1
|
Medrano‐Cerano JL, Cofas‐Vargas LF, Leyva E, Rauda‐Ceja JA, Calderón‐Vargas M, Cano‐Sánchez P, Titaux‐Delgado G, Melchor‐Meneses CM, Hernández‐Arana A, del Río‐Portilla F, García‐Hernández E. Decoding the mechanism governing the structural stability of wheat germ agglutinin and its isolated domains: A combined calorimetric, NMR, and MD simulation study. Protein Sci 2024; 33:e5020. [PMID: 38747397 PMCID: PMC11094770 DOI: 10.1002/pro.5020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/19/2024]
Abstract
Wheat germ agglutinin (WGA) demonstrates potential as an oral delivery agent owing to its selective binding to carbohydrates and its capacity to traverse biological membranes. In this study, we employed differential scanning calorimetry and molecular dynamics simulations to comprehensively characterize the thermal unfolding process of both the complete lectin and its four isolated domains. Furthermore, we present the nuclear magnetic resonance structures of three domains that were previously lacking experimental structures in their isolated forms. Our results provide a collective understanding of the energetic and structural factors governing the intricate unfolding mechanism of the complete agglutinin, shedding light on the specific role played by each domain in this process. The analysis revealed negligible interdomain cooperativity, highlighting instead significant coupling between dimer dissociation and the unfolding of the more labile domains. By comparing the dominant interactions, we rationalized the stability differences among the domains. Understanding the structural stability of WGA opens avenues for enhanced drug delivery strategies, underscoring its potential as a promising carrier throughout the gastrointestinal environment.
Collapse
Affiliation(s)
- Jorge Luis Medrano‐Cerano
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad UniversitariaCiudad de MéxicoMexico
| | | | - Eduardo Leyva
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Jesús Antonio Rauda‐Ceja
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Mateo Calderón‐Vargas
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Patricia Cano‐Sánchez
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Gustavo Titaux‐Delgado
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad UniversitariaCiudad de MéxicoMexico
| | | | - Andrés Hernández‐Arana
- Área de Biofisicoquímica, Departamento de QuímicaUniversidad Autónoma Metropolitana IztapalapaCiudad de MéxicoMexico
| | - Federico del Río‐Portilla
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Enrique García‐Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad UniversitariaCiudad de MéxicoMexico
| |
Collapse
|
2
|
Luo W, Meng K, Zhao Y, Liu J, Chen D, Xu C, Algharib SA, Dawood AS, Xie S. Guar gum modified tilmicosin-loaded sodium alginate/gelatin composite nanogels for effective therapy of porcine proliferative enteritis caused by Lawsonia intracellularis. Int J Biol Macromol 2023:125084. [PMID: 37245769 DOI: 10.1016/j.ijbiomac.2023.125084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
In order to overcome the treatment difficulty of Lawsonia intracellularis (L.intracellularis) using antibiotics, the tilmicosin (TIL)-loaded sodium alginate (SA)/gelatin composite nanogels modified with bioadhesive substances were designed. The optimized nanogels were prepared by electrostatic interaction between SA and gelatin at a mass ratio of 1:1 and CaCl2 as an ionic crosslinker and further modified with guar gum (GG). The optimized TIL-nanogels modified with GG had a uniform spherical shape with a diameter of 18.2 ± 0.3 nm, LC of 29.4 ± 0.2 %, EE of 70.4 ± 1.6 %, PDI of 0.30 ± 0.04, and ZP of -32.2 ± 0.5 mv. The FTIR, DSC, and PXRD showed that GG was covered on the surface of TIL-nanogels in a pattern of staggered arrangements. The TIL-nanogels modified with GG had the strongest adhesive strength amongst those with I-carrageenan and locust bean gum and the plain nanogels, and thus significantly enhanced the cellular uptake and accumulation of TIL via clathrin-mediated endocytosis. It exhibited an increased therapeutic effect against L.intracellularis in vitro and in vivo. This study will provide guidance for developing nanogels for intracellular bacterial infection treatment.
Collapse
Affiliation(s)
- Wanhe Luo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Kuiyu Meng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiqing Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Dongmei Chen
- MARA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunyan Xu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Ali Sobhy Dawood
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Medicine and Infectious Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Dave R, Patel R, Patel M. Hybrid Lipid-Polymer Nanoplatform: A Systematic Review for Targeted Colorectal Cancer Therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Hädrich G, Vaz GR, Bidone J, Yurgel VC, Teixeira HF, Gonçalves Dal Bó A, da Silva Pinto L, Hort MA, Ramos DF, Junior ASV, Almeida da Silva PE, Dora CL. Development of a Novel Lipid-Based Nanosystem Functionalized with WGA for Enhanced Intracellular Drug Delivery. Pharmaceutics 2022; 14:2022. [PMID: 36297456 PMCID: PMC9611000 DOI: 10.3390/pharmaceutics14102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite a considerable number of new antibiotics under going clinical trials, treatment of intracellular pathogens still represents a major pharmaceutical challenge. The use of lipid nanocarriers provides several advantages such as protection from compound degradation, increased bioavailability, and controlled and targeted drug release. Wheat germ agglutinin (WGA) is known to have its receptors on the alveolar epithelium and increase phagocytosis. The present study aimed to produce nanostructured lipid carriers with novel glycosylated amphiphilic employed to attach WGA on the surface of the nanocarriers to improve intracellular drug delivery. High-pressure homogenization was employed to prepare the lipid nanocarriers. In vitro, high-content analysis and flow cytometry assay was employed to study the increased uptake by macrophages when the nanocarriers were grafted with WGA. A lipid nanocarrier with surface-functionalized WGA protein (~200 nm, PDI > 0.3) was successfully produced and characterized. The system was loaded with a lipophilic model compound (quercetin; QU), demonstrating the ability to encapsulate a high amount of compound and release it in a controlled manner. The nanocarrier surface functionalization with the WGA protein increased the phagocytosis by macrophages. The system proposed here has characteristics to be further explored to treat intracellular pathogens.
Collapse
Affiliation(s)
- Gabriela Hädrich
- Department of Pharmaceutical Technology and Biopharmacy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Gustavo Richter Vaz
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | - Virginia Campello Yurgel
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Helder Ferreira Teixeira
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Alexandre Gonçalves Dal Bó
- Graduate Program in Science and Materials Engineering, University of the Extreme South of Santa Catarina, Criciúma 88806-000, Brazil
| | - Luciano da Silva Pinto
- Graduate Program in Biotechnology, Campus Capão do Leão, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | - Mariana Appel Hort
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Daniela Fernandes Ramos
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | | | | | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| |
Collapse
|
5
|
Chiu HI, Lim V. Wheat Germ Agglutinin-Conjugated Disulfide Cross-Linked Alginate Nanoparticles as a Docetaxel Carrier for Colon Cancer Therapy. Int J Nanomedicine 2021; 16:2995-3020. [PMID: 33911862 PMCID: PMC8075318 DOI: 10.2147/ijn.s302238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells. METHODS fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29. RESULTS fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such. CONCLUSION In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.
Collapse
Affiliation(s)
- Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
6
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
7
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
8
|
Modification of curcumin-loaded liposome with edible compounds to enhance ability of crossing blood brain barrier. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Liu Y, Xie X, Hou X, Shen J, Shi J, Chen H, He Y, Wang Z, Feng N. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J Nanobiotechnology 2020; 18:83. [PMID: 32473632 PMCID: PMC7260741 DOI: 10.1186/s12951-020-00638-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer lung metastasis occurs in more than 60% of all patients with breast cancer, and most of those afflicted by it eventually die of recurrence. The tumor microenvironment plays vital roles in metastasis. Modulating the tumor microenvironment via multiple pathways could efficiently prevent or inhibit lung metastasis. Silibinin and cryptotanshinone are natural plant products that demonstrate anti-metastasis effects and modulate the tumor microenvironment via different pathways. However, they have poor aqueous solubility, membrane permeability, and oral bioavailability. Oral drug administration may help improve the quality of life and compliance of patients with breast cancer, primarily under long-term and/or follow-up therapy. Herein, we developed poly-N-(2-hydroxypropyl) methacrylamide (pHPMA)-coated wheat germ agglutinin-modified lipid-polymer hybrid nanoparticles, co-loaded with silibinin and cryptotanshinone (S/C-pW-LPNs). We assessed their oral bioavailability, and evaluated their anti-metastasis efficacy in a 4T1 breast cancer tumor-bearing nude mouse model. Results An in vitro mucus diffusion study revealed that pHPMA enhanced W-LPN mucus penetration. After oral administration, pHPMA enhanced nanoparticle distribution in rat jejunum and substantially augmented oral bioavailability. S/C-W-LPNs markedly increased 4T1 cell toxicity and inhibited cell invasion and migration. Compared to LPNs loaded with either silibinin or cryptotanshinone alone, S/C-pW-LPNs dramatically slowed tumor progression in 4T1 tumor-bearing nude mice. S/C-pW-LPNs presented with the most robust anti-metastasis activity on smooth lung surfaces and mitigated lung metastasis foci. They also downregulated tumor microenvironment biomarkers such as CD31, TGF-β1, and MMP-9 that promote metastasis. Conclusions Silibinin- and cryptotanshinone-co-loaded pW-LPNs efficiently penetrate intestinal barriers, thereby enhancing the oral bioavailability of the drug loads. These nanoparticles exhibit favorable anti-metastasis effects in breast cancer-bearing nude mice. Hence, S/C-pW-LPNs are promising oral drug nanocarriers that inhibit breast cancer lung metastasis.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Xingmei Xie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Xuefeng Hou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Junyi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jiangpei Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Haizhen Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Yuanzhi He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Zhi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
10
|
Zhang Y, Wang S, Dai M, Nai J, Zhu L, Sheng H. Solubility and Bioavailability Enhancement of Oridonin: A Review. Molecules 2020; 25:E332. [PMID: 31947574 PMCID: PMC7024198 DOI: 10.3390/molecules25020332] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Oridonin (ORI), an ent-kaurene tetracyclic diterpenoid compound, is isolated from Chinese herb Rabdosia rubescens with various biological and pharmacological activities including anti-tumor, anti-microbial and anti-inflammatory effects. However, the clinical application of ORI is limited due to its low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored such as structural modification, new dosage form, etc. This review provides a detailed discussion on the research progress to increase the solubility and bioavailability of ORI.
Collapse
Affiliation(s)
| | | | | | | | - Liqiao Zhu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (S.W.); (M.D.); (J.N.)
| | - Huagang Sheng
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (S.W.); (M.D.); (J.N.)
| |
Collapse
|
11
|
Abdou EM, Fayed MAA, Helal D, Ahmed KA. Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl 4 induced hepatotoxicity in rats. Sci Rep 2019; 9:19779. [PMID: 31875004 PMCID: PMC6930297 DOI: 10.1038/s41598-019-56320-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
The hepatoprotective effect of β-Sitosterol (BSS), a natural phytosterol, after being formulated into a suitable pharmaceutical drug delivery system has not been widely explored. BSS was isolated from Centaurea pumilio L., identified and formulated as lipid-polymer hybrid nanoparticles (LPHNPs) using the poly(D,L-lactide-co-glycolide) polymer and DSPE-PEG-2000 lipid in different ratios. The selected formulation, prepared with a lipid: polymer: drug ratio of 2:2:2, had an entrapment efficiency (EE%) of 94.42 ± 3.8, particle size of 181.5 ± 11.3 nm, poly dispersity index (PDI) of 0.223 ± 0.06, zeta potential of −37.34 ± 3.21 and the highest drug release after 24 h. The hepatoprotective effect of the formulation at two different doses against CCl4 induced hepatotoxicity was evaluated in rats. The results showed that the BSS-LPHNPs (400 mg/kg) have the ability to restore the liver enzymes (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), liver lipid peroxidation markers (malondialdehyde (MDA) and catalase (CAT)), total bilirubin and albumin to their normal levels without inhibitory effect on the CYP2E1 activity. Also, the formulation could maintain the normal histological structure of liver tissue and decrease the cleaved caspase-3 expression. LPHNPs formulation encapsulating natural BSS is a promising hepatoprotective drug delivery system.
Collapse
Affiliation(s)
- Ebtsam M Abdou
- Department of Pharmaceutics, National organization of Drug control and Research (NODCAR), Giza, Egypt. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, MTI University, Cairo, Egypt.
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Doaa Helal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, El-Fayoum University, El-Fayoum, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
12
|
Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Deliv 2019; 16:507-524. [PMID: 30957577 DOI: 10.1080/17425247.2019.1605353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A promising approach that has recently emerged to overcome the complex biobarriers and interrelated challenges associated with oral drug absorption is to combine the benefits of polymeric and lipid-based nanocarriers within one hybrid system. This multifaceted formulation strategy has given rise to a plethora of polymer-lipid hybrid (PLH) systems with varying nanostructures and biological activities, all of which have demonstrated the ability to improve the biopharmaceutical performance of a wide range of challenging therapeutics. AREAS COVERED The multitude of polymers that can be combined with lipids to exert a synergistic effect for oral drug delivery have been identified, reviewed and critically evaluated. Specific focus is attributed to preclinical studies performed within the past 5 years that have elucidated the role and mechanism of the polymer phase in altering the oral absorption of encapsulated therapeutics. EXPERT OPINION The potential of PLH systems has been clearly identified; however, improved understanding of the structure-activity relationship between PLH systems and oral absorption is fundamental for translating this promising delivery approach into a clinically relevant formulation. Advancing research within this field to identify optimal polymer, lipid combinations and engineering conditions for specific therapeutics are therefore encouraged.
Collapse
Affiliation(s)
- Sajedehsadat Maghrebi
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Paul Joyce
- c Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
13
|
Leyva E, Medrano-Cerano JL, Cano-Sánchez P, López-González I, Gómez-Velasco H, del Río-Portilla F, García-Hernández E. Bacterial expression, purification and biophysical characterization of wheat germ agglutinin and its four hevein-like domains. Biopolymers 2018; 110:e23242. [DOI: 10.1002/bip.23242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Eduardo Leyva
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Jorge L. Medrano-Cerano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Itzel López-González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Federico del Río-Portilla
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México Mexico
| |
Collapse
|
14
|
Li R, Huang Y, Chen L, Zhou H, Zhang M, Chang L, Shen H, Zhou M, Su P, Zhu D. Targeted delivery of intranasally administered nanoparticles-mediated neuroprotective peptide NR2B9c to brain and neuron for treatment of ischemic stroke. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:380-390. [PMID: 30428334 DOI: 10.1016/j.nano.2018.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/13/2018] [Accepted: 10/29/2018] [Indexed: 11/26/2022]
Abstract
The lack of effective therapies mandates the development of new treatment strategies for ischemic stroke. The NR2B9c peptide can prevent N-Methyl-D-aspartate receptor (NMDAR)-mediated neurotoxicity induced by ischemia without affecting essential NMDAR activity and brings hope for stroke therapy. However, it is very difficult for NR2B9c to cross by itself the blood-brain barrier (BBB) and the neuron membrane. To provide a suitable delivery for unleashing the therapeutic potential of NR2B9c, in consideration of a high affinity of wheat germ agglutinin (WGA) for WGA receptors abundantly present on olfactory epithelium and neuronal surface, we developed WGA-modified nanoparticles carrying NR2B9c (NR2B9c-WGA-NPs). Following intranasal administration, NR2B9c-WGA-NPs are able to bypass the BBB and effectively transport NR2B9c into the brain and neuron, and therefore can protect neurons against excitotoxicity, reduce ischemic brain injury in rats and ameliorate their neurological function deficits. The intranasal administration of NR2B9c-WGA-NPs may serve as a practical stroke therapy.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yuan Huang
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Li Chen
- Department of Pharmacy, Zhenjiang First People's Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Haihui Zhou
- Department of Pharmacy, Division of Clinical Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Mingwan Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lei Chang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hong Shen
- Neuro-psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ping Su
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dongya Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Liu Y, Liu J, Liang J, Zhang M, Li Z, Wang Z, Dang B, Feng N. Mucosal transfer of wheat germ agglutinin modified lipid-polymer hybrid nanoparticles for oral delivery of oridonin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2219-2229. [PMID: 28539275 DOI: 10.1016/j.nano.2017.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 11/27/2022]
Abstract
Wheat germ agglutinin-modified lipid-polymer hybrid nanoparticles (WGA-LPNs) promote cellular uptake after oral delivery via receptor-mediated endocytosis and bioadhesion. Understanding the mucosal transport of WGA-LPNs would help to improve bioavailability and ensure therapeutic efficacy. In this study, WGA-LPNs interacted with mucin, forming larger agglomerates with intact core-shell structure. The interaction of WGA-LPNs with mucin improved enterocyte endocytosis in Caco-2 cells. An in situ intestinal diffusion study in mice confirmed that WGA-LPNs reached enterocytes and underwent endocytosis, despite interference from mucin. Importantly, oral bioavailability of oridonin-loaded WGA-LPNs increased by 1.96-fold compared with that of LPNs. Furthermore, oral administration of WGA-LPNs inhibited tumor growth in HepG2 xenograft nude mice. In addition to elucidating interactions between WGA-LPNs and mucin, these results indicated that WGA-LPNs might act as promising nanocarriers for oral delivery of drugs.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinguang Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meiying Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Beilei Dang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|