1
|
Zoabi A, Sultan A, Abo Alhija M, Remennik S, Radko A, Margulis K. Stereoselective Interactions of Chiral Polyurea Nanocapsules with Albumins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58168-58179. [PMID: 39177231 PMCID: PMC11533163 DOI: 10.1021/acsami.4c09565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Exploiting the chirality of nanometric structures to modulate biological systems is an emerging and compelling area of research. In this study, we reveal that chiral polyurea nanocapsules exhibit significant stereoselective interactions with albumins from various sources despite their nearly neutral surface potential. Moreover, these interactions can be modulated by altering the nanocapsule surface composition, offering new opportunities to impact their distribution and, if used as a drug delivery system, the pharmacokinetics of the drug. Notably, these interactions promote preferential cellular internalization of only one chiral configuration. We synthesized chiral polyurea nanocapsules with reproducible sizes via interfacial polymerization between toluene 2,4-diisocyanate and d- or l-lysine enantiomers on a volatile oil-in-water emulsion interface, followed by solvent evaporation. Further synthesis optimization reduced the capsule size to a range compatible with in vivo administration, and capsules with alternating chiral patterns were also produced. The stereoselective interactions with albumins were assessed through capsule size changes, fluorescence quenching, and surface charge measurements. Biocompatibility, stability, and cellular internalization were evaluated. Additionally, scanning transmission electron and atomic force microscopy were carried out to assess the capsule shape, surface composition, and morphology. We discovered that d-nanocapsules exhibited 2.1-2.6 times greater albumin adsorption compared with their l-counterparts. This difference is attributed to the distinct morphology of d-nanocapsules, characterized by a more concave shape, central depression, and rougher surface. The extent of adsorption could be finely tuned by adjusting the d- and l-lysine monomer ratios during synthesis. Both chiral configurations demonstrated biocompatibility and stability with d-nanocapsules showing a 2.5-fold increase in cellular internalization.
Collapse
Affiliation(s)
- Amani Zoabi
- The
Institute for Drug Research, the School of Pharmacy, the Faculty of
Medicine, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel
| | - Adan Sultan
- The
Institute for Drug Research, the School of Pharmacy, the Faculty of
Medicine, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel
| | - Malak Abo Alhija
- The
Institute for Drug Research, the School of Pharmacy, the Faculty of
Medicine, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel
| | - Sergei Remennik
- The
Unit for Nanoscopic Characterization, The Center for Nanoscience and
Nanotechnology, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Anna Radko
- The
Unit for Nanoscopic Characterization, The Center for Nanoscience and
Nanotechnology, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Katherine Margulis
- The
Institute for Drug Research, the School of Pharmacy, the Faculty of
Medicine, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel
| |
Collapse
|
2
|
Lobel B, Baiocco D, Al-Sharabi M, Routh AF, Zhang Z, Cayre OJ. Current Challenges in Microcapsule Designs and Microencapsulation Processes: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40326-40355. [PMID: 39042830 PMCID: PMC11311140 DOI: 10.1021/acsami.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Microencapsulation is an advanced methodology for the protection, preservation, and/or delivery of active materials in a wide range of industrial sectors, such as pharmaceuticals, cosmetics, fragrances, paints, coatings, detergents, food products, and agrochemicals. Polymeric materials have been extensively used as microcapsule shells to provide appropriate barrier properties to achieve controlled release of the encapsulated active ingredient. However, significant limitations are associated with such capsules, including undesired leaching and the nonbiodegradable nature of the typically used polymers. In addition, the energy cost of manufacturing microcapsules is an important factor to be considered when designing microcapsule systems and the corresponding production processes. Recent factors linked to UN sustainability goals are modifying how such microencapsulation systems should be designed in pursuit of "ideal" microcapsules that are efficient, safe, cost-effective and environmentally friendly. This review provides an overview of advances in microencapsulation, with emphasis on sustainable microcapsule designs. The key evaluation techniques to assess the biodegradability of microcapsules, in compliance with recently evolving European Union requirements, are also described. Moreover, the most common methodologies for the fabrication of microcapsules are presented within the framework of their energy demand. Recent promising microcapsule designs are also highlighted for their suitability toward meeting current design requirements and stringent regulations, tackling the ongoing challenges, limitations, and opportunities.
Collapse
Affiliation(s)
- Benjamin
T. Lobel
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| | - Daniele Baiocco
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohammed Al-Sharabi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Olivier J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Bonelli J, Ortega-Forte E, Vigueras G, Follana-Berná J, Ashoo P, Abad-Montero D, Isidro N, López-Corrales M, Hernández A, Ortiz J, Izquierdo-García E, Bosch M, Rocas J, Sastre-Santos Á, Ruiz J, Marchán V. A Nanoencapsulated Ir(III)-Phthalocyanine Conjugate as a Promising Photodynamic Therapy Anticancer Agent. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38916-38930. [PMID: 39041453 PMCID: PMC11299137 DOI: 10.1021/acsami.4c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Despite the potential of photodynamic therapy (PDT) in cancer treatment, the development of efficient and photostable photosensitizing molecules that operate at long wavelengths of light has become a major hurdle. Here, we report for the first time an Ir(III)-phthalocyanine conjugate (Ir-ZnPc) as a novel photosensitizer for high-efficiency synergistic PDT treatment that takes advantage of the long-wavelength excitation and near infrared (NIR) emission of the phthalocyanine scaffold and the known photostability and high phototoxicity of cyclometalated Ir(III) complexes. In order to increase water solubility and cell membrane permeability, the conjugate and parent zinc phthalocyanine (ZnPc) were encapsulated in amphoteric redox-responsive polyurethane-polyurea hybrid nanocapsules (Ir-ZnPc-NCs and ZnPc-NCs, respectively). Photobiological evaluations revealed that the encapsulated Ir-ZnPc conjugate achieved high photocytotoxicity in both normoxic and hypoxic conditions under 630 nm light irradiation, which can be attributed to dual Type I and Type II reactive oxygen species (ROS) photogeneration. Interestingly, PDT treatments with Ir-ZnPc-NCs and ZnPc-NCs significantly inhibited the growth of three-dimensional (3D) multicellular tumor spheroids. Overall, the nanoencapsulation of Zn phthalocyanines conjugated to cyclometalated Ir(III) complexes provides a new strategy for obtaining photostable and biocompatible red-light-activated nano-PDT agents with efficient performance under challenging hypoxic environments, thus offering new therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Joaquín Bonelli
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat
de Barcelona (UB), and Institut de Biomedicina de la Universitat de
Barcelona (IBUB), Martí
i Franquès 1-11, E-08028 Barcelona, Spain
- Ecopol
Tech S.L., Nanobiotechnological Polymers
Division, R&D Department, El Foix Business Park, Indústria 7, E-43720 L’Arboç del Penedès, Tarragona, Spain
| | - Enrique Ortega-Forte
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Gloria Vigueras
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Jorge Follana-Berná
- Área
de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, E-03203 Elche, Spain
| | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Diego Abad-Montero
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat
de Barcelona (UB), and Institut de Biomedicina de la Universitat de
Barcelona (IBUB), Martí
i Franquès 1-11, E-08028 Barcelona, Spain
| | - Neus Isidro
- Ecopol
Tech S.L., Nanobiotechnological Polymers
Division, R&D Department, El Foix Business Park, Indústria 7, E-43720 L’Arboç del Penedès, Tarragona, Spain
| | - Marta López-Corrales
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat
de Barcelona (UB), and Institut de Biomedicina de la Universitat de
Barcelona (IBUB), Martí
i Franquès 1-11, E-08028 Barcelona, Spain
| | - Adrián Hernández
- Área
de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, E-03203 Elche, Spain
| | - Javier Ortiz
- Área
de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, E-03203 Elche, Spain
| | - Eduardo Izquierdo-García
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat
de Barcelona (UB), and Institut de Biomedicina de la Universitat de
Barcelona (IBUB), Martí
i Franquès 1-11, E-08028 Barcelona, Spain
| | - Manel Bosch
- Unitat
de Microscòpia Òptica Avançada, Centres Científics
i Tecnològics, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Josep Rocas
- Ecopol
Tech S.L., Nanobiotechnological Polymers
Division, R&D Department, El Foix Business Park, Indústria 7, E-43720 L’Arboç del Penedès, Tarragona, Spain
| | - Ángela Sastre-Santos
- Área
de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, E-03203 Elche, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Vicente Marchán
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Universitat
de Barcelona (UB), and Institut de Biomedicina de la Universitat de
Barcelona (IBUB), Martí
i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
4
|
Bonelli J, Velasco-de Andrés M, Isidro N, Bayó C, Chumillas S, Carrillo-Serradell L, Casadó-Llombart S, Mok C, Benítez-Ribas D, Lozano F, Rocas J, Marchán V. Novel Tumor-Targeted Self-Nanostructured and Compartmentalized Water-in-Oil-in-Water Polyurethane-Polyurea Nanocapsules for Cancer Theragnosis. Pharmaceutics 2022; 15:pharmaceutics15010058. [PMID: 36678687 PMCID: PMC9862617 DOI: 10.3390/pharmaceutics15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Encapsulation of water-soluble bioactive compounds for enabling specific accumulation in tumor locations, while avoiding premature clearance and/or degradation in the bloodstream, is one of the main hallmarks in nanomedicine, especially that of NIR fluorescent probes for cancer theragnosis. The herein reported technology furnishes water-dispersible double-walled polyurethane-polyurea hybrid nanocapsules (NCs) loaded with indocyanine green (ICG-NCs), using a versatile and highly efficient one-pot and industrially scalable synthetic process based on the use of two different prepolymers to set up the NCs walls. Flow cytometry and confocal microscopy confirmed that both ICG-loaded NCs internalized in monocyte-derived dendritic cells (moDCs). The in vivo analysis of xenograft A375 mouse melanoma model revealed that amphoteric functionalization of NCs' surface promotes the selective accumulation of ICG-NCs in tumor tissues, making them promising agents for a less-invasive theragnosis of cancer.
Collapse
Affiliation(s)
- Joaquín Bonelli
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Neus Isidro
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Cristina Bayó
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Sergi Chumillas
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Laura Carrillo-Serradell
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Cheryl Mok
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Daniel Benítez-Ribas
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona (UB), Villarroel 170, E-08036 Barcelona, Spain
| | - Josep Rocas
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
5
|
Zhou Y, Hou D, Marigo CC, Bonelli J, Rocas P, Cheng F, Yang X, Rocas J, Hamberg NM, Han J. Redox-responsive polyurethane-polyurea nanoparticles targeting to aortic endothelium and atherosclerosis. iScience 2022; 25:105390. [PMID: 36345337 PMCID: PMC9636043 DOI: 10.1016/j.isci.2022.105390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/23/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Aortic endothelial cell dysfunction is an early trigger of atherosclerosis, the major cause of the cardiovascular disease (CVD). Nanomedicines targeting vascular endothelium and lesions hold great promise as therapeutic solutions to vascular disorders. This study investigates the vascular delivery efficacy of polyurethane-polyurea nanocapsules (Puua-NCs) with pH-synchronized shell cationization and redox-triggered release. Fluorescent lipophilic dye DiI was encapsulated into Puua-NCs of variable sizes and concentrations. In vitro cellular uptake studies with human aortic endothelial cells showed that these Puua-NCs were taken up by cells in a dose-dependent manner. In apolipoprotein E-deficient mice fed a Western diet, a model of atherosclerosis, circulating Puua-NCs were stable and accumulated in aortic endothelium and lesions within 24 hours after intravenous administration. Treatment with thiol-reducing and oxidizing reagents disrupted the disulfide bonds on the surface of internalized NCs, triggering disassembly and intracellular cargo release. Ultimately, Puua-NCs are a potential redox-controllable cardiovascular drug delivery system.
Collapse
Affiliation(s)
- Yuxiang Zhou
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St. X 729, Boston, MA, USA
| | - David Hou
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St. X 729, Boston, MA, USA
| | | | - Joaquín Bonelli
- Nanobiotechnological Polymers Division, Ecopol Tech S.L., L’Arboc, Spain
| | - Pau Rocas
- Nanobiotechnological Polymers Division, Ecopol Tech S.L., L’Arboc, Spain
| | - Fangzhou Cheng
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St. X 729, Boston, MA, USA
| | - Xiaoqiu Yang
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St. X 729, Boston, MA, USA
| | - Josep Rocas
- Nanobiotechnological Polymers Division, Ecopol Tech S.L., L’Arboc, Spain
| | - Naomi M. Hamberg
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St. X 729, Boston, MA, USA
| | - Jingyan Han
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St. X 729, Boston, MA, USA
| |
Collapse
|
6
|
Otálora A, Lerma TA, Palencia M. Novel one-pot synthesis of polymeric hydrogels based on isocyanate click chemistry: Structural and functional characterization. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Pedroza GA, Macêdo LH, de Oliveira R, Silveira NN, Orenha RP, Parreira RL, dos Santos RA, Molard Y, Amela-Cortes M, Molina EF. Cost-efficient polyurea carrier for precise control of an anti-inflammatory drug loading and release. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Bonelli J, Ortega-Forte E, Rovira A, Bosch M, Torres O, Cuscó C, Rocas J, Ruiz J, Marchán V. Improving Photodynamic Therapy Anticancer Activity of a Mitochondria-Targeted Coumarin Photosensitizer Using a Polyurethane-Polyurea Hybrid Nanocarrier. Biomacromolecules 2022; 23:2900-2913. [PMID: 35695426 PMCID: PMC9277592 DOI: 10.1021/acs.biomac.2c00361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Integration of photosensitizers (PSs) within nanoscale delivery systems offers great potential for overcoming some of the "Achiles' heels" of photodynamic therapy (PDT). Herein, we have encapsulated a mitochondria-targeted coumarin PS into amphoteric polyurethane-polyurea hybrid nanocapsules (NCs) with the aim of developing novel nanoPDT agents. The synthesis of coumarin-loaded NCs involved the nanoemulsification of a suitable prepolymer in the presence of a PS without needing external surfactants, and the resulting small nanoparticles showed improved photostability compared with the free compound. Nanoencapsulation reduced dark cytotoxicity of the coumarin PS and significantly improved in vitro photoactivity with red light toward cancer cells, which resulted in higher phototherapeutic indexes compared to free PS. Importantly, this nanoformulation impaired tumoral growth of clinically relevant three-dimensional multicellular tumor spheroids. Mitochondrial photodamage along with reactive oxygen species (ROS) photogeneration was found to trigger autophagy and apoptotic cell death of cancer cells.
Collapse
Affiliation(s)
- Joaquín Bonelli
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Institut de Biomedicina de la Universitat
de Barcelona (IBUB), Universitat de Barcelona
(UB), E-08028 Barcelona, Spain
- Nanobiotechnological
Polymers Division, Ecopol Tech, S.L., El Foix Business Park, Indústria
7, L’Arboç del Penedès, 43720 Tarragona, Spain
| | - Enrique Ortega-Forte
- Departamento
de Química Inorgánica, Universidad
de Murcia, Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Anna Rovira
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Institut de Biomedicina de la Universitat
de Barcelona (IBUB), Universitat de Barcelona
(UB), E-08028 Barcelona, Spain
| | - Manel Bosch
- Unitat
de Microscòpia Òptica Avançada, Centres Científics
i Tecnològics (CCiTUB), Universitat
de Barcelona (UB), E-08028 Barcelona, Spain
| | - Oriol Torres
- Nanobiotechnological
Polymers Division, Ecopol Tech, S.L., El Foix Business Park, Indústria
7, L’Arboç del Penedès, 43720 Tarragona, Spain
| | - Cristina Cuscó
- Nanobiotechnological
Polymers Division, Ecopol Tech, S.L., El Foix Business Park, Indústria
7, L’Arboç del Penedès, 43720 Tarragona, Spain
| | - Josep Rocas
- Nanobiotechnological
Polymers Division, Ecopol Tech, S.L., El Foix Business Park, Indústria
7, L’Arboç del Penedès, 43720 Tarragona, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia, Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Vicente Marchán
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Orgànica, Institut de Biomedicina de la Universitat
de Barcelona (IBUB), Universitat de Barcelona
(UB), E-08028 Barcelona, Spain
| |
Collapse
|
9
|
Bonelli J, Ortega-Forte E, Vigueras G, Bosch M, Cutillas N, Rocas J, Ruiz J, Marchan V. Polyurethane-polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(III) metallodrugs. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01542g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated Ir(III) complexes hold great promise as an alternative to platinum metallodrugs for therapy and diagnosis of cancer. However, low aqueous solubility and poor cell membrane permeability difficult in vivo...
Collapse
|
10
|
Multi-Smart and Scalable Bioligands-Free Nanomedical Platform for Intratumorally Targeted Tambjamine Delivery, a Difficult to Administrate Highly Cytotoxic Drug. Biomedicines 2021; 9:biomedicines9050508. [PMID: 34064518 PMCID: PMC8147975 DOI: 10.3390/biomedicines9050508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
Cancer is one of the leading causes of mortality worldwide due, in part, to limited success of some current therapeutic approaches. The clinical potential of many promising drugs is restricted by their systemic toxicity and lack of selectivity towards cancer cells, leading to insufficient drug concentration at the tumor site. To overcome these hurdles, we developed a novel drug delivery system based on polyurea/polyurethane nanocapsules (NCs) showing pH-synchronized amphoteric properties that facilitate their accumulation and selectivity into acidic tissues, such as tumor microenvironment. We have demonstrated that the anticancer drug used in this study, a hydrophobic anionophore named T21, increases its cytotoxic activity in acidic conditions when nanoencapsulated, which correlates with a more efficient cellular internalization. A biodistribution assay performed in mice has shown that the NCs are able to reach the tumor and the observed systemic toxicity of the free drug is significantly reduced in vivo when nanoencapsulated. Additionally, T21 antitumor activity is preserved, accompanied by tumor mass reduction compared to control mice. Altogether, this work shows these NCs as a potential drug delivery system able to reach the tumor microenvironment, reducing the undesired systemic toxic effects. Moreover, these nanosystems are prepared under scalable methodologies and straightforward process, and provide tumor selectivity through a smart mechanism independent of targeting ligands.
Collapse
|
11
|
Differential Interactions of Chiral Nanocapsules with DNA. Int J Mol Sci 2021; 22:ijms22020584. [PMID: 33430158 PMCID: PMC7827073 DOI: 10.3390/ijms22020584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/18/2023] Open
Abstract
(1) Background: Chiral nanoparticular systems have recently emerged as a compelling platform for investigating stereospecific behavior at the nanoscopic level. We describe chiroselective supramolecular interactions that occur between DNA oligonucleotides and chiral polyurea nanocapsules. (2) Methods: We employ interfacial polyaddition reactions between toluene 2,4-diisocyanate and lysine enantiomers that occur in volatile oil-in-water nanoemulsions to synthesize hollow, solvent-free capsules with average sizes of approximately 300 nm and neutral surface potential. (3) Results: The resultant nanocapsules exhibit chiroptical activity and interact differentially with single stranded DNA oligonucleotides despite the lack of surface charge and, thus, the absence of significant electrostatic interactions. Preferential binding of DNA on D-polyurea nanocapsules compared to their L-counterparts is demonstrated by a fourfold increase in capsule size, a 50% higher rise in the absolute value of negative zeta potential (ζ-potential), and a three times lower free DNA concentration after equilibration with the excess of DNA. (4) Conclusions: We infer that the chirality of the novel polymeric nanocapsules affects their supramolecular interactions with DNA, possibly through modification of the surface morphology. These interactions can be exploited when developing carriers for gene therapy and theranostics. The resultant constructs are expected to be highly biocompatible due to their neutral potential and biodegradability of polyurea shells.
Collapse
|
12
|
Luan H, Zhu Y, Wang G. Synthesis, self-assembly, biodegradation and drug delivery of polyurethane copolymers from bio-based poly(1,3-propylene succinate). REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Liu P. Redox- and pH-responsive polymeric nanocarriers. STIMULI RESPONSIVE POLYMERIC NANOCARRIERS FOR DRUG DELIVERY APPLICATIONS 2019:3-36. [DOI: 10.1016/b978-0-08-101995-5.00001-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Liu S, Huang Z, Li F, Yan T, Fu S, Tian R, Hou C, Luo Q, Xu J, Liu J. Supramolecular polymer nanocapsules by enzymatic covalent condensation: biocompatible and biodegradable drug-delivery systems for chemo-photothermal anticancer therapy. Polym Chem 2019. [DOI: 10.1039/c9py00523d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer nanocapsules were constructed by enzymatic covalent condensation and they acted as drug-delivery systems for chemo-photothermal anticancer therapy.
Collapse
|
15
|
Rocas P, Fernández Y, García-Aranda N, Foradada L, Calvo P, Avilés P, Guillén MJ, Schwartz S, Rocas J, Albericio F, Abasolo I. Improved pharmacokinetic profile of lipophilic anti-cancer drugs using ανβ3-targeted polyurethane-polyurea nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:257-267. [PMID: 29127040 DOI: 10.1016/j.nano.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/04/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Glutathione degradable polyurethane-polyurea nanoparticles (PUUa NP) with a disulfide-rich multiwalled structure and a cyclic RGD peptide as a targeting moiety were synthesized, incorporating a very lipophilic chemotherapeutic drug named Plitidepsin. In vitro studies indicated that encapsulated drug maintained and even improved its cytotoxic activity while in vivo toxicity studies revealed that the maximum tolerated dose (MTD) of Plitidepsin could be increased three-fold after encapsulation. We also found that pharmacokinetic parameters such as maximum concentration (Cmax), area under the curve (AUC) and plasma half-life were significantly improved for Plitidepsin loaded in PUUa NP. Moreover, biodistribution assays in mice showed that RGD-decorated PUUa NP accumulate less in spleen and liver than non-targeted conjugates, suggesting that RGD-decorated nanoparticles avoid sequestration by macrophages from the reticuloendothelial system. Overall, our results indicate that polyurethane-polyurea nanoparticles represent a very valuable nanoplatform for the delivery of lipophilic drugs by improving their toxicological, pharmacokinetic and whole-body biodistribution profiles.
Collapse
Affiliation(s)
- Pau Rocas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Nanobiotechnological Polymers Division, Ecopol Tech S.L., L'Arboç, Spain
| | - Yolanda Fernández
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Natalia García-Aranda
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Laia Foradada
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Pilar Calvo
- PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | | | - Simó Schwartz
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Josep Rocas
- Nanobiotechnological Polymers Division, Ecopol Tech S.L., L'Arboç, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Department of Organic Chemistry, University of Barcelona, Barcelona, Spain; School of Chemistry & Physics, University of Kwazulu-Natal, Durban, South Africa
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR), Drug Delivery and Targeting Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|