1
|
Bakar B, Birhanlı E, Ulu A, Boran F, Yeşilada Ö, Ateş B. Immobilization of Trametes trogii laccase on polyvinylpyrrolidone-coated magnetic nanoparticles for biocatalytic degradation of textile dyes. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2173006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Büşra Bakar
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| | - Emre Birhanlı
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| | - Filiz Boran
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Özfer Yeşilada
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| |
Collapse
|
2
|
Sunny NE, Mathew SS, Chandel N, Saravanan P, Rajeshkannan R, Rajasimman M, Vasseghian Y, Rajamohan N, Kumar SV. Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications- A review. CHEMOSPHERE 2022; 300:134612. [PMID: 35430203 DOI: 10.1016/j.chemosphere.2022.134612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Biosynthesized nanoparticles have sparked a lot of interest as rapidly growing classes of materials for different applications. Plants are considered to be one of the most suitable sources for Green synthesis (GS) as they follow the environment-friendly route of biosynthesis of nanoparticles (NPs). This article focuses on the excavation of Titanium dioxide (TiO2) NP from different parts of plants belonging to a distinct classification of taxonomic groups. During the process of biological synthesis of titanium NPs from plants, the extract derived from plant sources such as from root, stem, leaves, seeds, flowers, and latex possesses phytocompounds that tend to serve as both capping as well as reducing agents. TiO2NP is one of the most commonly used engineered nanomaterials in nanotechnology-based consumer products. This article will provide an overview of the GS and characterization of TiO2NPs from plant extracts of different taxonomic groups. Lastly, this review summarizes the current applications of TiO2NPs.
Collapse
Affiliation(s)
- Nisha Elizabeth Sunny
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Sneha Susan Mathew
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Nandita Chandel
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Panchamoorthy Saravanan
- Department of Petro Chemical Technology, University College of Engineering-BIT Campus, Anna University, Tiruchirappalli, 620 024, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - N Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | - S Venkat Kumar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
3
|
Barbhuiya NH, Misra U, Singh SP. Biocatalytic membranes for combating the challenges of membrane fouling and micropollutants in water purification: A review. CHEMOSPHERE 2022; 286:131757. [PMID: 34371356 DOI: 10.1016/j.chemosphere.2021.131757] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over the last few years, the list of water contaminants has grown tremendously due to many anthropogenic activities. Various conventional technologies are available for water and wastewater treatment. However, micropollutants of emerging concern (MEC) are posing a great threat due to their activity at trace concentration and poor removal efficiency by the conventional treatment processes. Advanced technology like membrane technology can remove MEC to some extent. However, issues like the different chemical properties of MEC, selectivity, and fouling of membranes can affect the removal efficiency. Moreover, the concentrate from the membrane filtration may need further treatment. Enzymatic degradation of pollutants and foulants is one of the green approaches for removing various contaminants from the water as well as mitigating membrane fouling. Biocatalytic membranes (BCMs), in which enzymes are immobilized on membranes, combines the advantages of membrane separation and enzymatic degradation. This review article discussed various commonly used enzymes in BCMs for removing MEC and fouling. The majorly used enzymes were oxidoreductases and hydrolases for removing MEC, antifouling, and self-cleaning ability. The various BCM synthesis processes based on entrapment, crosslinking, and binding have been summarized, along with the effects of the addition of the nanoparticles on the performances of the BCMs. The scale-up, commercial viability, challenges, and future direction for improving BCMs have been discussed and shown bright possibilities for these new generation membranes.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Utkarsh Misra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies (IDPCS), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
4
|
Elashnikov R, Ulbrich P, Vokatá B, Pavlíčková VS, Švorčík V, Lyutakov O, Rimpelová S. Physically Switchable Antimicrobial Surfaces and Coatings: General Concept and Recent Achievements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3083. [PMID: 34835852 PMCID: PMC8619822 DOI: 10.3390/nano11113083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022]
Abstract
Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection. Various surface activation methods have been described recently. In this review article, we focused on the "physical" activation of nanostructured surfaces. In the first part of the review, we briefly describe the basic principles and common approaches of external stimulus application and surface activation, including the temperature-, light-, electric- or magnetic-field-based surface triggering, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with special attention on multiresponsive or multifunctional physically activated coatings. In particular, we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface properties control, as well as simultaneous utilization of several strategies for surface protection, based on a principally different mechanism of antimicrobial action. We also mentioned several recent trends, including the development of the to-detect and to-kill hybrid approach, which ensures the surface activation in a right place at a right time.
Collapse
Affiliation(s)
- Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| |
Collapse
|
5
|
Bandehali S, Parvizian F, Hosseini SM, Matsuura T, Drioli E, Shen J, Moghadassi A, Adeleye AS. Planning of smart gating membranes for water treatment. CHEMOSPHERE 2021; 283:131207. [PMID: 34157628 DOI: 10.1016/j.chemosphere.2021.131207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The use of membranes in desalination and water treatment has been intensively studied in recent years. The conventional membranes however have various problems such as uncontrollable pore size and membrane properties, which prevents membranes from quickly responding to alteration of operating and environmental conditions. As a result the membranes are fouled, and their separation performance is lowered. The preparation of smart gating membranes inspired by cell membranes is a new method to face these challenges. Introducing stimuli-responsive functional materials into traditional porous membranes and use of hydrogels and microgels can change surface properties and membrane pore sizes under different conditions. This review shows potential of smart gating membranes in water treatment. Various types of stimuli-response such as those of thermo-, pH-, ion-, molecule-, UV light-, magnetic-, redox- and electro-responsive gating membranes along with various gel types such as those of polyelectrolyte, PNIPAM-based, self-healing hydrogels and microgel based-smart gating membranes are discussed. Design strategies, separation mechanisms and challenges in fabrication of smart gating membranes in water treatment are also presented. It is demonstrated that experimental and modeling and simulation results have to be utilized effectively to produce smart gating membranes.
Collapse
Affiliation(s)
- Samaneh Bandehali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Fahime Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Sayed Mohsen Hosseini
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, Rende, CS, 87036, Italy; Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci 45A, 87036, Rende, CS, Italy.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Abdolreza Moghadassi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697-2175, USA
| |
Collapse
|
6
|
Mazzei R, Yihdego Gebreyohannes A, Papaioannou E, Nunes SP, Vankelecom IFJ, Giorno L. Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery- a review. BIORESOURCE TECHNOLOGY 2021; 335:125248. [PMID: 33991878 DOI: 10.1016/j.biortech.2021.125248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In this review, for the first time, the conjugation of the major types of enzymes used in biorefineries and the membrane processes to develop different configurations of MBRs, was analyzedfor the production of biofuels, phytotherapics and food ingredients. In particular, the aim is to critically review all the works related to the application of MBR in biorefinery, highlighting the advantages and the main drawbacks which can interfere with the development of this system at industrial scale. Alternatives strategies to overcome main limits will be also described in the different application fields, such as the use of biofunctionalized magnetic nanoparticles associated with membrane processes for enzyme re-use and membrane cleaning or the membrane fouling control by the use of integrated membrane process associated with MBR.
Collapse
Affiliation(s)
- Rosalinda Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende (Cosenza), Italy.
| | - Abaynesh Yihdego Gebreyohannes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), 23955-6900 Thuwal, Saudi Arabia.
| | - Emmaouil Papaioannou
- Engineering Department, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), 23955-6900 Thuwal, Saudi Arabia
| | - Ivo F J Vankelecom
- Membrane Technology Group, Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Lidietta Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende (Cosenza), Italy
| |
Collapse
|
7
|
Qi L, Qiao J. Design of Switchable Enzyme Carriers Based on Stimuli-Responsive Porous Polymer Membranes for Bioapplications. ACS APPLIED BIO MATERIALS 2021; 4:4706-4719. [PMID: 35007021 DOI: 10.1021/acsabm.1c00338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Design of efficient enzyme carriers, where enzymes are conjugated to supports, has become an attractive research avenue. Immobilized enzymes are advantageous for practical applications because of their convenience in handling, ease of separation, and good reusability. However, the main challenge is that these traditional enzyme carriers are unable to regulate the enzymolysis efficiency or to protect the enzymes from proteolytic degradation, which restricts their effectiveness of enzymes in bioapplications. Enlightened by the stimuli-responsive channels in the natural cell membranes, conjugation of the enzymes within flat-sheet stimuli-responsive porous polymer membranes (SR-PPMs) as artificial cell membranes is an efficient strategy for circumventing this challenge. Controlled by the external stimuli, the multifunctional polymer chains, which are incorporated within the membranes and attached to the enzyme, change their structures to defend the enzyme from the external environmental disturbances and degradation by proteinases. Specifically, smart SR-PPM enzyme carriers (SR-PPMECs) not only permit convective substrate transfer through the accessible porous network, dramatically improving enzymolysis efficiency due to the adjustable pore sizes and the confinement effect, but they also act as molecular switches for regulating its permeability and selectivity. In this review, the concept of SR-PPMECs is presented. It covers the latest developments in design strategies of flat-sheet SR-PPFMs, fabrication protocols of SR-PPFMECs, strategies for the regulation of enzymolysis efficiency, and their cutting-edge bioapplications.
Collapse
Affiliation(s)
- Li Qi
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiao
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wen‐qiong W, Ji‐yang Z, Qian Y, Jianju L. The effect of composite enzyme catalysis whey protein cross-linking on filtration performance. Food Sci Nutr 2021; 9:3078-3090. [PMID: 34136173 PMCID: PMC8194946 DOI: 10.1002/fsn3.2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022] Open
Abstract
In this study, enzymatic cross-linked whey protein coupling ultrafiltration was used to reduce membrane fouling and increase whey protein recovery rate. The filtration efficiency and protein interaction with the membrane surface were investigated. The results showed that the protein recovery rate and relative flux of transglutaminase catalysis protein followed by tyrosinase each increased by approximately 30% during ultrafiltration. The total membrane resistance was reduced by approximately 20%. The shape of the transglutaminase and tyrosinase cross-linked protein had somewhat spherical and cylindrical structure similar to an elongated shape based on fluorescence microscopy imaging, which indicated membrane resistance reduction. Fluorescence excitation-emission matrix spectroscopy (EEM) showed that the permeation peak intensities of transglutaminase followed by tyrosinase catalysis protein decreased sharply in the tryptophan and aromatic-like protein fields, indicating that most protein was rejected after ultrafiltration. The repulsive interaction energy was increased between the cross-linked proteins and membrane based on extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis.
Collapse
Affiliation(s)
- Wang Wen‐qiong
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhou UniversityYangzhouChina
- Weiwei Food and Beverage Co., LtdXuzhouChina
| | - Zhou Ji‐yang
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Yu Qian
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Li Jianju
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| |
Collapse
|
9
|
Upadhyaya L, Semsarilar M, Quemener D, Fernández-Pacheco R, Martinez G, Coelhoso IM, Nunes SP, Crespo JG, Mallada R, Portugal CAM. Block Copolymer-Based Magnetic Mixed Matrix Membranes-Effect of Magnetic Field on Protein Permeation and Membrane Fouling. MEMBRANES 2021; 11:105. [PMID: 33540798 PMCID: PMC7912976 DOI: 10.3390/membranes11020105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/02/2022]
Abstract
In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2,3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes.
Collapse
Affiliation(s)
- Lakshmeesha Upadhyaya
- Advanced Membranes and Porous Materials Center (AMPM), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia; (L.U.); (S.P.N.)
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, 34070 Montpellier, France; (M.S.); (D.Q.)
| | - Damien Quemener
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, 34070 Montpellier, France; (M.S.); (D.Q.)
| | - Rodrigo Fernández-Pacheco
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain;
| | - Gema Martinez
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
- Instituto de Nanociencia y Materiales de Aragoń (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Isabel M. Coelhoso
- LAQV-REQUIMTE, Departamento de Química, Campus de Caparica, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (I.M.C.); (J.G.C.)
| | - Suzana P. Nunes
- Advanced Membranes and Porous Materials Center (AMPM), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia; (L.U.); (S.P.N.)
| | - João G. Crespo
- LAQV-REQUIMTE, Departamento de Química, Campus de Caparica, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (I.M.C.); (J.G.C.)
| | - Reyes Mallada
- Instituto de Nanociencia y Materiales de Aragoń (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Carla A. M. Portugal
- LAQV-REQUIMTE, Departamento de Química, Campus de Caparica, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (I.M.C.); (J.G.C.)
| |
Collapse
|
10
|
Fluorescence-assisted real-time study of magnetically immobilized enzyme stability in a crossflow membrane bioreactor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Nouri M, khodaiyan F. Green synthesis of chitosan magnetic nanoparticles and their application with poly-aldehyde kefiran cross-linker to immobilize pectinase enzyme. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Zahra Z, Habib Z, Chung S, Badshah MA. Exposure Route of TiO 2 NPs from Industrial Applications to Wastewater Treatment and Their Impacts on the Agro-Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1469. [PMID: 32727126 PMCID: PMC7466468 DOI: 10.3390/nano10081469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The tremendous increase in the production and consumption of titanium dioxide (TiO2) nanoparticles (NPs) in numerous industrial products and applications has augmented the need to understand their role in wastewater treatment technologies. Likewise, the deleterious effects of wastewater on the environment and natural resources have compelled researchers to find out most suitable, economical and environment friendly approaches for its treatment. In this context, the use of TiO2 NPs as the representative of photocatalytic technology for industrial wastewater treatment is coming to the horizon. For centuries, the use of industrial wastewater to feed agriculture land has been a common practice across the globe and the sewage sludge generated from wastewater treatment plants is also used as fertilizer in agricultural soils. Therefore, it is necessary to be aware of possible exposure pathways of these NPs, especially in the perspective of wastewater treatment and their impacts on the agro-environment. This review highlights the potential exposure route of TiO2 NPs from industrial applications to wastewater treatment and its impacts on the agro-environment. Key elements of the review present the recent developments of TiO2 NPs in two main sectors including wastewater treatment and the agro-environment along with their potential exposure pathways. Furthermore, the direct exposure routes of these NPs from production to end-user consumption until their end phase needs to be studied in detail and optimization of their suitable applications and controlled use to ensure environmental safety.
Collapse
Affiliation(s)
- Zahra Zahra
- Department of Civil & Environmental Engineering, University of California-Irvine, Irvine, CA 92697, USA
| | - Zunaira Habib
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Sujin Chung
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, MA 02163, USA;
| | - Mohsin Ali Badshah
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
13
|
Su Z, Luo J, Li X, Pinelo M. Enzyme membrane reactors for production of oligosaccharides: A review on the interdependence between enzyme reaction and membrane separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116840] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Muthuvelu KS, Rajarathinam R, Selvaraj RN, Rajendren VB. A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation. Int J Biol Macromol 2020; 152:1098-1107. [DOI: 10.1016/j.ijbiomac.2019.10.198] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
|
15
|
Acosta-Fernández R, Poerio T, Nabarlatz D, Giorno L, Mazzei R. Enzymatic Hydrolysis of Xylan from Coffee Parchment in Membrane Bioreactors. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rolando Acosta-Fernández
- INTERFASE, Chemical Engineering School, Universidad Industrial de Santander, Cra 27 No. 9, 680002Bucaramanga, Colombia
| | - Teresa Poerio
- Institute on Membrane Technology, National Research Council, ITM-CNR, Via P. Bucci 17/C at University of Calabria, 87036 Rende CS, Italy
| | - Debora Nabarlatz
- INTERFASE, Chemical Engineering School, Universidad Industrial de Santander, Cra 27 No. 9, 680002Bucaramanga, Colombia
| | - Lidietta Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, Via P. Bucci 17/C at University of Calabria, 87036 Rende CS, Italy
| | - Rosalinda Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, Via P. Bucci 17/C at University of Calabria, 87036 Rende CS, Italy
| |
Collapse
|
16
|
|
17
|
Preparation of a stable and robust nanobiocatalyst by efficiently immobilizing of pectinase onto cyanuric chloride-functionalized chitosan grafted magnetic nanoparticles. J Colloid Interface Sci 2019; 536:261-270. [DOI: 10.1016/j.jcis.2018.10.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022]
|
18
|
Gebreyohannes AY, Dharmjeet M, Swusten T, Mertens M, Verspreet J, Verbiest T, Courtin CM, Vankelecom IFJ. Simultaneous glucose production from cellulose and fouling reduction using a magnetic responsive membrane reactor with superparamagnetic nanoparticles carrying cellulolytic enzymes. BIORESOURCE TECHNOLOGY 2018; 263:532-540. [PMID: 29778024 DOI: 10.1016/j.biortech.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
This work aimed at investigating simultaneous hydrolysis of cellulose and in-situ foulant degradation in a cellulose fed superparamagnetic biocatalytic membrane reactor (BMRSP). In this reactor, a dynamic layer of superparamagnetic bionanocomposites with immobilized cellulolytic enzymes were reversibly immobilized on superparamagnetic polymeric membrane using an external magnetic field. The formation of a dynamic layer of bionanocomposites on the membrane helped to prevent direct membrane-foulant interaction. Due to in-situ biocatalysis, there was limited filtration resistance. Simultaneous separation of the product helped to avoid enzyme product inhibition, achieve constant reaction rate over time and 50% higher enzyme efficiency than batch reactor. Stable enzyme immobilization and the ability to keep enzyme in the system for long period helped to achieve continuous productivity at very low enzyme but high solid loading, while also reducing the extent of membrane fouling. Hence, the BMRSP paves a path for sustainable production of bioethanol from the cheaply available lignocellulose.
Collapse
Affiliation(s)
- Abaynesh Yihdego Gebreyohannes
- Centre for Surface Chemistry and Catalysis KU Leuven Chem & Tech, Celestijnenlaan 200F, Postbus 2461 3001 Leuven, Belgium
| | | | - Tom Swusten
- Molecular Imaging and Photonics, Faculty of Bioengineering Sciences, KU Leuven, Celestijnenlaan 200d - Box 2425, 3001 Leuven, Belgium
| | - Matthias Mertens
- Centre for Surface Chemistry and Catalysis KU Leuven Chem & Tech, Celestijnenlaan 200F, Postbus 2461 3001 Leuven, Belgium
| | - Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Faculty of Bioengineering Sciences, KU Leuven, Kasteelpark Arenberg 22, PO Box 2463, 3001 Leuven, Belgium
| | - Thierry Verbiest
- Molecular Imaging and Photonics, Faculty of Bioengineering Sciences, KU Leuven, Celestijnenlaan 200d - Box 2425, 3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Faculty of Bioengineering Sciences, KU Leuven, Kasteelpark Arenberg 22, PO Box 2463, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Centre for Surface Chemistry and Catalysis KU Leuven Chem & Tech, Celestijnenlaan 200F, Postbus 2461 3001 Leuven, Belgium.
| |
Collapse
|
19
|
Gebreyohannes AY, Mazzei R, Marei Abdelrahim MY, Vitola G, Porzio E, Manco G, Barboiu M, Giorno L. Phosphotriesterase-Magnetic Nanoparticle Bioconjugates with Improved Enzyme Activity in a Biocatalytic Membrane Reactor. Bioconjug Chem 2018; 29:2001-2008. [DOI: 10.1021/acs.bioconjchem.8b00214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Rosalinda Mazzei
- Institute on Membrane Technology, ITM-CNR, University of Calabria, via P. Bucci, 17/C, 87030 Rende, Cosenza, Italy
| | - Mohamed Yahia Marei Abdelrahim
- Institute on Membrane Technology, ITM-CNR, University of Calabria, via P. Bucci, 17/C, 87030 Rende, Cosenza, Italy
- Institut Européen des Membranes (IEM), Université de Montpellier, Case courrier 047, 2 Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- Department of Chemistry, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Giuseppe Vitola
- Institute on Membrane Technology, ITM-CNR, University of Calabria, via P. Bucci, 17/C, 87030 Rende, Cosenza, Italy
| | - Elena Porzio
- Institute of Protein Biochemistry, National Research Council, IBP-CNR, via P. Castellino 111, 80131 Naples, Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, National Research Council, IBP-CNR, via P. Castellino 111, 80131 Naples, Italy
| | - Mihail Barboiu
- Institut Européen des Membranes (IEM), Université de Montpellier, Case courrier 047, 2 Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Lidietta Giorno
- Institute on Membrane Technology, ITM-CNR, University of Calabria, via P. Bucci, 17/C, 87030 Rende, Cosenza, Italy
| |
Collapse
|
20
|
Han Y, Giorno L, Gugliuzza A. Photoactive Gel for Assisted Cleaning during Olive Mill Wastewater Membrane Microfiltration. MEMBRANES 2017; 7:E66. [PMID: 29186819 PMCID: PMC5746825 DOI: 10.3390/membranes7040066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
A photoactive gel has been fabricated on the surface of polyethylene membranes for enhancing the fouling resistance during olive mill wastewater treatment. Light and pH responsive materials have been introduced in the membrane surface through the build up of a layer-by-layer pattern, which is formed by photocatalytic nanoparticles and ionic polyelectrolytes. The best working conditions to contrast foulants adsorption have been explored and identified. Repulsive interfacial forces and assisted transfer of foulants to catalytic sites have been envisaged as crucial factors for contrasting the decline of the flux during microfiltration. Tests in submerged configuration have been implemented for six continuous hours under irradiation at two different pH conditions. As a result, a worthy efficiency of the photoactive gel has been reached when suitable chemical microenvironments have been generated along the shell side of the membranes. No additional chemical reagents or expensive back-flushing procedures have been necessary to further clean the membranes; rather, fast and reversible pH switches have been enough to remove residues, thereby preserving the integrity of the layer-by-layer (LBL) complex onto the membrane surface.
Collapse
Affiliation(s)
- Yilong Han
- Research Institute of Membrane Technology-National Research Council (ITM-CNR), 87036 Rende, CS, Italy; (Y.H.); (L.G.)
- Department of Pharmacy, University of Calabria (UNICAL), 87036 Rende, CS, Italy
| | - Lidietta Giorno
- Research Institute of Membrane Technology-National Research Council (ITM-CNR), 87036 Rende, CS, Italy; (Y.H.); (L.G.)
| | - Annarosa Gugliuzza
- Research Institute of Membrane Technology-National Research Council (ITM-CNR), 87036 Rende, CS, Italy; (Y.H.); (L.G.)
| |
Collapse
|