1
|
Luo Q, Kang X, Zhang C, Zhang H, Huang Y, Tang Q, Liao X, Gao F, Liu Z. Proximity hybridization-triggered cascade amplification for label-free SERS detection of Alzheimer's amyloid-β oligomers. Analyst 2025; 150:264-271. [PMID: 39687994 DOI: 10.1039/d4an01402b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Most of the existing SERS systems failed to achieve satisfactory results in early diagnosis of Alzheimer's disease owing to a lack of effective signal transduction. Herein, we developed a dual signal amplification strategy for SERS detection of amyloid-β oligomers based on proximity hybridization-triggered catalyzed hairpin assembly (CHA) and hybridization chain reaction (HCR). In the presence of the target protein and two DNA-labeled antibodies, a proximate complex formed in a homogeneous solution. Each of the AβO-DNA complexes served as a catalyst to trigger and accelerate numerous hybridization processes between MB1 and MB2. Subsequently, the single-strand fragment on the electrode surface initiated HCR, resulting in the hybridization reaction to form double-strand DNA concatemers on the substrate surface. The surface became negatively charged and allowed the absorption of silver ions on the DNA skeleton. After chemical reduction by hydroquinone, the formed silver nanoparticles could be further grown with a silver enhancement step to amplify the detectable SERS signal by absorbing rhodamine 6G as a SERS reporter on the silver nanoparticle surface. This biosensing platform had potential applications in molecular diagnostics of AD serum samples.
Collapse
Affiliation(s)
- Qisheng Luo
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xin Kang
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Chunyuan Zhang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - He Zhang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Yongning Huang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
2
|
Wang H, Zou H, Wang F. Construction of Multiply Guaranteed DNA Sensors for Biological Sensing and Bioimaging Applications. Chembiochem 2024; 25:e202400266. [PMID: 38801028 DOI: 10.1002/cbic.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Nucleic acids exhibit exceptional functionalities for both molecular recognition and catalysis, along with the capability of predictable assembly through strand displacement reactions. The inherent programmability and addressability of DNA probes enable their precise, on-demand assembly and accurate execution of hybridization, significantly enhancing target detection capabilities. Decades of research in DNA nanotechnology have led to advances in the structural design of functional DNA probes, resulting in increasingly sensitive and robust DNA sensors. Moreover, increasing attention has been devoted to enhancing the accuracy and sensitivity of DNA-based biosensors by integrating multiple sensing procedures. In this review, we summarize various strategies aimed at enhancing the accuracy of DNA sensors. These strategies involve multiple guarantee procedures, utilizing dual signal output mechanisms, and implementing sequential regulation methods. Our goal is to provide new insights into the development of more accurate DNA sensors, ultimately facilitating their widespread application in clinical diagnostics and assessment.
Collapse
Affiliation(s)
- Hong Wang
- Biological Products Laboratory, Chongqing Institute for Food and Drug Control, Chongqing, 430072, P. R. China
| | - Hanyan Zou
- Biological Products Laboratory, Chongqing Institute for Food and Drug Control, Chongqing, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
3
|
Yao C, Zhang G, Tao H, Li Y, Hu R, Yang Y. Three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform for cancer-related gene biosensing. Anal Chim Acta 2024; 1299:342432. [PMID: 38499419 DOI: 10.1016/j.aca.2024.342432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Efficient detection of cancer-related nucleic acids is pivotal for early cancer diagnosis. This study introduces a target induced three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform using manganese dioxide nanosheets (MnO2 NS)/o-phenylenediamine in combination with hybridization chain reaction to detect cancer-related genes (p53 gene). The incorporation of multiple signals within the B-3D networks can significantly enhance catalytic activity and amplify the output signals, enabling a high sensitivity. Compared with traditional ratio fluorescence platforms, there is no demand to synthesize fluorescent nanoprobes due to the in-situ formation of fluorescence species, which is simple and cost-effective. The corresponding assay demonstrated exceptional sensitivity (with a detection limit as low as 2 fM), selectivity, reproducibility, and accuracy, which mitigates disturbances caused by instrument errors, an inaccurate probe count, and the microenvironment. Furthermore, the ease and straightforwardness of discerning changes in fluorescent brightness and colour by the naked eye are evident. Using the relevant software, a linear relationship between fluorescent images using a smartphone and target concentration was obtained. Hence, the novel ratiometric sensing system will demonstrate new opportunities on determination of target DNA samples in complex biological environments.
Collapse
Affiliation(s)
- Chao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Guiqun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Hongling Tao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yulong Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China.
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
4
|
Fu X, Yang M, Zhang H, Wang Q, Fu Y, Liu Q. Microfluidic bead-based biosensor: Ultrasensitive ctDNA detection based on duplex-functional split-DNAzyme and dendritic enzyme-free signal amplification. Anal Biochem 2024; 687:115457. [PMID: 38184137 DOI: 10.1016/j.ab.2024.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Circulating tumor DNA (ctDNA) is a crucial cancer biomarker for early or noninvasive monitoring, which is essential for developing ultrasensitive and selective assays in cancer diagnosis and treatment. Herein, a cascade signal amplification of duplex-functional split-DNAzyme and dendritic probes was proposed for ultrasensitive and specific detection of nasopharyngeal carcinoma-associated Epstein-Barr virus (EBV) DNA on microfluidic microbead array chips. With the assistance of Pb2+, the duplex-functional split-DNAzyme recognizes EBV DNA and then rapidly cleaves the substrate strand. Subsequently, the released target could be recycled, and its exposed capture probe, triggered the dendritic enzyme-free signal amplification. As the enhanced mass transfer capability, target recycling, and dendritic DNA structure signal amplification inherent to microfluidic bead arrays were integrated, it achieved an excellent detection limit of 0.36 fM and a wide linear range of 1 fM∼103 fM. Further, it was applied to content detect simulated samples of EBV DNA, recovery ranged from 97.2 % to 108.1 %, and relative standard deviation (RSD) from 3.3 % to 5.9 %, exhibiting satisfactory recovery results. The developed microfluidic biosensor was a high-sensitivity and anti-interference system for ctDNA analysis, with minimal reagent volumes (microlitres) required. Thus, it is a promising platform for ctDNA at the lowest level at their earliest incidence.
Collapse
Affiliation(s)
- Xin Fu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Mei Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - He Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China.
| | - Qing Wang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Yu Fu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Qiong Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| |
Collapse
|
5
|
Li M, Luo N, Liao X, Zou L. Proximity hybridization-regulated CRISPR/Cas12a-based dual signal amplification strategy for sensitive detection of circulating tumor DNA. Talanta 2023; 257:124395. [PMID: 36858011 DOI: 10.1016/j.talanta.2023.124395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Circulating tumor DNA (ctDNA) is regarded as an ideal candidate biomarker for the non-invasive diagnosis of cancer. However, the lack of convenient and reliable detection methods for ctDNA restricts its clinical application. Herein, we developed a dual signal amplification strategy for sensitive detection of ctDNA based on hybridization chain reaction (HCR) and proximity hybridization-regulated CRISPR/Cas12a. The ctDNA initiates HCR through the continuous hybridization of two hairpin probes (H1 and H2), yielding long nicked double-stranded DNA nanowires composed of numerous split segments, which are successively connected to activate the trans-cleavage activity of CRISPR/Cas12a. In this case, the doubly labeled single-stranded DNA reporter can be cleaved to produce a strong fluorescent signal. Owing to the dual amplification of HCR and CRISPR/Cas12a, this strategy exhibits high sensitivity toward ctDNA with a low detection limit of 5.43 fM. Moreover, the proposed method was successfully applied for ctDNA detection in serum samples with satisfactory results, which has great potential in the clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Mengyan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Nian Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xiaofei Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, PR China.
| |
Collapse
|
6
|
Cao H, Xie J, Cheng J, Xu Y, Lu X, Tang J, Zhang X, Wang H. CRISPR Cas12a-Powered Silicon Surface-Enhanced Raman Spectroscopy Ratiometric Chip for Sensitive and Reliable Quantification. Anal Chem 2023; 95:2303-2311. [PMID: 36655772 DOI: 10.1021/acs.analchem.2c03990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sensitive and reliable clustered regularly interspaced short palindromic repeats (CRISPR) quantification without preamplification of the sample remains a challenge. Herein, we report a CRISPR Cas12a-powered silicon surface-enhanced Raman spectroscopy (SERS) ratiometric chip for sensitive and reliable quantification. As a proof-of-concept application, we select the platelet-derived growth factor-BB (PDGF-BB) as the target. We first develop a microfluidic synthetic strategy to prepare homogeneous silicon SERS substrates, in which uniform silver nanoparticles (AgNPs) are in situ grown on a silicon wafer (AgNPs@Si) by microfluidic galvanic deposition reactions. Next, one 5'-SH-3'-ROX-labeled single-stranded DNA (ssDNA) is modified on AgNPs via Ag-S bonds. In our design, such ssDNA has two fragments: one fragment hybridizes to its complementary DNA (5'-Cy3-labeled ssDNA) to form double-stranded DNA (dsDNA) and the other fragment labeled with 6'-carboxy-X-rhodmine (ROX) extends out as a substrate for Cas12a. The cleavage of the ROX-tagged fragment by Cas12a is controlled by the presence or not of PDGF-BB. Meanwhile, Cy3 molecules serving as internal standard molecules still stay at the end of the rigid dsDNA, and their signals remain constant. Thereby, the ratio of ROX signal intensity to Cy3 intensity can be employed for the reliable quantification of PDGF-BB concentration. The developed chip features an ultrahigh sensitivity (e.g., the limit of detection is as low as 3.2 pM, approximately 50 times more sensitive than the fluorescence counterpart) and good reproducibility (e.g., the relative standard deviation is less than 5%) in the detection of PDGF-BB.
Collapse
Affiliation(s)
- Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingxuan Xie
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiayi Cheng
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Tang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaojie Zhang
- Department of Experimental Center, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Esmaeilzadeh AA, Yaseen MM, Khudaynazarov U, Al-Gazally ME, Catalan Opulencia MJ, Jalil AT, Mohammed RN. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4449-4459. [PMID: 36330992 DOI: 10.1039/d2ay01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The small non-coding RNA, microRNA-21 (miR-21), is dysregulated in various cancers and can be considered an appropriate target for therapeutic approaches. Therefore, the detection of miR-21 concentration is important in the diagnosis of diseases. Low specificity and the cost of materials are two necessary limitations in the traditional diagnosis method such as RT-PCR, northern blotting and microarray analysis. Biosensor technology can play an effective role in improving the quality of human life due to its capacity of rapid diagnosis, monitoring different markers, suitable sensitivity, and specificity. Moreover, bioanalytical systems have an essential role in the detection of biomolecules or miRNAs due to their critical features, including easy usage, portability, low cost and real-time analysis. Electrochemical biosensors based on novel nanomaterials and oligonucleotides can hybridize with miR-21 in different ranges. Moreover, optical biosensors and piezoelectric devices have been developed for miR-21 detection. In this study, we have evaluated different materials used in bioanalytical systems for miR-21 detection as well as various nanomaterials that offer improved electrodes for its detection.
Collapse
Affiliation(s)
| | - Muna Mohammed Yaseen
- Basic Science Department, Dentistry of College, University of Anbar, Al-Anbar, Iraq
| | - Utkir Khudaynazarov
- Teaching Assistant, MD, Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan university of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
8
|
Wang X, Yang J, Xie Y, Lai G. Dual DNAzyme-catalytic assembly of G-quadruplexes for inducing the aggregation of gold nanoparticles and developing a novel antibiotic assay method. Mikrochim Acta 2022; 189:262. [PMID: 35727378 DOI: 10.1007/s00604-022-05362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
By utilizing a target biorecognition reaction to induce the self-assembly of G-quadruplexes and the aggregation of gold nanoparticles (Au NPs), this work develops a novel colorimetric biosensing method for kanamycin (Kana) antibiotic detection. The compact G-quadruplex structure was assembled from its two half-split sequences which were designed in two hairpin substrates of the Mg2+-dependent DNAzyme (MNAzyme). Besides hybridizing with the aptamer strand, the MNAzyme sequence was also split into two half fragments to be designed in the two substrates. Upon the aptamer-recognition reaction toward Kana, the MNAzyme strand could be quantitatively released to cause the exposure of the split G-quadruplex-sequences on two hairpin substrate-modified Au NPs and simultaneous release of two half fragments of the MNAzyme-sequence. Thus, the K+-assisted self-folding of G-quadruplexes causes the cross-linking of the two Au NPs to realize the Au NP aggregation-based colorimetric signal output (measured at the largest absorption peak near 520 nm). Meanwhile, the self-assembled formation of the second MNAzyme drastically amplified the signal response. Under the optimal conditions, a wide linear range from 0.1 pg mL-1 to 10 ng mL-1 and an ultrahigh sensitivity with the detection limit of 76 fg mL-1 were obtained. The dose-recovery experiments in real samples showed satisfactory results with recoveries from 98.4 to 105.4% and relative errors compared with the ELISA method less than 4.1%. Due to the high selectivity, excellent repeatability and stability, and simple manipulation, this method indicates a promising potential for practical applications. A novel homogeneous biosensing method was developed for the convenient detection of the kanamycin antibiotic. The target biorecognition-induced and dual DNAzyme-catalytic assembly of G-quadruplexes enabled the amplified aggregation of gold nanoparticles for the simple, cheap, stable, and ultrasensitive colorimetric signal transduction of the method.
Collapse
Affiliation(s)
- Xiaojun Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Jingru Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
9
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA-Based Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202202211. [PMID: 35307938 DOI: 10.1002/anie.202202211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The use of DNA-based nanostructures as probes has led to significant advances in chemical and biological sensing, allowing the detection of analytes in complex media, the understanding of fundamental biological processes, and the ability to diagnose diseases based on molecular signatures. The utility of these structures arises both from DNA's inherent ability to selectively recognize and bind a variety of chemical species and from the unique properties observed when DNA is restructured at the nanoscale. In this Minireview, we chronicle the most commonly used signal transduction strategies that have been interfaced with various DNA-based nanostructures. We discuss the types of analytes and the detection scenarios that are sought after, delineate the advantages and disadvantages of each signaling strategy, and outline the key considerations that guide the selection of each signaling method.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shivudu Godhulayyagari
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shadler T Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Jasmine K Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Sasha B Ebrahimi
- Biopharmaceutical Product Sciences, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| |
Collapse
|
10
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA‐Based Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seungheon Lee
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shivudu Godhulayyagari
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shadler T. Nguyen
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Jasmine K. Lu
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Sasha B. Ebrahimi
- Biopharmaceutical Product Sciences GlaxoSmithKline 1250 S Collegeville Road Collegeville PA 19426 USA
| | - Devleena Samanta
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| |
Collapse
|
11
|
Lin PY, Chi R, Wu YL, Ho JAA. Applications of triplex DNA nanostructures in sensor development. Anal Bioanal Chem 2022; 414:5217-5237. [PMID: 35469098 DOI: 10.1007/s00216-022-04058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Triplex DNA nanostructures are one of the most emerging and fascinating self-assembled nanostructures due to their unique nanoparticle-like organization and inherit characteristics. They have attracted numerous interests recently because of their versatile and powerful utility in diverse areas of science and technology, such as clinical or disease diagnosis and stimuli-based drug delivery. This review addresses particularly the utilization of DNA triplexes in the development of biosensors for detecting nucleic acid; strategies in sensing pH, protein activity, ions, or molecules. Finally, an outlook for potential applications of triplex DNA nanoswitches is provided.
Collapse
Affiliation(s)
- Pei-Ying Lin
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Rong Chi
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ling Wu
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Ooi JSY, New SY. Design Strategies of Gold Nanoparticles‐Based Biosensors Coupled with Hybridization Chain Reaction or Catalytic Hairpin Assembly. ChemistrySelect 2022. [DOI: 10.1002/slct.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jessica Sui Ying Ooi
- School of Pharmacy University of Nottingham Malaysia Jalan Broga 43500 Semenyih Selangor Malaysia
| | - Siu Yee New
- School of Pharmacy University of Nottingham Malaysia Jalan Broga 43500 Semenyih Selangor Malaysia
| |
Collapse
|
13
|
He Y, Long L, Yan W, Dong L, Xia W, Li C, Li F. Establishment and Application of Ligation Reaction-Based Method for Quantifying MicroR-156b. FRONTIERS IN PLANT SCIENCE 2021; 12:794752. [PMID: 34970292 PMCID: PMC8713971 DOI: 10.3389/fpls.2021.794752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Microribonucleic acids (miRNAs) play significant roles in the regulation of biological processes and in responses to biotic or abiotic environmental stresses. Therefore, it is necessary to quantitatively detect miRNAs to understand these complicated biological regulation mechanisms. This study established an ultrasensitive and highly specific method for the quantitative detection of miRNAs using simple operations on the ground of the ligation reaction of ribonucleotide-modified deoxyribonucleic acid (DNA) probes. This method avoids the complex design of conventional reverse transcription. In the developed assay, the target miRNA miR156b was able to directly hybridize the two ribonucleotide-modified DNA probes, and amplification with universal primers was achieved following the ligation reaction. As a result, the target miRNA could be sensitively measured even at a detection limit as low as 0.0001 amol, and differences of only a single base could be detected between miR156 family members. Moreover, the proposed quantitative method demonstrated satisfactory results for overexpression-based genetically modified (GM) soybean. Ligation-based quantitative polymerase chain reaction (PCR) therefore has potential in investigating the biological functions of miRNAs, as well as in supervising activities regarding GM products or organisms.
Collapse
|
14
|
MUTO Y, ZAKO T. Signal-amplified Colorimetric Biosensors Using Gold Nanoparticles. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yu MUTO
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University
| | - Tamotsu ZAKO
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University
| |
Collapse
|
15
|
Huang Z, Yao N, Li X, Tian Y, Duan Y. Self-extending DNA-Mediated Isothermal Amplification System and Its Biosensing Applications. Anal Chem 2021; 93:14334-14342. [PMID: 34648262 DOI: 10.1021/acs.analchem.1c03636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Signal amplification is critical to achieving sensitive biosensing, but complex strategies often bring problems like system instability, false positive, or narrow target spectrum. Here, a self-extending DNA-mediated isothermal amplification (SEIA) system with simple reaction components is introduced to achieve rapid, robust, and significant signal amplification. In SEIA, based on spontaneous refolding of specific DNA domains and using the previous generation product as a template, a DNA strand can extend continuously in an approximate exponential growth pattern, which was accurately predicted by our formula and well supported by AFM results. Based on a set of proof-of-concept experiments, it was proved that the SEIA system can output different signals and flexibly integrate various functional nucleic acids, which makes it suitable for different scenarios and realizes broad-spectrum target detection. Taking into account the advantages of simplicity, flexibility, and efficiency, the SEIA system as an independent signal amplification module will enrich the toolbox of biosensing design.
Collapse
Affiliation(s)
- Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, PR China
| | - Naizhi Yao
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, PR China
| | - Xiaoting Li
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, PR China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, PR China
| |
Collapse
|
16
|
Mahani M, Taheri M, Divsar F, Khakbaz F, Nomani A, Ju H. Label-free triplex DNA-based biosensing of transcription factor using fluorescence resonance energy transfer between N-doped carbon dot and gold nanoparticle. Anal Chim Acta 2021; 1181:338919. [PMID: 34556210 DOI: 10.1016/j.aca.2021.338919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Herein, a new turn-on fluorescent assay was established as a platform for the sensing of transcription factor NF-kB p50 based on triplex DNA labeled with N-doped carbon dots (NCDs) and gold nanoparticles (AuNPs) as donors and acceptors, respectively in the fluorescence resonance energy transfer (FRET) system. The synthetized nanoparticles were studied by different characterization techniques. A labeled DNA molecule was designed to form a triplex when no target protein existence and reported its formation by the change in FRET efficiency. While the triplex DNA was formed, the fluorescence of carbon dots at 503 nm (excitation at 460 nm) was quenched by FRET between NCD and AuNP. However, presence of NF-kB p50 followed by the considerable enhancement in the fluorescence intensity caused by the release of AuNPs labeled single stranded DNA from the triplex DNA structure, used for sensitive determination of the transcription factor. This technique showed a linearity (R2 = 0.9943) in the range of 20-150 pM with a limit of detection of 9 pM for the determination of NF-kB p50. Moreover, the sequence-specific triplex-based biosensor could discriminate NF-kB p50 from the other proteins with high selectively. Our results suggest that the biosensor provides a generalizable platform for rapid detection of NF-kB p50 in synthetic medium, promising in prevention and early diagnosis of cancer.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Maryam Taheri
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor Universtiy (PNU), P. O. BOX 19395-3697, Tehran, Iran
| | - Faeze Khakbaz
- Department of NanoChemistry, Faculty of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Alireza Nomani
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
17
|
Xie Y, Wang H, Yuwen X, Lai G. Exo III-Catalyzed Release of a Zn 2+-Ligation DNAzyme to Drive the Strand Displacement Reaction and Gold Aggregation for the Homogeneous Bioassay of Kanamycin Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10371-10378. [PMID: 34436884 DOI: 10.1021/acs.jafc.1c04030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we combine the exonuclease III (Exo III)-catalyzed release of a Zn2+-dependent ligation DNAzyme with the DNAzyme-driven strand displacement reaction (SDR) to develop a novel homogeneous colorimetric bioassay method for kanamycin (Kana) antibiotic detection. Upon the biorecognition reaction between Kana and a designed hairpin DNA, the DNAzyme-containing strand can be catalytically released by Exo III. Then, this DNAzyme will catalyze the ligation of two oligonucleotides to cause a SDR and the aggregation of gold nanoparticles (Au NPs) labeled by two linker DNA strands. Due to the aggregation of Au NPs for colorimetric signal transduction and the Exo III and SDR-assisted dual signal amplification, this method shows a wide linear range of 5 orders of magnitude and a very low detection limit down to 8.1 fg mL-1. Together with its excellent selectivity, repeatability, reliability, and convenient manipulation, the proposed method shows a great potential for the food quality monitoring application.
Collapse
Affiliation(s)
- Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Haiyan Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xinyue Yuwen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| |
Collapse
|
18
|
Xu Q, Liu K, Jin J, Zhang X. Binding-induced output of catalyst DNA for efficient payload of DNAzyme on magnetic beads by catalyzed hairpin assembly. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Muto Y, Hirao G, Zako T. Transcription-Based Amplified Colorimetric Thrombin Sensor Using Non-Crosslinking Aggregation of DNA-Modified Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2021; 21:4318. [PMID: 34202605 PMCID: PMC8272040 DOI: 10.3390/s21134318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
Gold nanoparticles (AuNPs) have been employed as colorimetric biosensors due to the color difference between their dispersed (red) and aggregated (blue) states. Although signal amplification reactions triggered by structural changes of the ligands on AuNPs have been widely used to improve measurement sensitivity, the use of ligands is limited. In this study, we designed a AuNP-based signal-amplifying sandwich biosensor, which does not require a conformational change in the ligands. Thrombin was used as a model target, which is recognized by two different probes. In the presence of the target, an extension reaction occurs as a result of hybridization of the two probes. Then RNA synthesis is started by RNA polymerase activation due to RNA promoter duplex formation. The amplified RNA drives aggregation or dispersion of the AuNPs, and a difference of the color if the AuNP solution is observed. As this detection system does not require a conformational change in the ligand, it can be generically applied to a wide range ligands.
Collapse
Affiliation(s)
- Yu Muto
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
- Tokyo Research Center, TOSOH Corporation, 2743-1 Hayakawa, Ayase 252-1123, Japan
| | - Gen Hirao
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama 790-8577, Japan; (Y.M.); (G.H.)
| |
Collapse
|
20
|
Hybridization chain reaction and its applications in biosensing. Talanta 2021; 234:122637. [PMID: 34364446 DOI: 10.1016/j.talanta.2021.122637] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
To pursue the sensitive and efficient detection of informative biomolecules for bioanalysis and disease diagnosis, a series of signal amplification techniques have been put forward. Among them, hybridization chain reaction (HCR) is an isothermal and enzyme-free process where the cascade reaction of hybridization events is initiated by a target analyte, yielding a long nicked dsDNA molecule analogous to alternating copolymers. Compared with conventional polymerase chain reaction (PCR) that can proceed only with the aid of polymerases and complicated thermal cycling, HCR has attracted increasing attention because it can occur under mild conditions without using enzymes. As a powerful signal amplification tool, HCR has been employed to construct various simple, sensitive and economic biosensors for detecting nucleic acids, small molecules, cells, and proteins. Moreover, HCR has also been applied to assemble complex nanostructures, some of which even act as the carriers to execute the targeted delivery of anticancer drugs. Recently, HCR has engendered tremendous progress in RNA imaging applications, which can not only achieve endogenous RNA imaging in living cells or even living animals but also implement imaging-guided photodynamic therapy, paving a promising path to promote the development of theranostics. In this review, we begin with the fundamentals of HCR and then focus on summarizing the recent advances in HCR-based biosensors for biosensing and RNA imaging strategies. Further, the challenges and future perspective of HCR-based signal amplification in biosensing and theranostic application are discussed.
Collapse
|
21
|
Li Y, Wang L, Zhao L, Li M, Wen Y. An fluorescence resonance energy transfer sensing platform based on signal amplification strategy of hybridization chain reaction and triplex DNA for the detection of Chloramphenicol in milk. Food Chem 2021; 357:129769. [PMID: 33878581 DOI: 10.1016/j.foodchem.2021.129769] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
The use of chloramphenicol (CAP) in food had been strictly regulated or banned in many countries. Herein, an enzyme-free fluorescence resonance energy transfer (FRET) strategy was established for sensitive, rapid and specific detection of CAP in milk, which was based on triplex DNA and hybridization chain reaction amplification. CAP can specifically bind to the aptamer and release the trigger sequence, causing HCR to efficiently prime and forming triplex DNA, hence the FRET pairs (FAM and TAMRA) were close enough to cause fluorescent decreases. Consequently, CAP can be quantitatively detected by measuring the fluorescence reduction at 520 nm, and the reliability of the method was confirmed by enzyme-linked immunosorbent assay. The limit of CAP detection for 1.2 pg·mL-1, and the average recoveries of milk samples were 97.5%-106%, and the relative standard deviation were 3.9%-5.3%. Thus, this method has a wide range of potential applications in CAP detection.
Collapse
Affiliation(s)
- Yubin Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Lei Wang
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524045, China
| | - Liting Zhao
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yanmei Wen
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
22
|
Colorimetric aptasensor for sensitive detection of kanamycin based on target-triggered catalytic hairpin assembly amplification and DNA-gold nanoparticle probes. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Shen R, Zhang J, Huang W, Wu S, Li G, Zou S, Ling L. Dynamic light scattering and fluorescence dual-signal sensing of cancer antigen-125 via recognition of the polymerase chain reaction product with gold nanoparticle probe. Anal Chim Acta 2021; 1145:87-94. [PMID: 33453884 DOI: 10.1016/j.aca.2020.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
Cancer antigen 125 (CA - 125) is an important biomarker for the diagnosis of ovarian cancer. In this paper, oligonucleotide 5'-GACAGGCCCGAAGGAATAGATAATACGACTCACTATAGGGAGACAAGAATAAACGCTCAA-3' (oligo 1) contains an aptamer of CA - 125, and was designed partly complementary to oligonucleotide 5'-CTCTCTCTCCACCTTCTTCTTTGAGCGTTTATTCTTGTCT-3' (oligo 2). Oligo 1 · oligo 2 was extended with the Klenow fragment (exo-) polymerase for further polymerase chain reaction (PCR) processes in the presence of two primers: deoxyribose nucleoside triphosphate and Taq polymerase. Single-stranded DNA was produced at two sides of the PCR product by introducing a C18 spacer into the two primers, which could hybridize with AuNPs-DNA probes, investigated by dynamic light scattering and fluorescence. The addition of CA - 125 can interrupt the hybridization between oligo 1 and oligo 2, causing the average diameter of AuNPs-DNA probes to decrease with the increase of CA-125 within the range of 5 fg mL-1 - 50 ng mL-1. The linear regression equation of this relationship was D = 430.48-49.60 log10C, with a detection limit of 1.1 fg mL-1. Fluorescein molecules were modified at the end of the forward primer. The fluorescence intensity of the PCR product can be measured simultaneously, with the fluorescence intensity increasing linearly with the logarithm of CA-125 concentration within a linear range from 10 fg mL-1 to 50 ng mL-1, with a detection limit of 1.5 fg mL-1.
Collapse
Affiliation(s)
- Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ji Zhang
- Department of Neurosurgery, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenxiu Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaoyong Wu
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Seyin Zou
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, 466 Middle Newport Road, Haizhu District, Guangzhou, 510317, China.
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
24
|
Amirjani A, Rahbarimehr E. Recent advances in functionalization of plasmonic nanostructures for optical sensing. Mikrochim Acta 2021; 188:57. [PMID: 33506310 DOI: 10.1007/s00604-021-04714-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
This review summarizes the progress that has been made in the use of nanostructured SPR-based chemical sensors and biosensors. Following an introduction into the field, a first large section covers principles of nanomaterial-based SPR sensing, mainly on methods using noble metal nanoparticles (spheres, cubes, triangular plates, etc.). The next section covers methods for functionalization of plasmonic nanostructures, with subsections on functionalization using (a) amino acids and proteins; (b) oligonucleotides, (c) organic polymers, and (d) organic compounds. Several tables are presented that give an overview on the wealth of methods and materials published. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. This review is not intended to be a comprehensive compilation of the literature in the field but rather is a systematic overview of the state of the art in surface chemistry of plasmonic nanostructures. The ability of various ligands and receptors for functionalization of nanoparticles as well as their sensing capability is discussed.
Collapse
Affiliation(s)
- Amirmostafa Amirjani
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran.
| | - Erfan Rahbarimehr
- Department of Chemistry, Université de Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
25
|
Wang Y, Zhao X, Huo B, Ren S, Bai J, Peng Y, Li S, Han D, Wang J, Han T, Gao Z. Sensitive Fluorescence Aptasensor Based on Hybridization Chain Reaction with Upconversion Nanoparticles by Triplex DNA Formation for Bisphenol A Detection. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Xudong Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Bingyang Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, P. R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Jiang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| |
Collapse
|
26
|
An enzyme free fluorescence resonance transfer strategy based on hybrid chain reaction and triplex DNA for Vibrio parahaemolyticus. Sci Rep 2020; 10:20710. [PMID: 33244061 PMCID: PMC7691504 DOI: 10.1038/s41598-020-77913-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022] Open
Abstract
In this work, an enzyme-free fluorescence resonance energy transfer (FRET) strategy was established for rapid and specific detection of the DNA sequence from Vibrio parahaemolyticus (VP) using hybridization chain reaction (HCR) amplification and triplex DNA. The triplex forming oligonucleotide (TFO) was labelled with carboxyfluorescein (FAM) as fluorescence donor, and hairpin sequence H1 was labelled by tetramethylrhodamine (TAMRA) as fluorescence receptor. In the present target VP DNA, the hairpin structure of molecular beacon (MB) was opened, the free end was released and hybridized with H1-TAMRA, and the HCR reaction was triggered by the alternate supplementation of H1-TAMRA and H2 to produce the notch double helix analogue. After the addition of TFO-FAM, a triplex structure was formed between HCR products (H1-TAMRA/H2) and TFO-FAM. A close contact between the donor and the receptor resulted in FRET. Under the optimal conditions, the fluorescence quenching value was inversely proportional to the concentration of target VP DNA in the range of 0.1–50 nmol L−1, and the detection limit was 35 pmol L−1.
Collapse
|
27
|
Zhang C, Chen J, Sun R, Huang Z, Luo Z, Zhou C, Wu M, Duan Y, Li Y. The Recent Development of Hybridization Chain Reaction Strategies in Biosensors. ACS Sens 2020; 5:2977-3000. [PMID: 32945653 DOI: 10.1021/acssensors.0c01453] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the continuous development of biosensors, researchers have focused increasing attention on various signal amplification strategies to pursue superior performance for more applications. In comparison with other signal amplification strategies, hybridization chain reaction (HCR) as a powerful signal amplification technique shows its certain charm owing to nonenzymatic and isothermal features. Recently, on the basis of conventional HCR, this technique has been developed and improved rapidly, and a variety of HCR-based biosensors with excellent performance have been reported. Herein, we present a systematic and critical review on the research progress of HCR in biosensors in the last five years, including the newly developed HCR strategies such as multibranched HCR, migration HCR, localized HCR, in situ HCR, netlike HCR, and so on, as well as the combination strategies of HCR with isothermal signal amplification techniques, nanomaterials, and functional DNA molecules. By illustrating some representative works, we also summarize the advantage and challenge of HCR in biosensors, and offer a deep discussion of the latest progress and future development trends of HCR in biosensors.
Collapse
Affiliation(s)
- Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| |
Collapse
|
28
|
Yu L, Song Z, Peng J, Yang M, Zhi H, He H. Progress of gold nanomaterials for colorimetric sensing based on different strategies. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115880] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Ravan H, Amandadi M, Hassanshahian M, Pourseyedi S. Dual catalytic DNA circuit-induced gold nanoparticle aggregation: An enzyme-free and colorimetric strategy for amplified detection of nucleic acids. Int J Biol Macromol 2020; 154:896-903. [PMID: 32169450 DOI: 10.1016/j.ijbiomac.2020.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022]
Abstract
An enzyme-free dual catalytic DNA circuit for amplified detection of nucleic acids has been developed. The system functions based on a cyclic self-assembly of two auxiliary hairpins (H1 and H2) and three biotinylated hairpin oligonucleotides (H3, H4 and H5), in the format of two molecular circuits. In the upstream circuit, a target initiator (I) besides H1 and H2 hairpins constructs H1-H2 duplexes that trigger the operation of a subsequent circuit. In the downstream circuit, the H1-H2 duplex initiates cascaded self-assembly reactions, produces triplex H3-H4-H5, as sensing system, and releases the H1-H2 duplex as the catalyst for the self-assembly of additional hairpins. The H3-H4-H5 triplex acts as the scaffolds for assembling and orienting the streptavidin-functionalized gold nanoparticles (SA-AuNPs) into a lattice-like arrangement that generates a DNA-SA-AuNP cross-linked network, resulting in a dramatic pale red-to-blue color change. By ingeniously engaging two catalytic circuits with feedback amplification capabilities, the system can detect the target nucleic acid with an LOD value of 5 femtomolar and unambiguously discriminate spurious targets (i.e. targets containing substitution, insertion, and deletion nucleotides) without instrumentation. Simple and convenient operation of the assay makes the DNA circuit appropriate for point-of-care monitoring in resource-constrained settings.
Collapse
Affiliation(s)
- Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mojdeh Amandadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahram Pourseyedi
- Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
30
|
|
31
|
High-performance biosensing based on autonomous enzyme-free DNA circuits. Top Curr Chem (Cham) 2020; 378:20. [DOI: 10.1007/s41061-020-0284-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
|
32
|
Xie Y, Niu F, Yu A, Lai G. Proximity Binding-Triggered Assembly of Two MNAzymes for Catalyzed Release of G-Quadruplex DNAzymes and an Ultrasensitive Homogeneous Bioassay of Platelet-Derived Growth Factor. Anal Chem 2019; 92:593-598. [DOI: 10.1021/acs.analchem.9b05002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| | - Feina Niu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| | - Aimin Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| |
Collapse
|
33
|
Noble Metal Nanoparticles-Based Colorimetric Biosensor for Visual Quantification: A Mini Review. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040053] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nobel metal can be used to form a category of nanoparticles, termed noble metal nanoparticles (NMNPs), which are inert (resistant to oxidation/corrosion) and have unique physical and optical properties. NMNPs, particularly gold and silver nanoparticles (AuNPs and AgNPs), are highly accurate and sensitive visual biosensors for the analytical detection of a wide range of inorganic and organic compounds. The interaction between noble metal nanoparticles (NMNPs) and inorganic/organic molecules produces colorimetric shifts that enable the accurate and sensitive detection of toxins, heavy metal ions, nucleic acids, lipids, proteins, antibodies, and other molecules. Hydrogen bonding, electrostatic interactions, and steric effects of inorganic/organic molecules with NMNPs surface can react or displacing capping agents, inducing crosslinking and non-crosslinking, broadening, or shifting local surface plasmon resonance absorption. NMNPs-based biosensors have been widely applied to a series of simple, rapid, and low-cost diagnostic products using colorimetric readout or simple visual assessment. In this mini review, we introduce the concepts and properties of NMNPs with chemical reduction synthesis, tunable optical property, and surface modification technique that benefit the development of NMNPs-based colorimetric biosensors, especially for the visual quantification. The “aggregation strategy” based detection principle of NMNPs colorimetric biosensors with the mechanism of crosslinking and non-crosslinking have been discussed, particularly, the critical coagulation concentration-based salt titration methodology have been exhibited by derived equations to explain non-crosslinking strategy be applied to NMNPs based visual quantification. Among the broad categories of NMNPs based biosensor detection analyses, we typically focused on four types of molecules (melamine, single/double strand DNA, mercury ions, and proteins) with discussion from the standpoint of the interaction between NMNPs surface with molecules, and DNA engineered NMNPs-based biosensor applications. Taken together, NMNPs-based colorimetric biosensors have the potential to serve as a simple yet reliable technique to enable visual quantification.
Collapse
|
34
|
Qian H, Huang Y, Duan X, Wei X, Fan Y, Gan D, Yue S, Cheng W, Chen T. Fiber optic surface plasmon resonance biosensor for detection of PDGF-BB in serum based on self-assembled aptamer and antifouling peptide monolayer. Biosens Bioelectron 2019; 140:111350. [PMID: 31154255 DOI: 10.1016/j.bios.2019.111350] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Herein, a home-build fiber optic surface plasmon resonance (FO-SPR) biosensing platform has been developed for highly sensitive detection of platelet-derived growth factor (PDGF-BB) based aptamer-functionalized AuNPs for signal enhancement. In this biosensor, the PDGF-BB aptamer was used to specifically capture PDGF-BB, and the antifouling peptide demonstrated great ability for resisting non-specific adsorption. After a sandwich reaction, the aptamer, PDGF-BB and aptamer-functionalized AuNPs complexes were formed on the fiber optic (FO) probe surface to significantly amplify FO-SPR signal. This method exhibited a broad detection range from 1 to 1000 pM of PDGF-BB and a low detection limit of 0.35 pM. Moreover, this biosensor was successfully applied to the detection of PDGF-BB in 10% human serum samples without suffering from serious interference owing to the excellent antifouling property of the peptide. Thus, this developed FO-SPR biosensor could be a potential alternative device for proteins determination, even as a point-of-care diagnostic tool (POCT) in clinical application.
Collapse
Affiliation(s)
- Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaotong Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yunpeng Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Delu Gan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shujun Yue
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
35
|
Park CR, Rhee WJ, Kim KW, Hwang BH. Colorimetric biosensor using dual‐amplification of enzyme‐free reaction through universal hybridization chain reaction system. Biotechnol Bioeng 2019; 116:1567-1574. [DOI: 10.1002/bit.26978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Chae Rin Park
- Department of Bioengineering and Nano‐bioengineeringIncheon National UniversityIncheon Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano‐bioengineeringIncheon National UniversityIncheon Korea
- Division of BioengineeringIncheon National UniversityIncheon Korea
| | - Kyu Won Kim
- Department of ChemistryIncheon National UniversityIncheon Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano‐bioengineeringIncheon National UniversityIncheon Korea
- Division of BioengineeringIncheon National UniversityIncheon Korea
| |
Collapse
|
36
|
Shen R, Zou L, Wu S, Li T, Wang J, Liu J, Ling L. A novel label-free fluorescent detection of histidine based upon Cu 2+-specific DNAzyme and hybridization chain reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:42-47. [PMID: 30682646 DOI: 10.1016/j.saa.2019.01.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
A novel label-free fluorescent sensor for histidine was developed based upon Cu2+-specific DNAzyme, hybridization chain reaction(HCR) and triplex DNA. Cu2+ can bind to the histidine, in the presence of histidine, leading to the inhibition of the cleavage of substrate strand of Cu2+-dependent DNAzyme, then the intact substrate strand trigger the HCR between H1 and H2. The HCR product can be recognized by triplex-forming oligonucleotide (TFO) through triplex formation and reported by the fluorescence of berberine, the fluorescence intensity of the sensing system was proportional to the concentration of histidine during the range of 5.7-455 nmol L-1, with a detection limit of 2.0 nmol L-1.
Collapse
Affiliation(s)
- Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shixin Wu
- Maternal and Child Care Service Centre of Yunxi County, Shiyan 442600, PR China
| | - Tingting Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jianmin Liu
- Department of Neurosurgery, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, PR China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
37
|
Yao B, Zhu S, Xu X, Feng N, Tian Y, Zhou N. Ultrasensitive detection of the androgen receptor through the recognition of an androgen receptor response element and hybridization chain amplification. Analyst 2019; 144:2179-2185. [PMID: 30768083 DOI: 10.1039/c9an00034h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ultrasensitive electrochemical detection of the androgen receptor (AR) was developed based on the protection of a DNA duplex by the AR from restriction endonuclease-mediated digestion and a subsequent hybridization chain reaction (HCR). Two partially complementary DNA probes P1 and P2 were designed to form an androgen receptor binding probe (ARBP) through hybridization. The ARBP contains a duplex at one end and two single-stranded tails at the other end. The duplex part containing the recognition sites of the AR and NspI restriction endonuclease was immobilized on an Au electrode, whereas the single-stranded parts served as capture probes to activate the HCR. In the absence of the AR, NspI can cleave the duplex and release the capture probes, and thus, no HCR occurs. However, the AR can bind to the ARBP and protect the duplex from cleavage; therefore, the capture probes can trigger the HCR between four carefully designed G-quadruplex forming hairpin probes and the capture probes, resulting in the formation of numerous G-quadruplexes. Finally, differential pulse voltammetry (DPV) was carried out to quantify the AR. The assay revealed a detection limit of 7.64 fM. The verification of its high specificity and practicability in serum samples indicated its potential applications in the fields of clinical examination and disease diagnosis.
Collapse
Affiliation(s)
- Binbin Yao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Sha Zhu
- Department of Oncology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Xinyu Xu
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China.
| | - Ninghan Feng
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China.
| | - Yaping Tian
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
38
|
Non-invasive diagnosis of bladder cancer by detecting telomerase activity in human urine using hybridization chain reaction and dynamic light scattering. Anal Chim Acta 2019; 1065:90-97. [PMID: 31005155 DOI: 10.1016/j.aca.2019.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022]
Abstract
Cystoscopy and histology are the gold standards for detection of bladder cancer. However, these methods are highly subjective, expensive, and invasive. We have developed a non-invasive method for the diagnosis of bladder cancer by detecting telomerase activity in human urine. Telomerase substrate (TS) primer is elongated with repeating sequences of (TTAGGG)n in the presence of telomerase. The elongated primer can trigger hybridization chain reaction between two hairpins H1 and H2, result in the aggregation of AuNPs due to the hybridization between the tail sequence on H1 (or H2) and DNA-AuNPs probe, and accompany with the increase of hydrodynamic diameter of AuNPs, which can be measured with dynamic light scattering (DLS). The biosensor displayed a detection limit of 4 MCF-7 cells (a signal-to-noise ratio of 3) and a dynamic range of 10-1000 cells. Moreover, only urine specimens from bladder cancer patients induced a significant change in the average hydrodynamic diameter, indicating its specificity for the non-invasive diagnosis of bladder cancer.
Collapse
|
39
|
Chang CC, Wang G, Takarada T, Maeda M. Target-Recycling-Amplified Colorimetric Detection of Pollen Allergen Using Non-Cross-Linking Aggregation of DNA-Modified Gold Nanoparticles. ACS Sens 2019; 4:363-369. [PMID: 30628432 DOI: 10.1021/acssensors.8b01156] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increasing prevalence of pollen allergies has raised concerns about human health. Development of a facile and precise method to detect pollen allergens would thus be of significance for environmental assessments and medical diagnoses. Here we report a sensitive colorimetric method to detect the Japanese cedar pollen allergen, Cry j 2. The method consists of two steps: a signal amplification based on the catalytic DNA hairpin self-assembly, followed by a signal transduction using the salt-induced non-cross-linking aggregation of gold nanoparticles densely modified with short DNA. The assay exhibits a detection limit of 0.2 ng/mL, which is 130-fold greater than that of the previously reported one. Moreover, the assay enables the detection of Cry j 2 spiked in soil solutions by avoiding any interference from the contaminants. The signal amplification system includes an anti-Cry j 2 DNA aptamer, which accounts for the absence of false responses to five nontarget allergen proteins. The present method could be of general applicability to various proteins by using appropriate aptamers.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31057, Taiwan
| | - Guoqing Wang
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tohru Takarada
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
40
|
Xing Y, Li X, Yuan T, Cheng W, Li D, Yu T, Ding X, Ding S. Engineering high-performance hairpin stacking circuits for logic gate operation and highly sensitive biosensing assay of microRNA. Analyst 2018; 142:4834-4842. [PMID: 29160870 DOI: 10.1039/c7an01624g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, hairpin stacking circuits (HSC) based on toehold-mediated strand displacement have been engineered to detect nucleic acids and proteins. However, the three metastable hairpins in a HSC system can potentially react non-specifically in the absence of a catalyst, limiting its practical application. Here, we developed a unique hairpin design guideline to eliminate circuit leakage of HSC, and the high-performance HSC was successfully implemented on logic gate building and biosensing. We began by analyzing the sources of circuit leakage and optimizing the toehold lengths of hairpins in the HSC system based on the surface plasmon resonance (SPR) technique. Next, a novel strategy of substituting two nucleotides in a specific domain, termed 'loop-domain substitution', was introduced to eliminate leakages. We also systematically altered the positions and numbers of the introduced substitutions to probe their potential contribution to circuit leakage suppression. Through these efforts, the circuit leakage of HSC was significantly reduced. Finally, by designing different DNA input strands, the logic gates could be activated to achieve the output signal. Using miRNA as a model analyte, this strategy could detect miRNA down to pM levels with minimized circuit leakage. We believe these work indicate significant progress in the DNA circuitry.
Collapse
Affiliation(s)
- Yueli Xing
- The Affiliated Hospital of Binzhou Medical University, Shandong 256603, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sensitive DNA detection by polymerase chain reaction with gold nanoparticles. Anal Chim Acta 2018; 1038:105-111. [DOI: 10.1016/j.aca.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023]
|
42
|
A label-free light-up fluorescent sensing platform based upon hybridization chain reaction amplification and DNA triplex assembly. Talanta 2018; 189:137-142. [DOI: 10.1016/j.talanta.2018.06.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023]
|
43
|
Zou L, Ling L. Ultrasensitive Detection of HIV DNA with Polymerase Chain Reaction-Dynamic Light Scattering. Anal Chem 2018; 90:13373-13377. [PMID: 30345744 DOI: 10.1021/acs.analchem.8b03052] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Early diagnosis of HIV biomarkers or genes is the key to reducing acquired immunodeficiency syndrome (AIDS) mortality. In our work, we developed a novel polymerase chain reaction-dynamic light scattering (PCR-DLS) assay for one-step sensitive detection of HIV DNA based on the average-diameter change of gold nanoparticles (AuNPs). This is the first PCR assay that makes use of the DLS technique as a signal read-out, with the particle size measured by DLS increasing with the concentration of target DNA. With the help of the AuNP probes, this PCR-DLS assay can effectively improve the specificity of PCR reactions, which can greatly increase the detection sensitivity, with a detection limit of 1.8 aM (S/N = 3). In addition, the proposed strategy was successfully used to analyze target DNA in human serum samples, indicating that the PCR-DLS assay has a promising potential application for rapid and early clinical diagnosis of HIV infection.
Collapse
Affiliation(s)
- Li Zou
- School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , PR China.,School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou 510006 , PR China
| | - Liansheng Ling
- School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , PR China
| |
Collapse
|
44
|
Park CR, Park SJ, Lee WG, Hwang BH. Biosensors Using Hybridization Chain Reaction - Design and Signal Amplification Strategies of Hybridization Chain Reaction. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Guo X, Wang J, Zhu Z, Zhang M, Li H, Liu J, Ling L. A colorimetric method for the sequence-specific recognition of double-stranded DNA on the surface of a silver-coated glass slide. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a colorimetric method for sequence-specific recognition of double-stranded DNA (dsDNA) was established on the surface of a silver-coated glass slide. Oligo-1 was assembled on the surface of a silver-coated glass slide through an Ag–S bond, and Oligo-2 as reporter was used to bind with streptavidin-horseradish peroxidase (SA–HRP). They could bind with target dsDNA that was composed of Oligo-3 and Oligo-4 on the surface of a silver-coated glass slide through triplex formation. The bound HRP could be moved into the solution by DNase I and catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB). Therefore, the concentration of target dsDNA could be determined with the colour change of TMB. Under the optimum conditions, the absorbance was proportional to the concentration of target dsDNA over the range of 100 pmol/L to 2.0 nmol/L, with a detection limit of 13 pmol/L. In addition, this method showed good sequence selectivity, enabling it to be further developed for the detection of other polymerase chain reaction (PCR) products.
Collapse
Affiliation(s)
- Xiaoting Guo
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zhifang Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Manjun Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Haigang Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jianmin Liu
- Department of Neurosurgery, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P. R. China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
46
|
Lu C, Saint-Pierre C, Gasparutto D, Roupioz Y, Peyrin E, Buhot A. Linear Chain Formation of Split-Aptamer Dimers on Surfaces Triggered by Adenosine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12785-12792. [PMID: 29035542 DOI: 10.1021/acs.langmuir.7b02104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The detection of small molecules impacts various fields; however, their small size and low concentration are usually the cause of limitations in their detection. Thus, the need for biosensors with appropriate probes and signal amplification strategies is required. Aptamers are appropriate probes selected specifically against small targets such as adenosine. The possibility to split aptamers in parts led to original amplification strategies based on sandwich assays. By combining the self-assembling of oligonucleotide dimers with split-aptamer dangling ends and a surface plasmon resonance imaging technique, we developed an original amplification approach based on linear chain formation in the presence of the adenosine target. In this article, on the basis of sequence engineering, we analyzed its performance and the effect of the probe grafting density on the length of the chains formed at the surface of the biosensor.
Collapse
Affiliation(s)
- Chenze Lu
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES , F-38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, DPM , F-38000 Grenoble, France
| | | | - Didier Gasparutto
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES , F-38000 Grenoble, France
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES , F-38000 Grenoble, France
| | - Eric Peyrin
- Univ. Grenoble Alpes, CNRS, DPM , F-38000 Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES , F-38000 Grenoble, France
| |
Collapse
|
47
|
Zhang M, Li R, Wang J, Ling L. Sequence-specific recognition of HIV-1 DNA based upon nicking-assisted strand displacement amplification and triplex DNA. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Ultrasensitive colorimetric detection of circulating tumor DNA using hybridization chain reaction and the pivot of triplex DNA. Sci Rep 2017; 7:44212. [PMID: 28276503 PMCID: PMC5343571 DOI: 10.1038/srep44212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
This work presents an amplified colorimetric biosensor for circulating tumor DNA (ctDNA), which associates the hybridization chain reaction (HCR) amplification with G-Quadruplex DNAzymes activity through triplex DNA formation. In the presence of ctDNA, HCR occurs. The resulting HCR products are specially recognized by one sequence to include one GGG repeat and the other containing three GGG repeats, through the synergetic effect of triplex DNA and asymmetrically split G-Quadruplex forming. Such design takes advantage of the amplification property of HCR and the high peroxidase-like catalytic activity of asymmetrically split G-Quadruplex DNAzymes by means of triplex DNA formation, which produces color signals in the presence of ctDNA. Nevertheless, in the absence of ctDNA, no HCR happens. Thus, no triplex DNA and G-Quadruplex structure is formed, producing a negligible background. The colorimetric sensing platform is successfully applied in complex biological environments such as human blood plasma for ctDNA detection, with a detection limit corresponding to 0.1 pM. This study unambiguously uses triplex DNA forming as the pivot to integrate nucleic acid amplification and DNAzymes for producing a highly sensitive signal with low background.
Collapse
|
49
|
He B. A sandwich-type electrochemical biosensor for alpha-fetoprotein based on Au nanoparticles decorating a hollow molybdenum disulfide microbox coupled with a hybridization chain reaction. NEW J CHEM 2017. [DOI: 10.1039/c7nj02431b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a sensitive sandwich-type biosensor for detecting alpha-fetoprotein (AFP) is developed by using a target-triggered hybridization chain reaction strategy.
Collapse
Affiliation(s)
- Baoshan He
- School of Food Science and Technology
- Henan University of Technology
- Zhengzhou 450001
- People's Republic of China
| |
Collapse
|