1
|
Guo J, Yao H, Chang L, Zhu W, Zhang Y, Li X, Yang B, Dai B, Chen X, Lei L, Chen Z, Li Y, Zheng L, Liu W, Tong W, Su Y, Qin L, Xu J. Magnesium Nanocomposite Hydrogel Reverses the Pathologies to Enhance Mandible Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312920. [PMID: 39385647 PMCID: PMC11733717 DOI: 10.1002/adma.202312920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The healing of bone defects after debridement in medication-related osteonecrosis of the jaw (MRONJ) is a challenging medical condition with impaired angiogenesis, susceptible infection, and pro-inflammatory responses. Magnesium (Mg) nanocomposite hydrogel is developed to specifically tackle multiple factors involved in MRONJ. Mg-oxide nanoparticles tune the gelation kinetics in the reaction between N-hydroxysuccinimide-functionalized hyperbranched poly (ethylene glycol) and proteins. This reaction allows an enhanced mechanical property after instant solidification and, more importantly, also stable gelation in challenging environments such as wet and hemorrhagic conditions. The synthesized hydrogel guides mandible regeneration in MRONJ rats by triggering the formation of type H vessels, activating Osterix+ osteoprogenitor cells, and generating anti-inflammatory microenvironments. Additionally, this approach demonstrates its ability to suppress infection by inhibiting specific pathogens while strengthening stress tolerance in the affected alveolar bone. Furthermore, the enhanced osteogenic properties and feasibility of implantation of the hydrogel are validated in mandible defect and iliac crest defect created in minipigs, respectively. Collectively, this study offers an injectable and innovative bone substitute to enhance mandible defect healing by tackling multiple detrimental pathologies.
Collapse
Affiliation(s)
- Jiaxin Guo
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Hao Yao
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Liang Chang
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Wangyong Zhu
- Department of Dental SurgeryThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518009P. R. China
| | - Yuantao Zhang
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Xu Li
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Boguang Yang
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Bingyang Dai
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Xin Chen
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Lei Lei
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Ziyi Chen
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Ye Li
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong Kong SAR999077P. R. China
| | - Lizhen Zheng
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Centre for Regenerative Medicine and HealthHong Kong Institute of Science and InnovationChinese Academy of SciencesHong Kong SAR999077P. R. China
| | - Weiyang Liu
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Wenxue Tong
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Yuxiong Su
- Division of Oral and Maxillofacial SurgeryFaculty of DentistryThe University of Hong KongHong Kong SAR999077P. R. China
| | - Ling Qin
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| | - Jiankun Xu
- Musculoskeletal Research LaboratoryDepartment of Orthopedics & TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SAR999077P. R. China
| |
Collapse
|
2
|
Duan WL, Zhang LN, Bohara R, Martin-Saldaña S, Yang F, Zhao YY, Xie Y, Bu YZ, Pandit A. Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 2023; 10:4. [PMID: 36710340 PMCID: PMC9885614 DOI: 10.1186/s40779-022-00439-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/31/2022] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of degenerative joint disease which affects 7% of the global population and more than 500 million people worldwide. One research frontier is the development of hydrogels for OA treatment, which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives. Both approaches address the big challenge: establishing stable integration of such delivery systems or implants. Adhesive hydrogels provide possible solutions to this challenge. However, few studies have described the current advances in using adhesive hydrogel for OA treatment. This review summarizes the commonly used hydrogels with their adhesion mechanisms and components. Additionally, recognizing that OA is a complex disease involving different biological mechanisms, the bioactive therapeutic strategies are also presented. By presenting the adhesive hydrogels in an interdisciplinary way, including both the fields of chemistry and biology, this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.
Collapse
Affiliation(s)
- Wang-Lin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Ning Zhang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Sergio Martin-Saldaña
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Yang Zhao
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yong Xie
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China. .,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China.
| | - Ya-Zhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
3
|
Xu Q, Sigen A, Wang W. Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing. MULTIFUNCTIONAL HYDROGELS FOR BIOMEDICAL APPLICATIONS 2022:323-355. [DOI: 10.1002/9783527825820.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Rong L, Cheng X, Ge J, Caldona EB, Advincula RC. Synthesis of Hyperbranched Polymers via PET‐RAFT Self‐Condensing Vinyl Polymerization in a Flow Reactor. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li‐Han Rong
- Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Xiang Cheng
- Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Jin Ge
- Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Eugene B. Caldona
- Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA
| | - Rigoberto C. Advincula
- Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA
- Center for Nanophase Materials Sciences (CNMS) Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| |
Collapse
|
5
|
Schultzke S, Walther M, Staubitz A. Active Ester Functionalized Azobenzenes as Versatile Building Blocks. Molecules 2021; 26:molecules26133916. [PMID: 34206950 PMCID: PMC8272017 DOI: 10.3390/molecules26133916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Azobenzenes are important molecular switches that can still be difficult to functionalize selectively. A high yielding Pd-catalyzed cross-coupling method under mild conditions for the introduction of NHS esters to azobenzenes and diazocines has been established. Yields were consistently high with very few exceptions. The NHS functionalized azobenzenes react with primary amines quantitatively. These amines are ubiquitous in biological systems and in material science.
Collapse
Affiliation(s)
- Sven Schultzke
- Institute for Analytical and Organic Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (S.S.); (M.W.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| | - Melanie Walther
- Institute for Analytical and Organic Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (S.S.); (M.W.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| | - Anne Staubitz
- Institute for Analytical and Organic Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (S.S.); (M.W.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
- Correspondence: ; Tel.: +49-421-218-63210
| |
Collapse
|
6
|
Cai Y, Johnson M, A S, Xu Q, Tai H, Wang W. A Hybrid Injectable and Self-Healable Hydrogel System as 3D Cell Culture Scaffold. Macromol Biosci 2021; 21:e2100079. [PMID: 34145758 DOI: 10.1002/mabi.202100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Cell therapies have great potential for the treatment of many different diseases, while the direct application of cells to the targeted location leads to limited therapeutic outcomes due to the low cell engraftment and cell survival rate. Injectable hydrogels have been developed to facilitate cell delivery; however, those currently developed hydrogel systems still face the limited cell survival rate. Here, an injectable and self-healable hydrogel is reported through the combination of hyperbranched PEG-based multi-hydrazide macro-crosslinker (HB-PEG-HDZ) and aldehyde-functionalized hyaluronic acid (HA-CHO), with gelatin added to increase the crosslinking density and cell activity. The hydrogels can be formed only in 7 s due to the relatively high content of the functional end groups. The reversible crosslinking mechanism between the hydrazide and aldehyde groups endows the hydrogel with shear-thinning and self-healing properties. The hydrogels with gelatin exhibit relatively better mechanical properties and cell activity. The hydrogels can improve the survival, attachment, and engraftment of injected cells due to the rapid sol-gel transition, which can promote an enhanced regenerative response.
Collapse
Affiliation(s)
- Yi Cai
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland.,Blafar Limited, NovaUCD, Belfield Innovation Park Belfield, Dublin, Dublin 4, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland
| | - Hongyun Tai
- Blafar Limited, NovaUCD, Belfield Innovation Park Belfield, Dublin, Dublin 4, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
A S, Lyu J, Johnson M, Creagh-Flynn J, Zhou D, Lara-Sáez I, Xu Q, Tai H, Wang W. Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38918-38924. [PMID: 32805952 DOI: 10.1021/acsami.0c08567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid development of additive manufacturing techniques in the field of tissue regeneration offers unprecedented success for artificial tissue and organ fabrication. However, some limitations still remain for current bioinks, such as the compromised cell viability after printing, the low cross-linking efficiency leading to poor printing resolution and speed due to the relatively slow gelation rate, and the requirement of external stimuli for gelation. To address these problems, herein, a biocompatible and printable instant gelation hydrogel system has been developed based on a designed hyperbranched poly(ethylene glycol) (PEG)-based multihydrazide macro-cross-linker (HB-PEG-HDZ) and an aldehyde-functionalized hyaluronic acid (HA-CHO). HB-PEG-HDZ is prepared by the postfunctionalization of hyperbranched PEG-based multivinyl macromer via thiol-ene chemistry. Owing to the high functional group density of HB-PEG-HDZ, the hydrogel can be formed instantly upon mixing the solutions of two components. The reversible cross-linking mechanism between the hydrazide and aldehyde groups endows the hydrogel with shear-thinning and self-healing properties. The minimally toxic components and cross-linking chemistry allow the resulting hydrogel to be a biocompatible niche. Moreover, the fast sol-to-gel transition of the hydrogel, combining all of the advanced characteristics of this platform, protects the cells during the printing procedure, avoids their damage during extrusion, and improves the transplanted cell survival.
Collapse
Affiliation(s)
- Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Jack Creagh-Flynn
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Dezhong Zhou
- School of Chemical Engineering and Technology (SCET), Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Hongyun Tai
- School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
8
|
Gao Y, Zhou D, Lyu J, A S, Xu Q, Newland B, Matyjaszewski K, Tai H, Wang W. Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nat Rev Chem 2020; 4:194-212. [PMID: 37128047 DOI: 10.1038/s41570-020-0170-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 01/26/2023]
Abstract
The construction of complex polymer architectures with well-defined topology, composition and functionality has been extensively explored as the molecular basis for the development of modern polymer materials. The unique reaction kinetics of free-radical polymerization leads to the concurrent formation of crosslinks between polymer chains and rings within an individual chain and, thus, free-radical (co)polymerization of multivinyl monomers provides a facile method to manipulate chain topology and functionality. Regulating the relative contribution of these intermolecular and intramolecular chain-propagation reactions is the key to the construction of architecturally complex polymers. This can be achieved through the design of new monomers or by spatially or kinetically controlling crosslinking reactions. These mechanisms enable the synthesis of various polymer architectures, including linear, cyclized, branched and star polymer chains, as well as crosslinked networks. In this Review, we highlight some of the contemporary experimental strategies to prepare complex polymer architectures using radical polymerization of multivinyl monomers. We also examine the recent development of characterization techniques for sub-chain connections in such complex macromolecules. Finally, we discuss how these crosslinking reactions have been engineered to generate advanced polymer materials for use in a variety of biomedical applications.
Collapse
|
9
|
Huang Q, Chen Y, Hao L, Zhou R, Li Y, Li Q, Zhu B, Cai X. Pegylated carbon nitride nanosheets for enhanced reactive oxygen species generation and photodynamic therapy under hypoxic conditions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102167. [PMID: 32006685 DOI: 10.1016/j.nano.2020.102167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
The application of photodynamic therapy (PDT) is of ever-increasing importance in the treatment of malignant tumors; however, there are several major constraints that make it impossible to achieve optimal therapeutic effects. Our objective is to develop a novel photosensitizing drug for skin cancer. In the experiment, we fabricated four-arm-poly ethylene glycol modified amino-rich graphite phase carbon nitride nanosheets (AGCN-PEG), which have good stability in physiological solution and show selective accumulation in tumor cells. Under hypoxic conditions, the AGCN-PEG induced PDT can effectively inhibit growth on A431 human epidermoid carcinoma cells in vivo and in vitro. What's more, after being combined with TMPyP4, the therapeutic effect of AGCN-PEG was greatly improved.
Collapse
Affiliation(s)
- Qian Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Implant Dentistry, Stomatologic Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Liver Surgery& Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qirong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Urosev I, Dorrington H, Muzzin N, Alsop R, Bakaic E, Gilbert T, Rheinstädter M, Hoare T. Injectable Poly(oligoethylene glycol methacrylate)-Based Hydrogels Fabricated from Highly Branched Precursor Polymers: Controlling Gel Properties by Precursor Polymer Morphology. ACS APPLIED POLYMER MATERIALS 2019; 1:369-380. [DOI: 10.1021/acsapm.8b00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ivan Urosev
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Helen Dorrington
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Nicola Muzzin
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Richard Alsop
- Department of Physics and Astronomy, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Emilia Bakaic
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Trevor Gilbert
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Maikel Rheinstädter
- Department of Physics and Astronomy, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
11
|
Xu Q, A S, McMichael P, Creagh-Flynn J, Zhou D, Gao Y, Li X, Wang X, Wang W. Double-Cross-Linked Hydrogel Strengthened by UV Irradiation from a Hyperbranched PEG-Based Trifunctional Polymer. ACS Macro Lett 2018; 7:509-513. [PMID: 35632922 DOI: 10.1021/acsmacrolett.8b00138] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Conventional wound healing materials suffer from low efficiency, poor mechanical strength, and nontunable properties. Responsive hydrogels are appealing candidates for tissue engineering. Herein, we developed a double-cross-linked hydrogel system composed of hyperbranched PEG-based polymer, comprising pre-cross-linked acetal structure and numerous terminal acrylate groups, which can form hydrogels in situ and can be further strengthened by UV irradiation. The hyperbranched glycidyl methacrylate-co-poly(ethylene glycol) diacrylate polymers (HB-GMA-PEGs) were first synthesized via in situ deactivation enhanced atom transfer radical polymerization (DE-ATRP). A series of pre-cross-linked materials were achieved after postfunctionalization. The material can absorb a high amount of water to form hydrogels, and the gel stiffness was evaluated in detail before and after UV irradiation. The in vitro cytotoxicity experiments were conducted with the resulting materials and have demonstrated their good biocompatibility. The results indicate that this type of hydrogel with high water uptake capacity has appealing potential as a responsive biomaterial for wound closure.
Collapse
Affiliation(s)
- Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Peter McMichael
- Institut National Polytechnique - Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques Et Technologiques (INP-ENSIACET), Toulouse, France
| | - Jack Creagh-Flynn
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Yongsheng Gao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Xiaolin Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Xi Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
- School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
12
|
A facile method for the controlled polymerization of biocompatible and thermoresponsive oligo(ethylene glycol) methyl ether methacrylate copolymers. Polym J 2018. [DOI: 10.1038/s41428-017-0004-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Liu G, Li Y, Yang L, Wei Y, Wang X, Wang Z, Tao L. Cytotoxicity study of polyethylene glycol derivatives. RSC Adv 2017. [DOI: 10.1039/c7ra00861a] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytotoxicity of PEG oligomers (with different molecular weights) and PEG based monomers (with different chain end groups) was studied in detail.
Collapse
Affiliation(s)
- Guoqiang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yongsan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lei Yang
- Cancer Institute & Hospital
- Peking Union Medical College & Chinese Academy of Medical Science
- Beijing 100021
- P. R. China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Xing Wang
- The State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zhiming Wang
- College of Pharmaceutical Science
- Zhejiang Chinese Medical University
- Hangzhou
- P. R. China
| | - Lei Tao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|