1
|
Chen J, Pei Z, Chai B, Jiang P, Ma L, Zhu L, Huang X. Engineering the Dielectric Constants of Polymers: From Molecular to Mesoscopic Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308670. [PMID: 38100840 DOI: 10.1002/adma.202308670] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Polymers are essential components of modern-day materials and are widely used in various fields. The dielectric constant, a key physical parameter, plays a fundamental role in the light-, electricity-, and magnetism-related applications of polymers, such as dielectric and electrical insulation, battery and photovoltaic fabrication, sensing and electrical contact, and signal transmission and communication. Over the past few decades, numerous efforts have been devoted to engineering the intrinsic dielectric constant of polymers, particularly by tailoring the induced and orientational polarization modes and ferroelectric domain engineering. Investigations into these methods have guided the rational design and on-demand preparation of polymers with desired dielectric constants. This review article exhaustively summarizes the dielectric constant engineering of polymers from molecular to mesoscopic scales, with emphasis on application-driven design and on-demand polymer synthesis rooted in polymer chemistry principles. Additionally, it explores the key polymer applications that can benefit from dielectric constant regulation and outlines the future prospects of this field.
Collapse
Affiliation(s)
- Jie Chen
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhantao Pei
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Chai
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Ma
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106-7202, USA
| | - Xingyi Huang
- Department of Polymer Science and Engineering Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Kallitsis K, Alvarez-Fernandez A, Cloutet E, Brochon C, Hadziioannou G. Introducing Photo-Cross-Linkable Functionalities on P(VDF-co-TrFE) Ferroelectric Copolymer. Chempluschem 2024; 89:e202400113. [PMID: 38471131 DOI: 10.1002/cplu.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Ferroelectric polymers have emerged as crucial materials for the development of advanced organic electronic devices. Their recent high-end commercial applications as fingerprint sensors have only increased the amount of scientific interest around them. Despite an ever-larger body of studies focusing on optimizing the properties of ferroelectric polymers by physical means (e. g., annealing, stretching, blending or nano-structuring), post-polymerization chemical modification of such polymers has only recently become a field of active study with great promise in expanding the scope of those polymers. In this work, a solution-based post-polymerization modification method was developed for the safe and facile grafting of a plethora of functional groups to the backbone of commercially available Poly(vinylidene fluoride-co-trifluoroethylene P(VDF-co-TrFE) ferroelectric polymers. To showcase the versatility of this approach, photosensitive groups were grafted onto the polymeric backbone, enabling them to undergo photo-cross-linking. Finally, these modified polymers were used as functional negative photoresists in a photolithographic process, highlighting the potential of this method to integrate ferroelectric fluorinated electroactive polymers into standard electronic microfabrication production lines.
Collapse
Affiliation(s)
- Konstantinos Kallitsis
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 1AS, United Kingdom
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR5629), Université de Bordeaux, F-33607, Pessac, France
| | - Alberto Alvarez-Fernandez
- Centro de Fisica de Materiales (CFM) (CSIC-UPV/EHU), Material Physics Centre, Paseo Manuel de Lardizabal 5, San Sebastian, 20018, Spain
| | - Eric Cloutet
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR5629), Université de Bordeaux, F-33607, Pessac, France
| | - C Brochon
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR5629), Université de Bordeaux, F-33607, Pessac, France
| | - G Hadziioannou
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR5629), Université de Bordeaux, F-33607, Pessac, France
| |
Collapse
|
3
|
Wang L, Gao L, Li B, Hu B, Xu T, Lin H, Zhu R, Hu BL, Li RW. High-Curie-Temperature Elastic Polymer Ferroelectric by Carbene Cross-Linking. J Am Chem Soc 2024; 146:5614-5621. [PMID: 38354217 DOI: 10.1021/jacs.3c14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
With the emergence of wearable electronics, ferroelectrics are poised to serve as key components for numerous potential applications. Currently, intrinsically elastic ferroelectrics featuring a network structure through a precise "slight cross-linking" approach have been realized. The resulting elastic ferroelectrics demonstrate a combination of stable ferroelectric properties and remarkable resilience under various strains. However, challenges arose as the cross-linking temperature was too high when integrating ferroelectrics with other functional materials, and the Curie temperature of this elastic ferroelectric was comparatively low. Addressing these challenges, we strategically chose a poly(vinylidene fluoride)-based copolymer with high vinylidene fluoride content to obtain a high Curie temperature while synthesizing a cross-linker with carbene intermediate for high reactivity to reduce the cross-linking temperature. At a relatively low temperature, we successfully fabricated elastic ferroelectrics through carbene cross-linking. The resulting elastic polymer ferroelectrics exhibit a higher Curie temperature and show a stable ferroelectric response under strains up to 50%. These materials hold significant potential for integration into wearable electronics.
Collapse
Affiliation(s)
- Linping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liang Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Bowen Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bing Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Tianhua Xu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huang Lin
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Ren Zhu
- Oxford Instruments Asylum Research, Shanghai 200233, China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. Food Chem 2022; 390:133105. [DOI: 10.1016/j.foodchem.2022.133105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
|
5
|
Ren M, Sun Z, Zhang M, Yang X, Guo D, Dong S, Dhakal R, Yao Z, Li Y, Kim NY. A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. NANOSCALE ADVANCES 2022; 4:3987-3995. [PMID: 36133328 PMCID: PMC9470067 DOI: 10.1039/d2na00339b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023]
Abstract
Flexible and wearable pressure sensors have attracted extensive attention in domains, such as electronic skin, medical monitoring and human-machine interaction. However, developing a pressure sensor with high sensitivity, mechanical stability and a wide detection range remains a huge challenge. In this work, a flexible capacitive pressure sensor, based on a Ti3C2T x (MXene)/polyvinyl pyrrolidone (PVP) composite nanofiber membrane (CNM), prepared via an efficient electrospinning process, is presented. The experimental results show that even a small mass fraction of MXene can effectively decrease the compression modulus of the PVP nanofiber membrane, thus enhancing the sensing performance. Specifically, the sensor based on (0.1 wt% MXene)/PVP CNM has a high sensitivity (0.5 kPa-1 at 0-1.5 kPa), a fast response/recovery time (45/45 ms), a wide pressure detection range (0-200 kPa), a low detection limit (∼9 Pa) and an excellent mechanical stability (8000 cycles). Due to its superior performance, the sensor can monitor subtle changes in human physiology and other signals, such as pulse, respiration, human joint motions and airflow. In addition, a 4 × 4 sensor array is fabricated that can accurately map the shape and position of objects with good resolution. The high-performance flexible pressure sensor, as developed in this work, shows good application prospects in advanced human-computer interface systems.
Collapse
Affiliation(s)
- Mengna Ren
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Zhongsen Sun
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Mengqi Zhang
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Xiaojun Yang
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Dedong Guo
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Shuheng Dong
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Rajendra Dhakal
- Department of Computer Science and Engineering, Sejong University Seoul 05006 Korea
| | - Zhao Yao
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Yuanyue Li
- College of Electronic and Information, Qingdao University Qingdao 266071 China
| | - Nam Young Kim
- Department of Electronic Engineering, Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
6
|
Wang M, Lei M, Tan S, Zhang Z. Grafting Modification of Poly(vinylidene fluoride‐trifluoroethylene) via Visible‐light Mediated C‐F Bond Activation. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miao Wang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China
| | - Mingxin Lei
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China
| | - Shaobo Tan
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China
- Research Institute of Xi'an Jiaotong University Zhejiang 311200 P. R. China
| | - Zhicheng Zhang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China
| |
Collapse
|
7
|
Yang TC, Jiang YP, Lin TH, Chen SH, Ho CM, Wu MC, Wang JC. N-butylamine-modified graphite nanoflakes blended in ferroelectric P(VDF-TrFE) copolymers for piezoelectric nanogenerators with high power generation efficiency. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Duan Y, Li Q, Peng B, Tan S, Zhang Z. Grafting modification of poly(vinylidene fluoride-hexafluoropropylene) via Cu(0) mediated controlled radical polymerization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Wang M, Liao J, Peng B, Zhang Y, Tan S, Zhang Z. Facile Grafting Modification of Poly(Vinylidene Fluoride‐
co
‐Trifluoroethylene) Directly from Inner CHCH Bonds. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miao Wang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry School of Chemistry Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jiani Liao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry School of Chemistry Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Biyun Peng
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry School of Chemistry Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ying Zhang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry School of Chemistry Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shaobo Tan
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry School of Chemistry Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zhicheng Zhang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry School of Chemistry Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
10
|
Peng B, Wang J, Li M, Wang M, Tan S, Zhang Z. Activation of different C–F bonds in fluoropolymers for Cu(0)-mediated single electron transfer radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00376c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The graft polymerization of MMA initiated from PVDF-based fluoropolymers via single electron transfer controlled radical polymerization (SET-CRP) is reported.
Collapse
Affiliation(s)
- Biyun Peng
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Jian Wang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Meng Li
- School of Materials Science and Chemical Engineering
- Xi'an Technological University
- Xi'an 710032
- P. R. China
| | - Miao Wang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Shaobo Tan
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Zhicheng Zhang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| |
Collapse
|
11
|
Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park JY. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22212-22224. [PMID: 32302099 DOI: 10.1021/acsami.0c05819] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In recent years, highly sensitive pressure sensors that are flexible, biocompatible, and stretchable have attracted significant research attention in the fields of wearable electronics and smart skin. However, there has been a considerable challenge to simultaneously achieve highly sensitive, low-cost sensors coupled with optimum mechanical stability and an ultralow detection limit for subtle physiological signal monitoring devices. Targeting aforementioned issues, herein, we report the facile fabrication of a highly sensitive and reliable capacitive pressure sensor for ultralow-pressure measurement by sandwiching MXene (Ti3C2Tx)/poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) composite nanofibrous scaffolds as a dielectric layer between biocompatible poly-(3,4-ethylenedioxythiophene) polystyrene sulfonate /polydimethylsiloxane electrodes. The fabricated sensor exhibits a high sensitivity of 0.51 kPa-1 and a minimum detection limit of 1.5 Pa. In addition, it also enables linear sensing over a broad pressure range (0-400 kPa) and high reliability over 10,000 cycles even at extremely high pressure (>167 kPa). The sensitivity of the nanofiber-based sensor is enhanced by MXene loading, thereby increasing the dielectric constant up to 40 and reducing the compression modulus to 58% compared with pristine PVDF-TrFE nanofiber scaffolds. The proposed sensor can be used to determine the health condition of patients by monitoring physiological signals (pulse rate, respiration, muscle movements, and eye twitching) and also represents a good candidate for a next generation human-machine interfacing device.
Collapse
Affiliation(s)
- Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ashok Chhetry
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyosang Yoon
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
12
|
Liao J, Peng B, Tan S, Tian X, Zhang Z. Grafting PMMA onto P(VDF-TrFE) by CF Activation via a Cu(0) Mediated Controlled Radical Polymerization Process. Macromol Rapid Commun 2020; 41:e1900613. [PMID: 31958201 DOI: 10.1002/marc.201900613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/22/2019] [Indexed: 11/08/2022]
Abstract
In the present work, poly(methyl methacrylate) (PMMA) is successfully grafted onto poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) side chains via directly activated CF bonds using Cu(0)/2,2'-bipyridine as catalyst. The reaction mechanism and the initiating sites can be confirmed by the structure of the graft copolymer. The graft copolymerization exhibits first-order kinetics, and reaction conditions can affect the chemical composition of the graft copolymer, including reaction time, reaction temperature, solvents, the amount of catalyst, and monomer. The introduction of rigid PMMA side chains onto P(VDF-TrFE) can effectively tune the displacement-electric field hysteresis behaviors of P(VDF-TrFE) from normal ferroelectric to anti-ferroelectric, even linear-like dielectric, under high electric field, resulting in dramatically reduced energy loss while maintaining the discharged energy density. This work may provide an effective strategy to introduce functional groups into P(VDF-TrFE) copolymer via activation of CF bonds.
Collapse
Affiliation(s)
- Jiani Liao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Biyun Peng
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaobo Tan
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Tian
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Zhicheng Zhang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Zhang Y, Tan S, Wang J, Wang X, Zhu W, Zhang Z. Regulating Dielectric and Ferroelectric Properties of Poly(vinylidene fluoride-trifluoroethylene) with Inner CH=CH Bonds. Polymers (Basel) 2018; 10:E339. [PMID: 30966374 PMCID: PMC6415107 DOI: 10.3390/polym10030339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022] Open
Abstract
Poly(vinylidene fluoride) (PVDF) based ferroelectric polymers have attracted considerable attention both academically and industrially due to their tunable ferroelectric properties. By pinning the conformation of the polymer chain and the ferroelectric phase physically or chemically, the ferroelectric behaviors of PVDF based polymers could be finely turned from normal ferroelectric into relaxor ferroelectric, anti-ferroelectric like, and even linear dielectric. Besides high energy electron irradiation and chemical copolymerization with the bulky monomers, in this work, an alternative strategy is presented to regulate the dielectric and ferroelectric performances of PVDF based ferroelectric polymer for the first time. CH=CH bonds with the desired content are inserted by a controlled dehydrofluorination reaction into a poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer (TrFE refers to trifluoroethylene) synthesized from the hydrogenation of P(VDF-CTFE) (CTFE refers to chlorothrifluoroethylene). The influence of the CH=CH bonds along with the fabrication conditions on the crystallization and ferroelectric relaxation of the resultant copolymers (referred to P(VDF-TrFE-DB)) was carefully characterized and discussed. The nonrotatable CH=CH bonds result in depressed dielectric and ferroelectric performances in the as-cast films by confining the orientation of ferroelectric grains in P(VDF-TrFE). The normal ferroelectric performance of P(VDF-TrFE) is turned into anti-ferroelectric like behavior in the resultant P(VDF-TrFE-DB). The cleavage of CH=CH bonds is responsible for the recovery of the ferroelectric behavior in the annealed samples. Uniaxial stretching favors the alignment of the polymer chain and ferroelectric domains, which may address the further regulated ferroelectric characters in the stretched samples.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Applied Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shaobo Tan
- Department of Applied Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jian Wang
- Department of Applied Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiao Wang
- Department of Applied Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Weiwei Zhu
- Zhejiang Research Institute of Chemical Industry, No. 387 Tianmushan Road, Hangzhou 310000, China.
| | - Zhicheng Zhang
- Department of Applied Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
14
|
Vinylidene fluoride- and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties? Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.04.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|