1
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
2
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Bruno G, Melle G, Barbaglia A, Iachetta G, Melikov R, Perrone M, Dipalo M, De Angelis F. All-Optical and Label-Free Stimulation of Action Potentials in Neurons and Cardiomyocytes by Plasmonic Porous Metamaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100627. [PMID: 34486241 PMCID: PMC8564419 DOI: 10.1002/advs.202100627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/20/2021] [Indexed: 05/19/2023]
Abstract
Optical stimulation technologies are gaining great consideration in cardiology, neuroscience studies, and drug discovery pathways by providing control over cell activity with high spatio-temporal resolution. However, this high precision requires manipulation of biological processes at genetic level concealing its development from broad scale application. Therefore, translating these technologies into tools for medical or pharmacological applications remains a challenge. Here, an all-optical nongenetic method for the modulation of electrogenic cells is introduced. It is demonstrated that plasmonic metamaterials can be used to elicit action potentials by converting near infrared laser pulses into stimulatory currents. The suggested approach allows for the stimulation of cardiomyocytes and neurons directly on commercial complementary metal-oxide semiconductor microelectrode arrays coupled with ultrafast pulsed laser, providing both stimulation and network-level recordings on the same device.
Collapse
Affiliation(s)
- Giulia Bruno
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Giovanni Melle
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Andrea Barbaglia
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | | | | | - Michela Perrone
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Michele Dipalo
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | | |
Collapse
|
4
|
Nikolaou P, Valenti G, Paolucci F. Nano-structured materials for the electrochemiluminescence signal enhancement. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Lee HS, Hwang GW, Seong TY, Park J, Kim JW, Kim WM, Kim I, Lee KS. Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer. Sci Rep 2021; 11:12218. [PMID: 34108609 PMCID: PMC8190067 DOI: 10.1038/s41598-021-91762-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Mid-infrared wavelengths are called the molecular fingerprint region because it contains the fundamental vibrational modes inherent to the substances of interest. Since the mid-infrared spectrum can provide non-destructive identification and quantitative analysis of unknown substances, miniaturized mid-infrared spectrometers for on-site diagnosis have attained great concern. Filter-array based on-chip spectrometer has been regarded as a promising alternative. In this study, we explore a way of applying a pillar-type plasmonic nanodiscs array, which is advantageous not only for excellent tunability of resonance wavelength but also for 2-dimensional integration through a single layer process, to the multispectral filter array for the on-chip spectrometer. We theoretically and experimentally investigated the optical properties of multi-periodic triangular lattices of metal nanodiscs array that act as stopband filters in the mid-infrared region. Soft-mold reverse nanoimprint lithography with a subsequent lift-off process was employed to fabricate the multispectral filter array and its filter function was successfully extracted using a Fourier transform infrared microscope. With the measured filter function, we tested the feasibility of target spectrum reconstruction using a Tikhonov regularization method for an ill-posed linear problem and evaluated its applicability to the infrared spectroscopic sensor that monitors an oil condition. These results not only verify that the multispectral filter array composed of stopband filters based on the metal nanodiscs array when combined with the spectrum reconstruction technique, has great potential for use to a miniaturized mid-infrared on-chip spectrometer, but also provide effective guidance for the filter design.
Collapse
Affiliation(s)
- Hwa-Seub Lee
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Korea
| | - Gyu-Weon Hwang
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Tae-Yeon Seong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Korea
| | - Jongkil Park
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Jae Wook Kim
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Won Mok Kim
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Inho Kim
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Kyeong-Seok Lee
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea.
| |
Collapse
|
6
|
Zucchiatti P, Birarda G, Cerea A, Semrau MS, Hubarevich A, Storici P, De Angelis F, Toma A, Vaccari L. Binding of tyrosine kinase inhibitor to epidermal growth factor receptor: surface-enhanced infrared absorption microscopy reveals subtle protein secondary structure variations. NANOSCALE 2021; 13:7667-7677. [PMID: 33928964 DOI: 10.1039/d0nr09200b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-Enhanced Infrared Absorption (SEIRA) has been proposed as a valuable tool for protein binding studies, but its performances have been often proven on model proteins undergoing severe secondary structure rearrangements, while ligand binding only marginally involves the protein backbone in the vast majority of the biologically relevant cases. In this study we demonstrate the potential of SEIRA microscopy for highlighting the very subtle secondary structure modifications associated with the binding of Lapatinib, a tyrosine kinase inhibitor (TKI), to epidermal growth factor receptor (EGFR), a well-known driver of tumorigenesis in pathological settings such as lung, breast and brain cancers. By boosting the performances of Mid-IR plasmonic devices based on nanoantennas cross-geometry, accustoming the protein purification protocols, carefully tuning the protein anchoring methodology and optimizing the data analysis, we were able to detect EGFR secondary structure modification associated with few amino acids. A nano-patterned platform with this kind of sensitivity bridges biophysical and structural characterization methods, thus opening new possibilities in studying of proteins of biomedical interest, particularly for drug-screening purposes.
Collapse
Affiliation(s)
- Paolo Zucchiatti
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy. and Universtà degli studi di Trieste, Dipartimento di Fisica, via Valerio 2, I-34127, Trieste, Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy.
| | - Andrea Cerea
- Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Marta S Semrau
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy.
| | | | - Paola Storici
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy.
| | | | - Andrea Toma
- Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste SCpA, S.S. 14 Km 163.5, I-34149, Basovizza, Trieste, Italy.
| |
Collapse
|
7
|
Koya A, Zhu X, Ohannesian N, Yanik AA, Alabastri A, Proietti Zaccaria R, Krahne R, Shih WC, Garoli D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS NANO 2021; 15:6038-6060. [PMID: 33797880 PMCID: PMC8155319 DOI: 10.1021/acsnano.0c10945] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/29/2021] [Indexed: 05/04/2023]
Abstract
The field of plasmonics is capable of enabling interesting applications in different wavelength ranges, spanning from the ultraviolet up to the infrared. The choice of plasmonic material and how the material is nanostructured has significant implications for ultimate performance of any plasmonic device. Artificially designed nanoporous metals (NPMs) have interesting material properties including large specific surface area, distinctive optical properties, high electrical conductivity, and reduced stiffness, implying their potentials for many applications. This paper reviews the wide range of available nanoporous metals (such as Au, Ag, Cu, Al, Mg, and Pt), mainly focusing on their properties as plasmonic materials. While extensive reports on the use and characterization of NPMs exist, a detailed discussion on their connection with surface plasmons and enhanced spectroscopies as well as photocatalysis is missing. Here, we report on different metals investigated, from the most used nanoporous gold to mixed metal compounds, and discuss each of these plasmonic materials' suitability for a range of structural design and applications. Finally, we discuss the potentials and limitations of the traditional and alternative plasmonic materials for applications in enhanced spectroscopy and photocatalysis.
Collapse
Affiliation(s)
| | - Xiangchao Zhu
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Nareg Ohannesian
- Department
of Electrical and Computer Engineering, University of Houston, Houston Texas 77204, United States
| | - A. Ali Yanik
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Remo Proietti Zaccaria
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Cixi
Institute of Biomedical Engineering, Ningbo Institute of Materials
Technology and Engineering, Chinese Academy
of Sciences, Zhejiang 315201, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Wei-Chuan Shih
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Faculty of
Science and Technology, Free University
of Bozen, Piazza Università
5, 39100 Bolzano, Italy
| |
Collapse
|
8
|
Metamaterials-Enabled Sensing for Human-Machine Interfacing. SENSORS 2020; 21:s21010161. [PMID: 33383751 PMCID: PMC7795397 DOI: 10.3390/s21010161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Our modern lives have been radically revolutionized by mechanical or electric machines that redefine and recreate the way we work, communicate, entertain, and travel. Whether being perceived or not, human-machine interfacing (HMI) technologies have been extensively employed in our daily lives, and only when the machines can sense the ambient through various signals, they can respond to human commands for finishing desired tasks. Metamaterials have offered a great platform to develop the sensing materials and devices from different disciplines with very high accuracy, thus enabling the great potential for HMI applications. For this regard, significant progresses have been achieved in the recent decade, but haven’t been reviewed systematically yet. In the Review, we introduce the working principle, state-of-the-art sensing metamaterials, and the corresponding enabled HMI applications. For practical HMI applications, four kinds of signals are usually used, i.e., light, heat, sound, and force, and therefore the progresses in these four aspects are discussed in particular. Finally, the future directions for the metamaterials-based HMI applications are outlined and discussed.
Collapse
|
9
|
Syubaev S, Gurbatov S, Modin E, Linklater DP, Juodkazis S, Gurevich EL, Kuchmizhak A. Laser Printing of Plasmonic Nanosponges. NANOMATERIALS 2020; 10:nano10122427. [PMID: 33291684 PMCID: PMC7761959 DOI: 10.3390/nano10122427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/02/2022]
Abstract
Three-dimensional porous nanostructures made of noble metals represent novel class of nanomaterials promising for nonlinear nanooptics and sensors. Such nanostructures are typically fabricated using either reproducible yet time-consuming and costly multi-step lithography protocols or less reproducible chemical synthesis that involve liquid processing with toxic compounds. Here, we combined scalable nanosecond-laser ablation with advanced engineering of the chemical composition of thin substrate-supported Au films to produce nanobumps containing multiple nanopores inside. Most of the nanopores hidden beneath the nanobump surface can be further uncapped using gentle etching of the nanobumps by an Ar-ion beam to form functional 3D plasmonic nanosponges. The nanopores 10–150 nm in diameter were found to appear via laser-induced explosive evaporation/boiling and coalescence of the randomly arranged nucleation sites formed by nitrogen-rich areas of the Au films. Density of the nanopores can be controlled by the amount of the nitrogen in the Au films regulated in the process of their magnetron sputtering assisted with nitrogen-containing discharge gas.
Collapse
Affiliation(s)
- Sergey Syubaev
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Stanislav Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, Avda Tolosa 76, 20018 Donostia-San Sebastian, Spain;
| | - Denver P. Linklater
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, John st., Hawthorn, VIC 3122, Australia; (D.P.L.); (S.J.)
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, John st., Hawthorn, VIC 3122, Australia; (D.P.L.); (S.J.)
- World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Evgeny L. Gurevich
- Laser Center (LFM), University of Applied Sciences Munster, Stegerwaldstraße 39, 48565 Steinfurt, Germany;
| | - Aleksandr Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
10
|
Efficient Broadband Truncated-Pyramid-Based Metamaterial Absorber in the Visible and Near-Infrared Regions. CRYSTALS 2020. [DOI: 10.3390/cryst10090784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a design of an ultra-broadband metamaterial absorber in the visible and near- infrared regions. The unit cell structure consists of a single layer of metallic truncated-pyramid resonator-dielectric-metal configuration, which results in a high absorption over a broad wavelength range. The absorber exhibits 98% absorption at normal incidence spanning a wideband range of 417–1091 nm, with >99% absorption within 822–1054 nm. The broadband absorption stability maintains 95% at large incident angles up to 40° for the transverse electric (TE)-mode and 20° for the transverse magnetic (TM)-mode. Furthermore, the polarization-insensitive broadband absorption is presented in this paper by analyzing absorption performance with various polarization angles. The proposed absorber can be applied for applications such as solar cells, infrared detection, and communication systems thanks to the convenient and compatible bandwidth for electronic THz sources.
Collapse
|
11
|
Larin AO, Nominé A, Ageev EI, Ghanbaja J, Kolotova LN, Starikov SV, Bruyère S, Belmonte T, Makarov SV, Zuev DA. Plasmonic nanosponges filled with silicon for enhanced white light emission. NANOSCALE 2020; 12:1013-1021. [PMID: 31844859 DOI: 10.1039/c9nr08952g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plasmonic nanosponges are a powerful platform for various nanophotonic applications owing to extremely high local field enhancement in metallic nanopores. The filling of the nanopores with high-refractive index semiconductors (e.g. Si, Ge, GaP, etc.) opens up opportunities for the enhancement of nonlinear effects in these materials. However, this task remains challenging due to the lack of knowledge on the integration process of metal and high-index semiconductor components in such nanoobjects. Here, we investigate metal-dielectric nanoparticles fabricated from bilayer Si/Au films by the laser printing technique via a combination of theoretical and experimental methods. We reveal that these hybrid nanoparticles represent the Au sponge-like nanostructure filled with Si nanocrystallites. We also demonstrate that the Au net provides strong near-field enhancement in the Si grains increasing the white light photoluminescence in the hybrid nanostructures compared to uniform Si nanoparticles. These results pave the way for engineering the internal structure of the sponge-like hybrid nanoparticles possessing white light luminescence and control of their optical properties on demand.
Collapse
Affiliation(s)
- A O Larin
- Department of Nanophotonics and Metamatarials, ITMO University, 49 Kronverkskii pr., Saint Petersburg 197101, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Calandrini E, Giovannini G, Garoli D. 3D nanoporous antennas as a platform for high sensitivity IR plasmonic sensing. OPTICS EXPRESS 2019; 27:25912-25919. [PMID: 31510453 DOI: 10.1364/oe.27.025912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/20/2019] [Indexed: 05/21/2023]
Abstract
Nanoporous gold can be exploited as plasmonic material for enhanced spectroscopy both in the visible and in the near-infrared spectral regions. In particular, the peculiar morphology of such a substrate leads to a higher field confinement with respect to conventional plasmonic materials. This property can be exploited to achieve extremely high sensitivity to the changes in environmental conditions, making it an interesting tool for the development of sensors and biosensors. Here, we compared the sensitivity of a plasmonic resonator made of nanoporous gold with a similar structure made of homogeneous gold. To assess the enhanced sensitivity the same stoichiometric quantity of dielectric material was deposited via Atomic Layer Deposition onto the two considered structures. Experimental results proved the higher sensitivity was achievable using nanoporous gold. In particular, such 3D nanoporous structures can be proposed as a promising sensing platform in the near-infrared with a sensitivity over 4.000 nm/RIU.
Collapse
|
13
|
Numerical Investigation of Polymer Coated Nanoporous Gold. MATERIALS 2019; 12:ma12132178. [PMID: 31284616 PMCID: PMC6651542 DOI: 10.3390/ma12132178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 11/25/2022]
Abstract
Nanoporous metals represent a fascinating class of materials. They consist of a bi-continuous three-dimensional network of randomly intersecting pores and ligaments where the ligaments form the skeleton of the structure. The open-pore structure allows for applying a thin electrolytic coating on the ligaments. In this paper, we will investigate the stiffening effect of a polymer coating numerically. Since the coating adds an additional difficulty for the discretization of the microstructure by finite elements, we apply the finite cell method. This allows for deriving a mesh in a fully automatic fashion from the high resolution 3D voxel model stemming from the 3D focused ion beam-scanning electron microscope tomography data of nanoporous gold. By manipulating the voxel model in a straightforward way, we add a thin polymer layer of homogeneous thickness numerically and study its effect on the macroscopic elastic properties systematically. In order to lower the influence of the boundary conditions on the results, the window method, which is known from homogenization procedures, is applied. In the second part of the paper, we fill the gap between numerical simulations and experimental investigations and determine real material properties of an electrolytic applied polypyrrole coating by inverse computations. The simulations provide an estimate for the mechanical properties of the ligaments and the polymeric coating and are in accordance with experimental data.
Collapse
|
14
|
Zambrana-Puyalto X, Maccaferri N, Ponzellini P, Giovannini G, De Angelis F, Garoli D. Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer. NANOSCALE ADVANCES 2019; 1:2454-2461. [PMID: 36131984 PMCID: PMC9419820 DOI: 10.1039/c9na00077a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/03/2019] [Indexed: 05/26/2023]
Abstract
In this work, we use a site-selective functionalization strategy to decorate plasmonic nanopores with fluorescent dyes. Using an easy and robust fabrication method, we manage to build plasmonic rings on top of dielectric nanotubes with different inner diameters. The modulation of the dimension of the nanopores allows us to tailor their field confinement and their Purcell factor in the visible spectral range. In order to investigate how the changes in geometry influence the fluorescence emission rate efficiency, thiol-conjugated dyes are anchored on the plasmonic ring, thus forming a functional nanopore. We study the lifetime of ATTO 520 and ATTO 590 attached in two different configurations: single dye and FRET pair. For the single dye configuration, we observe that the lifetime of both single dyes decreases as the size of the nanopore is reduced. The smallest nanopores yield an experimental Purcell factor of 6. For the FRET pair configuration, we measure two regimes. For large nanopore sizes, the FRET efficiency remains constant. Whereas for smaller sizes, the FRET efficiency increases from 30 up to 45% with a decrease of the nanopore size. These findings, which have been supported by numerical simulations, may open new perspectives towards energy transfer engineering in plasmonic nanopores with potential applications in photonics and biosensing, in particular in single-molecule detection and sequencing.
Collapse
Affiliation(s)
| | - Nicolò Maccaferri
- Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
- Physics and Materials Science Research Unit, University of Luxembourg L-1511 Luxembourg Luxembourg
| | - Paolo Ponzellini
- Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | | | | | - Denis Garoli
- Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
- Ab Analitica Via Svizzera 13 35027 Padova Italy
| |
Collapse
|
15
|
Mosconi D, Giovannini G, Jacassi A, Ponzellini P, Maccaferri N, Vavassori P, Serri M, Dipalo M, Darvill D, De Angelis F, Agnoli S, Garoli D. Site-Selective Integration of MoS 2 Flakes on Nanopores by Means of Electrophoretic Deposition. ACS OMEGA 2019; 4:9294-9300. [PMID: 31460018 PMCID: PMC6648040 DOI: 10.1021/acsomega.9b00965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/17/2019] [Indexed: 06/10/2023]
Abstract
Here, we propose an easy method for site-selective deposition of two-dimensional (2D) material flakes onto nanoholes by means of electrophoretic deposition. This method can be applied to both simple flat nanostructures and complex three-dimensional structures incorporating nanoholes. The deposition method is here used for the decoration of large ordered arrays of plasmonic structures with either a single or few layers of MoS2. In principle, the plasmonic field generated by the nanohole can significantly interact with the 2D layer leading to enhanced light-material interaction. This makes our platform an ideal system for hybrid 2D material/plasmonic investigations. The engineered deposition of 2D materials on plasmonic nanostructures is useful for several important applications such as enhanced light emission, strong coupling, hot-electron generation, and 2D material sensors.
Collapse
Affiliation(s)
- Dario Mosconi
- Dipartimento
di Chimica, Università degli Studi
di Padova, Via Marzolo 1, 35131 Padova, Italy
| | | | - Andrea Jacassi
- Istituto
Italiano di Tecnologia, Via Morego, 30, I-16163 Genova, Italy
| | - Paolo Ponzellini
- Istituto
Italiano di Tecnologia, Via Morego, 30, I-16163 Genova, Italy
| | - Nicolò Maccaferri
- Istituto
Italiano di Tecnologia, Via Morego, 30, I-16163 Genova, Italy
- Physics
and Materials Science Research Unit, University
of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Paolo Vavassori
- CIC
nanoGUNE, Tolosa Hiribidea,
76, E-20018 Donostia-San
Sebastian, Spain
| | - Michele Serri
- Istituto
Italiano di Tecnologia, Via Morego, 30, I-16163 Genova, Italy
| | - Michele Dipalo
- Istituto
Italiano di Tecnologia, Via Morego, 30, I-16163 Genova, Italy
| | - Daniel Darvill
- Istituto
Italiano di Tecnologia, Via Morego, 30, I-16163 Genova, Italy
| | | | - Stefano Agnoli
- Dipartimento
di Chimica, Università degli Studi
di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, Via Morego, 30, I-16163 Genova, Italy
| |
Collapse
|
16
|
Li W, Ma C, Zhang L, Chen B, Chen L, Zeng H. Tuning Localized Surface Plasmon Resonance of Nanoporous Gold with a Silica Shell for Surface Enhanced Raman Scattering. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E251. [PMID: 30759881 PMCID: PMC6410204 DOI: 10.3390/nano9020251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022]
Abstract
We report the tuning of localized surface plasmon resonance (LSPR) of nanoporous gold (NPG) by silica coating, which also affects the surface enhanced Raman scattering (SERS) of NPG. In this study, controllable silica shell is assembled on the NPG surface, and a fully silica thin layer causes more than 50 nm red-shift of LSPR band due to dielectric medium dependence. Additionally, ~1 nm silica coated NPG film shows excellent SERS enhancement, which is due to electromagnetic coupling between ligaments and local surface plasmon field enhancement within pores, and theoretical analysis indicates that silica coating further improves the coupling effect, which demonstrates the electromagnetic origin of the tuning of SERS effect.
Collapse
Affiliation(s)
- Wei Li
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Chao Ma
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ling Zhang
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Bin Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Heping Zeng
- Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
17
|
Tran NL, Malerba M, Talneau A, Biasiol G, Ouznali O, Bousseksou A, Manceau JM, Colombelli R. III-V on CaF 2: a possible waveguiding platform for mid-IR photonic devices. OPTICS EXPRESS 2019; 27:1672-1682. [PMID: 30696229 DOI: 10.1364/oe.27.001672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
We developed a technique that enables replacement of a metallic waveguide cladding with a low-index (n≈1.4) material - CaF2 or BaF2. It is transparent from the mid-IR up to the visible range: elevated confinement is preserved while introducing an optical entryway through the substrate. Replacing the metallic backplane also allows double-side patterning of the active region. Using this approach, we demonstrate strong light-matter coupling between an intersubband transition (λ∼10 μm) and a dispersive resonator at 300 K and at 78 K. Finally, we evaluate this approach's potential as a platform for waveguiding in the mid-IR spectral range, with numerical simulations that reveal losses in the 1-10 cm-1 range.
Collapse
|
18
|
Dipalo M, Melle G, Lovato L, Jacassi A, Santoro F, Caprettini V, Schirato A, Alabastri A, Garoli D, Bruno G, Tantussi F, De Angelis F. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. NATURE NANOTECHNOLOGY 2018; 13:965-971. [PMID: 30104618 DOI: 10.1038/s41565-018-0222-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/05/2018] [Indexed: 05/04/2023]
Abstract
The ability to monitor electrogenic cells accurately plays a pivotal role in neuroscience, cardiology and cell biology. Despite pioneering research and long-lasting efforts, the existing methods for intracellular recording of action potentials on the large network scale suffer limitations that prevent their widespread use. Here, we introduce the concept of a meta-electrode, a planar porous electrode that mimics the optical and biological behaviour of three-dimensional plasmonic antennas but also preserves the ability to work as an electrode. Its synergistic combination with plasmonic optoacoustic poration allows commercial complementary metal-oxide semiconductor multi-electrode arrays to record intracellular action potentials in large cellular networks. We apply this approach to measure signals from human-induced pluripotent stem cell-derived cardiac cells, rodent primary cardiomyocytes and immortalized cell types and demonstrate the possibility of non-invasively testing a variety of relevant drugs. Due to its robustness and easiness of use, we expect the method will be rapidly adopted by the scientific community and by pharmaceutical companies.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Napoli, Italy
| | | | - Andrea Schirato
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | | | | | | | | |
Collapse
|
19
|
Villani E, Valenti G, Marcaccio M, Mattarozzi L, Barison S, Garoli D, Cattarin S, Paolucci F. Coreactant electrochemiluminescence at nanoporous gold electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|