding using a peptide sequence and the binary conversion of its selectivity. This research provides a basic paradigm for the construction of a molecular sensing and informatization platform and will inspire the development of biopolymer-based molecular information technology (processing, communication, control, security).
Collapse
Affiliation(s)
- Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
8
|
Chen W, Cheng CA, Xiang D, Zink JI. Expanding nanoparticle multifunctionality: size-selected cargo release and multiple logic operations. NANOSCALE 2021; 13:5497-5506. [PMID: 33687426 DOI: 10.1039/d1nr00642h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Physically stimulated nanoparticles that deliver size-selected cargo and function as logic gates are reported. To achieve this goal the particle requires multiple components, and we recognized early on that the components, not just the released cargo, could be used to demonstrate logic operations (OR and AND logic). For stimuli, we chose two non-invasive types, red light and alternating magnetic fields (AMF), because they both have potential biological relevance. To realize cargo delivery with size selection and logic operations, we mechanized the surface of core@shell nanoparticles with a superparamagnetic core that generates localized heating when exposed to an AMF, and a mesoporous silica shell into which cargo molecules with different sizes were loaded. We demonstrate the core@shell nanoparticles can load the dual cargos with different sizes and subsequently release the smaller (∼0.5 nm) and bigger (∼2 nm) cargos in succession when stimulated by a red light followed by an AMF. Finally, we demonstrate that the multi-component nanoparticles could function as nanoparticle-based Boolean logic gates where AMF and red light served as the two inputs and the release of small cargo, and free cyclodextrin served as the outputs. The construction of two Boolean logic gates (OR, and AND) was realized.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, USA. and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Chi-An Cheng
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, 90095, USA and Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Danlei Xiang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Jeffrey I Zink
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, USA. and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
9
|
Zhang Y, Li CW, Zhou L, Chen Z, Yi C. "Plug and Play" logic gate construction based on chemically triggered fluorescence switching of gold nanoparticles conjugated with Cy3-tagged aptamer. Mikrochim Acta 2020; 187:437. [PMID: 32647943 DOI: 10.1007/s00604-020-04421-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
Gold nanoparticles (AuNPs) conjugated with Cy3-tagged aptamer which can specifically recognize chloramphenicol (CAP) (referred to as AuNPs-AptCAP) are described. CAP can trigger the configuration change of CAP binding aptamer, and thus switching the fluorescence of AuNPs-AptCAP through changing the efficiency of the fluorescence resonance energy transfer (FRET) system with Cy3 as donors and AuNPs as recipients. AuNPs-AptCAP exhibits a linear range of CAP concentrations from 26.0 to 277 μg L-1 with a limit of detection of 8.1 μg L-1 when Cy3 was excited at 530 nm and emission was measured at 570 nm. More importantly, AuNPs-AptCAP can be utilized as signal transducers for the build-up of a series of logic gates including YES, PASS 0, INH, NOT, PASS 1, and NAND. Utilizing the principle of a metal ion-mediated fluorescence switch together with a strong metal ion chelator, the fluorescence of AuNPs-AptCAP could be modulated by adding metal ions and EDTA sequentially. Therefore, a "Plug and Play" logic system based on AuNPs-AptCAP has been realized by simply adding other components to create new logic functions. This work highlights the advantages of simple synthesis and facile fluorescence switching properties, which will provide useful knowledge for the establishment of molecular logic systems. Graphical abstract.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheuk-Wing Li
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Lefei Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhanpeng Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China. .,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
10
|
Wang Z, Liu J, Liu X, Shi X, Dai Z. Photoelectrochemical Approach to Apoptosis Evaluation via Multi-Functional Peptide- and Electrostatic Attraction-Guided Excitonic Response. Anal Chem 2018; 91:830-835. [DOI: 10.1021/acs.analchem.8b03195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jia Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiaoyu Shi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Tregubov AA, Nikitin PI, Nikitin MP. Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chem Rev 2018; 118:10294-10348. [DOI: 10.1021/acs.chemrev.8b00198] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andrey A. Tregubov
- Moscow Institute of Physics and Technology (State University), 1A Kerchenskaya St, Moscow 117303, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991, Russia
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology (State University), 1A Kerchenskaya St, Moscow 117303, Russia
| |
Collapse
|
12
|
Chen J, Chen S, Li F. DNA Probes for Implementation of Multiple Molecular Computations Using a Lateral Flow Strip Biosensor as the Sensing Platform. Anal Chem 2018; 90:10311-10317. [DOI: 10.1021/acs.analchem.8b02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Shu Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Fengling Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
13
|
Wang Z, Chen Y, Zhang H, Li Y, Ma Y, Huang J, Liu X, Liu F, Wang T, Zhang X. Mitochondria-Targeting Polydopamine Nanocomposites as Chemophotothermal Therapeutics for Cancer. Bioconjug Chem 2018; 29:2415-2425. [PMID: 29927240 DOI: 10.1021/acs.bioconjchem.8b00325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitochondria play a key role in a variety of physiological processes, and mitochondria-targeting drug delivery is helpful and effective in cancer therapy. Rhodamine123 (Rhod123) and Doxorubicin (Dox) are not new chemical molecules, and they both can inhibit the growth of cancerous cells. Here, we combine these two "old" chemicals with polydopamine nanoparticles (PDA NPs) to strengthen the antitumor effect with the aid of near-infrared irradiation. PDA NPs carry these two chemicals tightly by hydrogen bonds and π-π stacking besides chemical bonds. The better antitumor profile of PDA-Rhod-Dox comes from the mitochondria-targeting delivery, which decreases ATP in living cells, causing apoptosis of cancerous cells effectively and inhibiting the growth of tumors in mice. The synergistic effect of PDA, Rhod123, and Dox improves the treatment effect of conventional chemotherapy drugs.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yawen Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Jia Huang
- Department of Hepatobiliary Surgery, Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Xiaolei Liu
- Department of Hepatobiliary Surgery, Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Fang Liu
- Department of Hepatobiliary Surgery, Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Tongxin Wang
- College of Engineering and College of Dentistry , Howard University , Washington , DC 20059 , United States
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
14
|
Xia N, Deng D, Wang Y, Fang C, Li SJ. Gold nanoparticle-based colorimetric method for the detection of prostate-specific antigen. Int J Nanomedicine 2018; 13:2521-2530. [PMID: 29731627 PMCID: PMC5923276 DOI: 10.2147/ijn.s154046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Prostate-specific antigen (PSA), a serine protease, is a biomarker for preoperative diagnosis and screening of prostate cancer and monitoring of its posttreatment. Methods In this work, we reported a colorimetric method for clinical detection of PSA using gold nanoparticles (AuNPs) as the reporters. The method is based on ascorbic acid (AA)-induced in situ formation of AuNPs and Cu2+-catalyzed oxidation of AA. Specifically, HAuCl4 can be reduced into AuNPs by AA; Cu2+ ion can catalyze the oxidation of AA by O2 to inhibit the formation of AuNPs. In the presence of the PSA-specific peptide (DAHSSKLQLAPP)-modified gold-coated magnetic microbeads (MMBs; denoted as DAHSSKLQLAPP-MMBs), complexation of Cu2+ by the MMBs through the DAH-Cu2+ interaction depressed the catalyzed oxidation of AA and thus allowed for the formation of red AuNPs. However, once the peptide immobilized on the MMB surface was cleaved by PSA, the DAHSSKLQ segment would be released. The resultant LAPP fragment remaining on the MMB surface could not sequestrate Cu2+ to depress its catalytic activity toward AA oxidation. Consequently, no or less AuNPs were generated. Results The linear range for PSA detection was found to be 0~0.8 ng/mL with a detection limit of 0.02 ng/mL. Because of the separation of cleavage step and measurement step, the interference of matrix components in biological samples was avoided. Conclusion The high extinction coefficient of AuNPs facilitates the colorimetric analysis of PSA in serum samples. This work is helpful for designing of other protease biosensors by matching specific peptide substrates.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Dehua Deng
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, People's Republic of China
| | - Yiru Wang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Chao Fang
- School of Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Su-Juan Li
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| |
Collapse
|
15
|
Li Y, Sun S, Fan L, Hu S, Huang Y, Zhang K, Nie Z, Yao S. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angew Chem Int Ed Engl 2017; 56:14888-14892. [DOI: 10.1002/anie.201708327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Yong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Sujuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Lin Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Shanfang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology; Northeastern University; Boston MA 02115 USA
- Institute of Chemical Biology and Nanomedicine; Hunan University; Changsha 410081 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Shouzhou Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| |
Collapse
|
16
|
Li Y, Sun S, Fan L, Hu S, Huang Y, Zhang K, Nie Z, Yao S. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Sujuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Lin Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Shanfang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology; Northeastern University; Boston MA 02115 USA
- Institute of Chemical Biology and Nanomedicine; Hunan University; Changsha 410081 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Shouzhou Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| |
Collapse
|
17
|
Bhatta SR, Mondal B, Vijaykumar G, Thakur A. ICT–Isomerization-Induced Turn-On Fluorescence Probe with a Large Emission Shift for Mercury Ion: Application in Combinational Molecular Logic. Inorg Chem 2017; 56:11577-11590. [DOI: 10.1021/acs.inorgchem.7b01304] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sushil Ranjan Bhatta
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela-769 008, Odisha, India
| | - Bijan Mondal
- Department
of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, India
| | - Gonela Vijaykumar
- Department of Chemical
Science, Indian Institute of Science Education and Research Kolkata, Mohanpur-741 246, India
| | - Arunabha Thakur
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela-769 008, Odisha, India
| |
Collapse
|
18
|
Hou T, Zhao T, Li W, Li F, Gai P. A label-free visual platform for self-correcting logic gate construction and sensitive biosensing based on enzyme-mimetic coordination polymer nanoparticles. J Mater Chem B 2017; 5:4607-4613. [PMID: 32264303 DOI: 10.1039/c7tb00791d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In molecular logic gates, the occurrence of erroneous procedures is a frequently encountered and critical problem in data transmission, and thus it is highly desirable to develop novel logic systems with self-correction abilities. Herein, based on the horseradish peroxidase (HRP)-like activity of the novel metal coordination polymer nanoparticles formed between Cu2+ and guanosine monophosphate (GMP), denoted as Cu-GMP CPNs, a label-free visual platform was constructed and successfully utilized for both self-correcting logic gate construction and sensitive biosensing. The HRP-mimicking ability of Cu-GMP CPNs was verified and utilized for the sensitive detection of both H2O2 and glucose. More importantly, a set of logic gates (AND, OR, NOR, INHIBIT, and XNOR) were fabricated, in which two intermediate outputs, i.e., color change and precipitate formation, were combined in an "AND" mode to produce the final output, and thus the as-proposed logic system exhibited the self-correction ability to automatically correct the erroneous intermediate outputs induced by interfering substances such as HRP. Moreover, in addition to the unique feature of self-correction, the as-proposed logic system also exhibited the advantages of simple operation, rapid response and easy detection of the visual outputs by the naked eye, thus expanding its practical applications to a variety of fields. Therefore, the label-free visual platform we have proposed here offers a promising strategy for logic gate fabrication and may pave the way for the development of novel molecular computing with self-correction abilities.
Collapse
Affiliation(s)
- Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | | | | | | | | |
Collapse
|
19
|
Bhatta SR, Bheemireddy V, Thakur A. A Redox-Driven Fluorescence “Off–On” Molecular Switch Based on a 1,1′-Unsymmetrically Substituted Ferrocenyl Coumarin System: Mimicking Combinational Logic Operation. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00883] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sushil Ranjan Bhatta
- Department
of Chemistry, National Institute of Technology Rourkela, Odisha 769008, India
| | - Varun Bheemireddy
- Department
of Physical Science, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Arunabha Thakur
- Department
of Chemistry, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
20
|
Zhao K, Tang Y, Wang Z, Zhang J, Lei C, Wang H, Li H, Huang Y, Nie Z, Yao S. Surface charge tuneable fluorescent protein-based logic gates for smart delivery of nucleic acids. Chem Commun (Camb) 2017; 53:11326-11329. [DOI: 10.1039/c7cc06833f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile bio-logic system based on H39GFP is operated in living cells with transfection of functional nucleic acids as the readout.
Collapse
|
21
|
Pallares RM, Bosman M, Thanh NTK, Su X. A plasmonic multi-logic gate platform based on sequence-specific binding of estrogen receptors and gold nanorods. NANOSCALE 2016; 8:19973-19977. [PMID: 27783084 DOI: 10.1039/c6nr07569j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A hybrid system made of gold nanorods (AuNRs) and double-stranded DNA (dsDNA) is used to build a versatile multi-logic gate platform, capable of performing six different logic operations. The sequence-specific binding of transcription factors to the DNA drives the optical response of the design.
Collapse
Affiliation(s)
- Roger M Pallares
- Department of Chemistry, University College London, London, WC1H 0AJ, UK and Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way. Innovis, #8-03, Singapore138634.
| | - Michel Bosman
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way. Innovis, #8-03, Singapore138634.
| | - Nguyen T K Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
| | - Xiaodi Su
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way. Innovis, #8-03, Singapore138634.
| |
Collapse
|