1
|
Rani A, Aslam M, Khan J, Pandey G, Singh P, Maharia RS, Nand B. Computational Insights into Chromene/pyran Derivatives: Molecular Docking, ADMET Studies, DFT Calculations, and MD Simulations as Promising Candidates for Parkinson's Disease. Chem Biodivers 2024; 21:e202400920. [PMID: 38818615 DOI: 10.1002/cbdv.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by both motor and non-motor symptoms. Although PD is commonly associated with a decline of dopaminergic neurons in the substantia nigra, other diagnostic criteria and biomarkers also exist. In the search for novel therapeutic agents, chromene and pyran derivatives have shown potential due to their diverse pharmacological activities. This study utilizes a comprehensive computational approach to investigate the viability of chromene/pyran compounds as potential treatments for PD. The drug-likeness characteristics of these molecules were analyzed using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies. Molecular docking was performed against PDB ID: 2V5Z. The best three molecules chosen were compound 7, compound 24, and compound 67 have a binding energy of -6.7, -8.6, and -10.9 kcal/mol. Molecules demonstrating positive blood-brain barrier permeability, good solubility, and favorable binding affinity were further evaluated using Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations to assess their electronic structure and stability. DFT calculations indicated that molecule 82 has a dipole moment of 15.70 D. RMSD and RMSF results confirmed the stability of the complexes over a 100 ns simulation, with a maximum of 3 hydrogen bonds formed.
Collapse
Affiliation(s)
- Anjali Rani
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Javed Khan
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Garima Pandey
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, 201204, Modinagar, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| | - R S Maharia
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| | - Bhaskara Nand
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, 110021, Delhi, India
| |
Collapse
|
2
|
Adedokun KA, Imodoye SO, Yahaya ZS, Oyeyemi IT, Bello IO, Adeyemo‐Imodoye MT, Sanusi MA, Kamorudeen RT. Nanodelivery of Polyphenols as Nutraceuticals in Anticancer Interventions. POLYPHENOLS 2023:188-224. [DOI: 10.1002/9781394188864.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Sharma NK, Sarode SC, Bahot A, Sekar G. Secretion of acetylated amino acids by drug-induced cancer cells: perspectives on metabolic-epigenetic alterations. Epigenomics 2023; 15:983-990. [PMID: 37933586 DOI: 10.2217/epi-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
The emerging understanding of the super-complex and heterogeneous nature of tumor is well supported by metabolic reprogramming, leading survival advantages. Metabolic reprogramming contributes to tumor responsiveness and resistance to various antitumor drugs. Among the numerous adaptations made by cancer cells in response to drug-induced perturbations, key metabolic alterations involving amino acids and acetylated derivatives of amino acids have received special attention. Considering these implications discussed, targeting cancer-associated metabolic pathways, particularly those involving acetylated amino acids, emerges as an important avenue in the pursuit of combinatorial anticancer strategies. As a result, the introduction of mimetic acetylated amino acids represents a promising new class of inhibitors that could be used alongside traditional chemotherapy agents.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer & Translational Research Lab, Dr D.Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, 411033, India
| | - Sachin C Sarode
- Department of Oral Pathology & Microbiology, Dr D. Y. Patil Dental College & Hospital, Dr D.Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Anjali Bahot
- Cancer & Translational Research Lab, Dr D.Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, 411033, India
| | - Gopinath Sekar
- Cancer & Translational Research Lab, Dr D.Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, 411033, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Tamil Nadu, India
| |
Collapse
|
4
|
Beltrán D, Frutos-Lisón MD, García-Villalba R, Yuste JE, García V, Espín JC, Selma MV, Tomás-Barberán FA. NMR Spectroscopic Identification of Urolithin G, a Novel Trihydroxy Urolithin Produced by Human Intestinal Enterocloster Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11921-11928. [PMID: 37494568 PMCID: PMC10416303 DOI: 10.1021/acs.jafc.3c01675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Urolithins are gut microbiota metabolites of ellagic acid. Here, we have identified and chemically characterized a novel urolithin produced from urolithin D (3,4,8,9-tetrahydroxy urolithin) by in vitro incubation with different human gut Enterocloster species under anaerobic conditions. Urolithin G (3,4,8-trihydroxy urolithin) was identified by 1H NMR, 13C NMR, UV, HRMS, and 2D NMR. For the identification, NMR spectra of other known urolithins were also recorded and compared. Urolithin G was present in the feces of 12% of volunteers in an overweight-obese group after consuming an ellagitannin-rich pomegranate extract. The production of urolithin G required a bacterial 9-dehydroxylase activity and was not specific to the known human urolithin metabotypes A and B. The ability to produce urolithin G could be considered an additional metabolic feature for volunteer stratification and bioactivity studies. This is the first urolithin with a catechol group in ring A while having only one hydroxyl in ring B, a unique feature not found in human and animal samples so far.
Collapse
Affiliation(s)
- David Beltrán
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | - María D. Frutos-Lisón
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | - Rocío García-Villalba
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | | | | | - Juan C. Espín
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | - María V. Selma
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | - Francisco A. Tomás-Barberán
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
5
|
Casas-Benito A, Martínez-Herrero S, Martínez A. Succinate-Directed Approaches for Warburg Effect-Targeted Cancer Management, an Alternative to Current Treatments? Cancers (Basel) 2023; 15:2862. [PMID: 37345199 DOI: 10.3390/cancers15102862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Approximately a century ago, Otto Warburg discovered that cancer cells use a fermentative rather than oxidative metabolism even though the former is more inefficient in terms of energy production per molecule of glucose. Cancer cells increase the use of this fermentative metabolism even in the presence of oxygen, and this process is called aerobic glycolysis or the Warburg effect. This alternative metabolism is mainly characterized by higher glycolytic rates, which allow cancer cells to obtain higher amounts of total ATP, and the production of lactate, but there are also an activation of protumoral signaling pathways and the generation of molecules that favor cancer progression. One of these molecules is succinate, a Krebs cycle intermediate whose concentration is increased in cancer and which is considered an oncometabolite. Several protumoral actions have been associated to succinate and its role in several cancer types has been already described. Despite playing a major role in metabolism and cancer, so far, the potential of succinate as a target in cancer prevention and treatment has remained mostly unexplored, as most previous Warburg-directed anticancer strategies have focused on other intermediates. In this review, we aim to summarize succinate's protumoral functions and discuss the use of succinate expression regulators as a potential cancer therapy strategy.
Collapse
Affiliation(s)
- Adrian Casas-Benito
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Sonia Martínez-Herrero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
6
|
Xu X, Liu Z, Yao L. The Synthesis of Urolithins and their Derivatives and the Modes of Antitumor Action. Mini Rev Med Chem 2023; 23:80-87. [PMID: 35578881 DOI: 10.2174/1389557522666220516125500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Urolithins are microbial metabolites derived from berries and pomegranate fruits, which display anti-inflammatory, anti-oxidative, and anti-aging activities. There are eight natural urolithins (urolithin A-E, M5, M6 and M7), which have been isolated by now. Structurally, urolithins are phenolic compounds and belong to 6H-dibenzo [b,d] pyran-6-one. They have drawn considerable attention because of their vast range of biological activities and health benefits. Recent studies also suggest that they possess anti-SARS-CoV-2 and anticancer effects. In this article, the recent advances in the synthesis of urolithins and their derivatives from 2015 to 2021 are reviewed. To improve or overcome the solubility and metabolism stability issues, the modifications of urolithins are mainly centered on the hydroxy group and lactone group, and some compounds have been found to display promising results and the potential for further study. The possible modes of antitumor action of urolithin are also discussed. Several signaling pathways, including PI3K-Akt, Wnt/β-catenin pathways, and multiple receptors (aryl hydrocarbon receptor, estrogen and androgen receptors) and enzymes (tyrosinase and lactate dehydrogenase) are involved in the antitumor activity of urolithins.
Collapse
Affiliation(s)
- Xiangrong Xu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhuanhong Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Lei Yao
- School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
7
|
Yao H, Yang F, Li Y. Natural products targeting human lactate dehydrogenases for cancer therapy: A mini review. Front Chem 2022; 10:1013670. [PMID: 36247675 PMCID: PMC9556992 DOI: 10.3389/fchem.2022.1013670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Reprogramming cancer metabolism has become the hallmark of cancer progression. As the key enzyme catalyzing the conversion of pyruvate to lactate in aerobic glycolysis of cancer cells, human lactate dehydrogenase (LDH) has been a promising target in the discovery of anticancer agents. Natural products are important sources of new drugs. Up to now, some natural compounds have been reported with the activity to target LDH. To give more information on the development of LDH inhibitors and application of natural products, herein, we reviewed the natural compounds with inhibition of LDH from diverse structures and discussed the future direction of the discovery of natural LDH inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Huankai Yao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Huankai Yao,
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Gandhi GR, Antony PJ, Ceasar SA, Vasconcelos ABS, Montalvão MM, Farias de Franca MN, Resende ADS, Sharanya CS, Liu Y, Hariharan G, Gan RY. Health functions and related molecular mechanisms of ellagitannin-derived urolithins. Crit Rev Food Sci Nutr 2022; 64:280-310. [PMID: 35959701 DOI: 10.1080/10408398.2022.2106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ellagitannins are vital bioactive polyphenols that are widely distributed in a variety of plant-based foods. The main metabolites of ellagitannins are urolithins, and current research suggests that urolithins provide a variety of health benefits. This review focused on the role of the gut bacteria in the conversion of ellagitannins to urolithins. Based on the results of in vitro and in vivo studies, the health benefits of urolithins, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-aging, cardiovascular protective, neuroprotective, kidney protective, and muscle mass protective effects, were thoroughly outlined, with a focus on their associated molecular mechanisms. Finally, we briefly commented on urolithins' safety. Overall, urolithins' diverse health benefits indicate the potential utilization of ellagitannins and urolithins in the creation of functional foods and nutraceuticals to treat and prevent some chronic diseases.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi, India
| | | | | | - Alan Bruno Silva Vasconcelos
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | - Ayane de Sá Resende
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | | | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) affiliated to the Bharathidasan University, Tiruchirapalli, India
| | - Ren-You Gan
- Nepal Jesuit Society, St. Xavier's College, Jawalakhel, Lalitpur Dt. Kathmandu, Nepal
| |
Collapse
|
9
|
Mazzio E, Mack N, Badisa RB, Soliman KFA. Triple Isozyme Lactic Acid Dehydrogenase Inhibition in Fully Viable MDA-MB-231 Cells Induces Cytostatic Effects That Are Not Reversed by Exogenous Lactic Acid. Biomolecules 2021; 11:biom11121751. [PMID: 34944395 PMCID: PMC8698706 DOI: 10.3390/biom11121751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
A number of aggressive human malignant tumors are characterized by an intensified glycolytic rate, over-expression of lactic acid dehydrogenase A (LDHA), and subsequent lactate accumulation, all of which contribute toward an acidic peri-cellular immunosuppressive tumor microenvironment (TME). While recent focus has been directed at how to inhibit LDHA, it is now becoming clear that multiple isozymes of LDH must be simultaneously inhibited in order to fully suppress lactic acid and halt glycolysis. In this work we explore the biochemical and genomic consequences of an applied triple LDH isozyme inhibitor (A, B, and C) (GNE-140) in MDA-MB-231 triple-negative breast cancer cells (TNBC) cells. The findings confirm that GNE-140 does in fact, fully block the production of lactic acid, which also results in a block of glucose utilization and severe impedance of the glycolytic pathway. Without a fully functional glycolytic pathway, breast cancer cells continue to thrive, sustain viability, produce ample energy, and maintain mitochondrial potential (ΔΨM). The only observable negative consequence of GNE-140 in this work, was the attenuation of cell division, evident in both 2D and 3D cultures and occurring in fully viable cells. Of important note, the cytostatic effects were not reversed by the addition of exogenous (+) lactic acid. While the effects of GNE-140 on the whole transcriptome were mild (12 up-regulated differential expressed genes (DEGs); 77 down-regulated DEGs) out of the 48,226 evaluated, the down-regulated DEGS collectively centered around a loss of genes related to mitosis, cell cycle, GO/G1–G1/S transition, and DNA replication. These data were also observed with digital florescence cytometry and flow cytometry, both corroborating a G0/G1 phase blockage. In conclusion, the findings in this work suggest there is an unknown element linking LDH enzyme activity to cell cycle progression, and this factor is completely independent of lactic acid. The data also establish that complete inhibition of LDH in cancer cells is not a detriment to cell viability or basic production of energy.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- Institute of Public Health, College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (E.M.); (N.M.); (R.B.B.)
| | - Nzinga Mack
- Institute of Public Health, College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (E.M.); (N.M.); (R.B.B.)
- Institute of Computational Medicine, Johns Hopkins Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Ramesh B. Badisa
- Institute of Public Health, College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (E.M.); (N.M.); (R.B.B.)
| | - Karam F. A. Soliman
- Institute of Public Health, College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (E.M.); (N.M.); (R.B.B.)
- Correspondence: ; Tel.: +1-850-599-3306; Fax: +1-850-599-3667
| |
Collapse
|
10
|
Kozal K, Jóźwiak P, Krześlak A. Contemporary Perspectives on the Warburg Effect Inhibition in Cancer Therapy. Cancer Control 2021; 28:10732748211041243. [PMID: 34554006 PMCID: PMC8474311 DOI: 10.1177/10732748211041243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the 1920s, Otto Warburg observed the phenomenon of altered glucose metabolism
in cancer cells. Although the initial hypothesis suggested that the alteration
resulted from mitochondrial damage, multiple studies of the subject revealed a
precise, multistage process rather than a random pattern. The phenomenon of
aerobic glycolysis emerges not only from mitochondrial abnormalities common in
cancer cells, but also results from metabolic reprogramming beneficial for their
sustenance. The Warburg effect enables metabolic adaptation of cancer cells to
grow and proliferate, simultaneously enabling their survival in hypoxic
conditions. Altered glucose metabolism of cancer cells includes, inter alia,
qualitative and quantitative changes within glucose transporters, enzymes of the
glycolytic pathway, such as hexokinases and pyruvate kinase, hypoxia-inducible
factor, monocarboxylate transporters, and lactate dehydrogenase. This review
summarizes the current state of knowledge regarding inhibitors of cancer glucose
metabolism with a focus on their clinical potential. The altered metabolic
phenotype of cancer cells allows for targeting of specific mechanisms, which
might improve conventional methods in anti-cancer therapy. However, several
problems such as drug bioavailability, specificity, toxicity, the plasticity of
cancer cells, and heterogeneity of cells in tumors have to be overcome when
designing therapies based on compounds targeted in cancer cell energy
metabolism.
Collapse
Affiliation(s)
- Karolina Kozal
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Paweł Jóźwiak
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Anna Krześlak
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
- Anna Krzeslak Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz,
Pomorska 141/143, Lodz 90-131, Poland.
| |
Collapse
|
11
|
Hasheminezhad SH, Boozari M, Iranshahi M, Yazarlu O, Sahebkar A, Hasanpour M, Iranshahy M. A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins. Phytother Res 2021; 36:112-146. [PMID: 34542202 DOI: 10.1002/ptr.7290] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
Urolithins are the gut metabolites produced from ellagitannin-rich foods such as pomegranates, tea, walnuts, as well as strawberries, raspberries, blackberries, and cloudberries. Urolithins are of growing interest due to their various biological activities including cardiovascular protection, anti-inflammatory activity, anticancer properties, antidiabetic activity, and antiaging properties. Several studies mostly based on in vitro and in vivo experiments have investigated the potential mechanisms of urolithins which support the beneficial effects of urolithins in the treatment of several diseases such as Alzheimer's disease, type 2 diabetes mellitus, liver disease, cardiovascular disease, and various cancers. It is now obvious that urolithins can involve several cellular mechanisms including inhibition of MDM2-p53 interaction, modulation of mitogen-activated protein kinase pathway, and suppressing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. Antiaging activity is the most appealing and probably the most important property of urolithin A that has been investigated in depth in recent studies, owing to its unique effects on activation of mitophagy and mitochondrial biogenesis. A recent clinical trial showed that urolithin A is safe up to 2,500 mg/day and can improve mitochondrial biomarkers in elderly patients. Regarding the importance of mitochondria in the pathophysiology of many diseases, urolithins merit further research especially in clinical trials to unravel more aspects of their clinical significance. Besides the nutritional value of urolithins, recent studies proved that urolithins can be used as pharmacological agents to prevent or cure several diseases. Here, we comprehensively review the potential role of urolithins as new therapeutic agents with a special focus on the molecular pathways that have been involved in their biological effects. The pharmacokinetics of urolithins is also included.
Collapse
Affiliation(s)
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Yazarlu
- Department of General Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Ellagic Acid-Derived Urolithins as Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5194508. [PMID: 32774676 PMCID: PMC7407063 DOI: 10.1155/2020/5194508] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022]
Abstract
Oxidative stress is a state of excess of prooxidative species relative to the antioxidant defenses (enzymatic and nonenzymatic) in a living organism. The consequence of this imbalance is damage of the major cellular macromolecules (carbohydrates, lipids, proteins, and DNA), which further leads to a gradual loss of tissue and organ function. It has been shown that oxidative stress plays an important role in the pathogenesis of many chronic diseases (cardiovascular, metabolic, and neurodegenerative diseases and cancer) and in the process of aging. Thus, many strategies to combat oxidative stress have been proposed and tested. In this context, food rich in antioxidants has received great attention. Pomegranate, berries, and walnuts have been recognized as “superfood” particularly for their cardioprotective effects. The common characteristic of these foods is the high content of ellagitannins. Since tannins are not bioavailable, they have been neglected in nutrition science and even considered antinutrients for a long time. However, this view has changed dramatically once it was recognized that ellagic acid, released from ellagitannins in the gastrointestinal system, is further metabolized by colonic microbiota to bioavailable compounds—known as urolithins. Thus, urolithins (3,4-benzocoumarin derivatives) have emerged as novel natural bioactive compounds and are now the focus of extensive investigations. So far, urolithins were shown to be powerful modulators of oxidative stress and agents with potential anti-inflammatory, antiproliferative, and antiaging properties. Furthermore, a few synthetic derivatives of urolithins were recognized as lead compounds for new drug development. Available data on urolithin synthesis, physicochemical and pharmacokinetic characteristics, biological activity, and safety will be presented in this review.
Collapse
|
13
|
Wu SH, Li HB, Li GL, Lv N, Qi YJ. Metabolite identification of gut microflora-cassia seed interactions using UPLC-QTOF/MS. Exp Ther Med 2020; 19:3305-3315. [PMID: 32266027 PMCID: PMC7132226 DOI: 10.3892/etm.2020.8585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cassia seed is the dried ripe seed of Cassia obtusifolia L. or Cassia tora L., which is widely used as a food or traditional Chinese medicine. The aim of the present study was to detect the components and metabolites in the culture of human or rat intestinal microflora suspension with the water decoction of cassia seed in vitro, using an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry system equipped with a negative ion scan mode. Initially, ellagic acid was identified in the cassia seed decoction. Subsequently, six different metabolites, including urolithin (uro)-A, uro-B, uro-D, uro-M6, uro-M7 and uro-B-glucuronide (glur), were detected after co-culture of the cassia seed decoction with intestinal microflora, but not in the cassia seed decoction alone. Uro-M6, uro-M7, uro-A and uro-B were common metabolites in the culture of human or rat intestinal microflora suspension with the water decoction of cassia seed. However, uro-D was only detected in the culture of rat intestinal microflora suspension with the water decoction of cassia seed, and uro-B-glur was only detected in the culture of human intestinal microflora with the water decoction of cassia seed. The uro and intermediate metabolites were produced by ellagic acid in the cassia seed decoction under the action of the intestinal microflora. The production of metabolites might be related to the abundance and diversity of the intestinal microflora in humans and rats. The present study provided rationale for further pharmacological and clinical studies on the mechanisms of action of cassia seeds.
Collapse
Affiliation(s)
- Su-Hui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Han-Bing Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Gen-Lin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Ning Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yue-Juan Qi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
14
|
García-Villalba R, Selma MV, Espín JC, Tomás-Barberán FA. Identification of Novel Urolithin Metabolites in Human Feces and Urine after the Intake of a Pomegranate Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11099-11107. [PMID: 31496244 DOI: 10.1021/acs.jafc.9b04435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Urolithins are bioactive gut microbiota metabolites of ellagic acid. Here, we have identified four unknown urolithins in human feces after the intake of a pomegranate extract. The new metabolites occurred only in 19% of the subjects. 4,8,9,10-Tetrahydroxy urolithin, (urolithin M6R), was unambiguously identified by 1H NMR, UV, and HRMS. Three metabolites were tentatively identified by the UV, HRMS, and chromatographic behavior, as 4,8,10-trihydroxy (urolithin M7R), 4,8,9-trihydroxy (urolithin CR), and 4,8-dihydroxy (urolithin AR) urolithins. Phase II conjugates of the novel urolithins were detected in urine and confirmed their absorption, circulation, and urinary excretion. The production of the new urolithins was not specific of any of the known urolithin metabotypes A and B. The new metabolites needed a bacterial 3-dehydroxylase activity for their production, and this is a novel feature as all the previously known urolithins maintained the hydroxyl at 3 position. The ability of production of these "R" urolithins can be considered an additional metabolic feature for volunteer stratification.
Collapse
Affiliation(s)
- Rocío García-Villalba
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC , P.O. Box 164, Campus de Espinardo , Murcia 30100 , Spain
| | - María V Selma
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC , P.O. Box 164, Campus de Espinardo , Murcia 30100 , Spain
| | - Juan C Espín
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC , P.O. Box 164, Campus de Espinardo , Murcia 30100 , Spain
| | - Francisco A Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology , CEBAS-CSIC , P.O. Box 164, Campus de Espinardo , Murcia 30100 , Spain
| |
Collapse
|
15
|
Lukac I, Abdelhakim H, Ward RA, St-Gallay SA, Madden JC, Leach AG. Predicting protein-ligand binding affinity and correcting crystal structures with quantum mechanical calculations: lactate dehydrogenase A. Chem Sci 2019; 10:2218-2227. [PMID: 30881647 PMCID: PMC6388092 DOI: 10.1039/c8sc04564j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Accurately computing the geometry and energy of host-guest and protein-ligand interactions requires a physically accurate description of the forces in action. Quantum mechanics can provide this accuracy but the calculations can require a prohibitive quantity of computational resources. The size of the calculations can be reduced by including only the atoms of the receptor that are in close proximity to the ligand. We show that when combined with log P values for the ligand (which can be computed easily) this approach can significantly improve the agreement between computed and measured binding energies. When the approach is applied to lactate dehydrogenase A, it can make quantitative predictions about conformational, tautomeric and protonation state preferences as well as stereoselectivity and even identifies potential errors in structures deposited in the Protein Data Bank for this enzyme. By broadening the evidence base for these structures from only the diffraction data, more chemically realistic structures can be proposed.
Collapse
Affiliation(s)
- Iva Lukac
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Hend Abdelhakim
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Richard A Ward
- Chemistry, Oncology, IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Stephen A St-Gallay
- Sygnature Discovery Ltd , Bio City, Pennyfoot St , Nottingham , NG1 1GF , UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| |
Collapse
|
16
|
Stevens JF, Revel JS, Maier CS. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Antioxid Redox Signal 2018; 29:1589-1611. [PMID: 29084444 PMCID: PMC6207154 DOI: 10.1089/ars.2017.7404] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Humans are exposed daily to polyphenols in milligram-to-gram amounts through dietary consumption of fruits and vegetables. Polyphenols are also available as components of dietary supplements for improving general health. Although polyphenols are often advertised as antioxidants to explain health benefits, experimental evidence shows that their beneficial cancer preventing and controlling properties are more likely due to stimulation of pro-oxidant and proapoptotic pathways. Recent Advances: The understanding of the biological differences between cancer and normal cell, and especially the role that mitochondria play in carcinogenesis, has greatly advanced in recent years. These advances have resulted in a wealth of new information on polyphenol bioactivity in cell culture and animal models of cancer. Polyphenols appear to target oxidative phosphorylation and regulation of the mitochondrial membrane potential (MMP), glycolysis, pro-oxidant pathways, and antioxidant (adaptive) stress responses with greater selectivity in tumorigenic cells. CRITICAL ISSUES The ability of polyphenols to dissipate the MMP (Δψm) by a protonophore mechanism has been known for more than 50 years. However, researchers focus primarily on the downstream molecular effects of Δψm dissipation and mitochondrial uncoupling. We argue that the physicochemical properties of polyphenols are responsible for their anticancer properties by virtue of their protonophoric and pro-oxidant properties rather than their specific effects on downstream molecular targets. FUTURE DIRECTIONS Polyphenol-induced dissipation of Δψm is a physicochemical process that cancer cells cannot develop resistance against by gene mutation. Therefore, polyphenols should receive more attention as agents for cotherapy with cancer drugs to gain synergistic activity. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Johana S. Revel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| |
Collapse
|
17
|
Reddy MD, Blanton AN, Watkins EB. Palladium-Catalyzed, N-(2-Aminophenyl)acetamide-Assisted Ortho-Arylation of Substituted Benzamides: Application to the Synthesis of Urolithins B, M6, and M7. J Org Chem 2017; 82:5080-5095. [DOI: 10.1021/acs.joc.7b00256] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M. Damoder Reddy
- Department of Pharmaceutical
Sciences, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Alexandra N. Blanton
- Department of Pharmaceutical
Sciences, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E. Blake Watkins
- Department of Pharmaceutical
Sciences, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|