1
|
Mandal K, Das D, Bose SK, Chaudhuri A, Chakraborty A, Mandal S, Ghosh S, Roy S. Spectroscopic approach to optimize the biogenic silver nanoparticles for photocatalytic removal of ternary dye mixture and ecotoxicological impact of treated wastewater. Sci Rep 2024; 14:31174. [PMID: 39732808 DOI: 10.1038/s41598-024-82341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024] Open
Abstract
The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation. The AgNPs are spherical with a size of ~ 20 nm, pure and stable. Mechanistic insights into the biogenic synthesis process were explored. The photocatalytic performance of biogenic AgNPs was evaluated for the degradation of three common (crystal violet, thioflavin T, and methylene blue) dyes as models in ternary mixtures under the influence of sunlight. AgNPs show excellent photocatalytic efficiency in terms of degradation percentage (82.89-96.96% within 110 min), kinetics (0.0247-0.0331 min-1), half-life (20.96-28.11 min), and T80 (48.67-65.28 min) and also easily recovered and reused. Ecological safety assessment of the treated wastewater was assessed on the growths of rice, mustard, and lentil plants, and preliminary findings demonstrated that seedling growths for treated wastewater were nearly similar to the control sample but retarded in dye-contaminated wastewater suggesting potential use of treated wastewater for sustainable agriculture without compromising ecological balance. So, this study explores biogenic AgNPs as cost-effective, safe, and sustainable photocatalytic agents for the remediation of hazardous mix dyes and real-life applications of treated water for agricultural purposes.
Collapse
Affiliation(s)
- Keya Mandal
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Dipti Das
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Supriya Kumar Bose
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Aparna Chaudhuri
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Arpita Chakraborty
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Sapna Mandal
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Sabyasachi Ghosh
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India.
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India.
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Mohanpur, West Bengal, 741252, India.
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
2
|
He C, Pi X, Zhang X, Jiang F. Biocompatible bismuth-based biochar material for degrading environmental endocrine disrupting compounds: Performance study and enhanced electron transfer radical process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122756. [PMID: 39388811 DOI: 10.1016/j.jenvman.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Environmental endocrine disrupting compounds (EDCs) present a significant environmental threat and represent a major challenge in water pollution management. Photocatalysis is a promising method for the treatment of EDCs. Among them, bismuth-based photocatalysts have attracted attention due to their excellent visible light response, narrow band gap, and high efficiency. However, challenges such as easy recombination of photogenerated electrons and holes, low reaction rates, and difficulty in recycling powdered catalysts hinder their practical application. In this investigation, a swift microwave-assisted hydrothermal technique was utilized to fabricate a composite material comprising bismuth-based biochar (BC): BiVO4/AgI/BC. Using 17α-ethynylestradiol (EE2) and estradiol (E2) as model EDCs, the photocatalytic degradation efficiency of BiVO4/AgI/BC was evaluated, alongside an examination of its degradation mechanism and pathways. Remarkably, the incorporation of BiVO4/AgI onto BC significantly augmented the electron transfer rate, fostering the production of •O2-, resulting in a removal efficiency of 99.68% for EE2 and 99.44% for E2, surpassing that of other materials. Furthermore, BiVO4/AgI/BC demonstrated nos3reusability, stability, and low biotoxicity. Thus, BiVO4/AgI/BC exhibits substantial potential for the efficient and environmentally benign elimination of endocrine-disrupting compounds under realistic water conditions.
Collapse
Affiliation(s)
- Changjiang He
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xiaolin Pi
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xueni Zhang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Fengzhi Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| |
Collapse
|
3
|
Abstract
Enzyme activity assay methods can be used to corroborate the results generated by difference gel electrophoresis (DIGE) proteomic experiments. Two assay methods were chosen to demonstrate how this can be achieved. Assays for determining the activity of superoxide dismutase and NADH dehydrogenase are outlined in detail in this chapter. These methods were chosen as examples because they are frequently used in conjunction with DIGE proteomics.
Collapse
Affiliation(s)
- Andrew Dowd
- Croda Europe Limited, Daresbury, Cheshire, UK.
| |
Collapse
|
4
|
Jarrahi M, Maleki B, Tayebee R. Magnetic nanoparticle-supported eosin Y salt [SB-DABCO@eosin] as an efficient heterogeneous photocatalyst for the multi-component synthesis of chromeno[4,3- b]chromene in the presence of visible light. RSC Adv 2022; 12:28886-28901. [PMID: 36320743 PMCID: PMC9552193 DOI: 10.1039/d2ra05122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 11/04/2022] Open
Abstract
Heterogeneous photocatalysts present a favourable procedure to realize green and eco-friendly organic reactions. We have demonstrated an SB-DABCO@eosin catalyst in a green one-pot multi-component protocol for the production of various chromeno[4,3-b]chromenes via condensation of aromatic aldehydes and dimedone under the photo-redox catalyst bearing eosin Y using visible light. The synthesized nanocatalyst was characterized using various physicochemical techniques such as FT-IR, XRD, EDX, UV-vis, SEM, TGA and DRS. The significant advantages of the present methodology include excellent yield, cost-effectiveness, easy work-up, 100% atom economy, broad substrate scope, easy separation and efficient recycling. Furthermore, the evidence showed that the investigated condensation reaction proceeds via a radical mechanism, which proved the need for reactive species such as OH˙ and ˙O2 - in the photocatalytic process. In addition to the improved handling and process control, the yield of products and the rate of reactions have increased considerably in the present strategy. Reproducibility studies also guarantee good reusability and stability of the nanocatalyst for at least five runs.
Collapse
Affiliation(s)
- Mahbube Jarrahi
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| | - Behrooz Maleki
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| |
Collapse
|
5
|
Acharya R, Pati S, Parida K. A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Jarrahi M, Tayebee R, Maleki B, Salimi A. One-pot multicomponent green LED photoinduced synthesis of chromeno[4,3- b]chromenes catalyzed by a new nanophotocatalyst histaminium tetrachlorozincate. RSC Adv 2021; 11:19723-19736. [PMID: 35479251 PMCID: PMC9033678 DOI: 10.1039/d1ra00189b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Histaminium tetrachlorozincate nanoparticles are prepared, characterized and applied as an effective and recoverable photocatalyst in the one-pot, green and multi-component synthesis of various chromenes by the reaction of dimedone and/or 1,3-cyclohexanedione, arylaldehyde and 4-hydroxycoumarin in high yields under solventless conditions at ambient temperature. This new catalyst is characterized by FT-IR, XRD, EDX, NMR, SEM and TEM techniques. The incorporation of histaminium ions into the framework of ZnCl42− significantly affected the photocatalytic activity of tetrachlorozincate such that good reusability and recyclability are attained. Moreover, reactive species such as ˙O2− and hydroxyl radicals have proved to be active species in the presented photocatalytic reaction. In addition, the hot filtration test confirms enough stability of the photocatalyst and no significant leaching and destruction of the framework in the course of the reaction. The major advantages of the presented methodology include easy work-up, cost effectiveness, nontoxic nature, broad substrate scope, 100% atom economy, ease of separation, and environment friendly reaction conditions. Finally, the catalyst could be reused many times without significant loss of activity. (His.)ZnCl4 nanocatalyst is realized for the preparation of chromenes with a green LED. ˙O2−, OH˙ and h+ are reactive species for this reaction. Complementary tests assured good stability and reusability of the nanophotocatalyst.![]()
Collapse
Affiliation(s)
- Mahbube Jarrahi
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| | - Behrooz Maleki
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| | - Alireza Salimi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
7
|
Sambaza S, Maity A, Pillay K. Polyaniline-Coated TiO 2 Nanorods for Photocatalytic Degradation of Bisphenol A in Water. ACS OMEGA 2020; 5:29642-29656. [PMID: 33251400 PMCID: PMC7689664 DOI: 10.1021/acsomega.0c00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/13/2020] [Indexed: 05/23/2023]
Abstract
Polyaniline (PANI)-wrapped TiO2 nanorods (PANI/TiO2), obtained through the oxidative polymerization of aniline at the surface of hydrothermally presynthesized TiO2 nanorods, were evaluated as photocatalysts for the degradation of Bisphenol A (BPA). Fourier-transform infrared spectroscopy analysis revealed the successful incorporation of PANI into TiO2 by the appearance of peaks at 1577 and 1502 cm-1 that are due to the C=C and C-N stretch of the benzenoid or quinoid ring in PANI. Brunauer-Emmett-Teller analysis revealed that PANI/TiO2 had almost double the surface area of TiO2 (44.8999 m2/g vs 28.2179 m2/g). Transmission electron microscopy (TEM) analysis showed that TiO2 nanorods with different diameters were synthesized. The TEM analysis showed that a thin layer of PANI wrapped the TiO2 nanorods. X-ray photon spectroscopy survey scan of the PANI/TiO2 nanocomposite revealed the presence of C, O, Ti, and N. Photocatalytic activity evaluation under UV radiation through the effect of key parameters, including pH, contact time, dosage, and initial concentration of BPA, was carried out in batch studies. Within 80 min, 99.7% of 5 ppm BPA was attained using the 0.2 g/L PANI/TiO2 photocatalyst at pH 10. The quantum yield (QY) of these photocatalysts was evaluated to be 9.86 × 10-5 molecules/photon and 2.82 × 10-5 molecules/photon for PANI/TiO2 and TiO2, respectively. PANI/TiO2 showed better performance than as-synthesized TiO2 with a rate constant of 4.46 × 10-2 min-1 compared to 2.18 × 10-2 min-1. The rate of degradation of PANI/TiO2 was also superior to that of TiO2 (150 mmol/g/h vs 74.89 mmol/g/h). Nitrate ions increased the rate of degradation of BPA, while humic acid consistently inhibited the degradation of BPA. LC-MS analysis identified degradation products with m/z 213.1, 135.1, and 93.1. The PANI/TiO2 nanocomposite was reused up to five cycles with a removal of at least 80% in the fifth cycle. LC-MS results revealed three possible BPA degradation intermediates. LC-MS analysis identified degradation products which included protonated BPA, [C14H13O2 +], and [C9H11O+]. The PANI/TiO2 nanocomposite demonstrated superior photocatalytic activity with respect to improved QY and figure of merit and lower energy consumption.
Collapse
|
8
|
Koiki BA, Arotiba OA. Cu 2O as an emerging semiconductor in photocatalytic and photoelectrocatalytic treatment of water contaminated with organic substances: a review. RSC Adv 2020; 10:36514-36525. [PMID: 35517951 PMCID: PMC9057044 DOI: 10.1039/d0ra06858f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
A wide range of semiconductor photocatalysts have been used over the years in water treatment to eliminate toxic organic substances from wastewater. The quest for visible or solar light driven photocatalysts with striking merits such as wide range of applications, ease of preparation, tailored architecture that gives rise to improved performance, ability of dual existence as both p type or n type semiconductor, among others, presents copper(i) oxide as a promising photocatalyst. This paper reviews the recent applications of Cu2O in photocatalytic and photoelectrocatalytic treatment of water laden with organic pollutants such as dyes and pharmaceuticals. It covers the various modes of synthesis, morphologies and composites or heterostructures of Cu2O as found in the literature. Concluding remarks and future perspectives on the application of Cu2O are presented.
Collapse
Affiliation(s)
- Babatunde A Koiki
- Department of Chemical Sciences, University of Johannesburg South Africa
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg South Africa
| |
Collapse
|
9
|
Ivan R, Pérez del Pino A, Yousef I, Logofatu C, György E. Laser synthesis of TiO2–carbon nanomaterial layers with enhanced photodegradation efficiency towards antibiotics and dyes. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Rodríguez-González V, Terashima C, Fujishima A. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Xie X, Chen C, Wang X, Li J, Naraginti S. Efficient detoxification of triclosan by a S-Ag/TiO 2@g-C 3N 4 hybrid photocatalyst: process optimization and bio-toxicity assessment. RSC Adv 2019; 9:20439-20449. [PMID: 35514706 DOI: 10.1039/c9ra03279grsc.li/rsc-advances] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 05/22/2023] Open
Abstract
Owing to their persistency and toxicity, development of an effective strategy to eliminate antibiotic residues from the aquatic system has become a major environmental concern. Doping TiO2 with hetero atoms and forming a hybrid structure with g-C3N4 could serve as an efficient visible light active photocatalytic candidate. In this study, a novel S-Ag/TiO2@g-C3N4 hybrid catalyst was prepared for visible light degradation and detoxification of triclosan (TS) antibiotic. The effect of various operational parameters towards the photocatalytic degradation was systematically evaluated through response surface methodology (RSM) based on central composite design (CCD). The highest TS degradation (92.3%) was observed under optimal conditions (TS concentration = 10 mg L-1, pH = 7.8, and catalyst weight = 0.20 g L-1) after 60 min. Efficient charge separation resulted from the doped nanoparticles (silver and sulphur), the existing integrated electric field of the heterojunction and the overlying light response of hybridized TiO2 and g-C3N4, thus the S-Ag/TiO2@g-C3N4 composite showed impressively higher activity. The main degradation products of TS were identified by LC/ESI-MS analysis. In addition, the toxicity of the degradation products was investigated through an Escherichia coli (E. coli) colony forming unit assay and the results revealed that under optimal conditions a significant reduction in biotoxicity was noticed.
Collapse
Affiliation(s)
- Xiangfeng Xie
- Jiangsu Academy of Environmental Industry and Technology Corp. Nanjing 210036 China
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Chen Chen
- Jiangsu Academy of Environmental Industry and Technology Corp. Nanjing 210036 China
| | - Xiaoxiang Wang
- Jiangsu Academy of Environmental Industry and Technology Corp. Nanjing 210036 China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University Nanjing 210098 China
| | - Jie Li
- Jiangsu Academy of Environmental Industry and Technology Corp. Nanjing 210036 China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University Nanjing 210098 China
| | - Saraschandra Naraginti
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University Nanjing 210098 China
- Biofuels Institute, School of the Environment, Jiangsu University 301 Xuefu Road Zhenjiang 212013 China
| |
Collapse
|
12
|
Xie X, Chen C, Wang X, Li J, Naraginti S. Efficient detoxification of triclosan by a S–Ag/TiO2@g-C3N4hybrid photocatalyst: process optimization and bio-toxicity assessment. RSC Adv 2019; 9:20439-20449. [PMID: 35514706 PMCID: PMC9065728 DOI: 10.1039/c9ra03279g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 11/21/2022] Open
Abstract
Owing to their persistency and toxicity, development of an effective strategy to eliminate antibiotic residues from the aquatic system has become a major environmental concern. Doping TiO2 with hetero atoms and forming a hybrid structure with g-C3N4 could serve as an efficient visible light active photocatalytic candidate. In this study, a novel S–Ag/TiO2@g-C3N4 hybrid catalyst was prepared for visible light degradation and detoxification of triclosan (TS) antibiotic. The effect of various operational parameters towards the photocatalytic degradation was systematically evaluated through response surface methodology (RSM) based on central composite design (CCD). The highest TS degradation (92.3%) was observed under optimal conditions (TS concentration = 10 mg L−1, pH = 7.8, and catalyst weight = 0.20 g L−1) after 60 min. Efficient charge separation resulted from the doped nanoparticles (silver and sulphur), the existing integrated electric field of the heterojunction and the overlying light response of hybridized TiO2 and g-C3N4, thus the S–Ag/TiO2@g-C3N4 composite showed impressively higher activity. The main degradation products of TS were identified by LC/ESI-MS analysis. In addition, the toxicity of the degradation products was investigated through an Escherichia coli (E. coli) colony forming unit assay and the results revealed that under optimal conditions a significant reduction in biotoxicity was noticed. Owing to their persistency and toxicity, development of an effective strategy to eliminate antibiotic residues from the aquatic system has become a major environmental concern.![]()
Collapse
Affiliation(s)
- Xiangfeng Xie
- Jiangsu Academy of Environmental Industry and Technology Corp
- Nanjing 210036
- China
- School of Energy and Environment
- Key Laboratory of Environmental Medicine Engineering of the Ministry of Education
| | - Chen Chen
- Jiangsu Academy of Environmental Industry and Technology Corp
- Nanjing 210036
- China
| | - Xiaoxiang Wang
- Jiangsu Academy of Environmental Industry and Technology Corp
- Nanjing 210036
- China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- College of Environment
| | - Jie Li
- Jiangsu Academy of Environmental Industry and Technology Corp
- Nanjing 210036
- China
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- College of Environment
| | - Saraschandra Naraginti
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- College of Environment
- Hohai University
- Nanjing 210098
- China
| |
Collapse
|
13
|
Dowd A. Enzyme Assay Methods to Validate DIGE Proteomics Data. Methods Mol Biol 2018; 1664:279-286. [PMID: 29019140 DOI: 10.1007/978-1-4939-7268-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzyme activity assay methods can be used to corroborate the results generated by Difference Gel Electrophoresis (DIGE) proteomic experiments. Two assay methods were chosen to demonstrate how this can be achieved. Assays for determining the activity of superoxide dismutase and NADH dehydrogenase are outlined in detail in this paper. These methods were chosen as examples because they are frequently used in conjunction with DIGE proteomics.
Collapse
Affiliation(s)
- Andrew Dowd
- Monaghan Biosciences, Tyholland, Co. Monaghan, Ireland.
| |
Collapse
|
14
|
Srikanth B, Goutham R, Badri Narayan R, Ramprasath A, Gopinath KP, Sankaranarayanan AR. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 200:60-78. [PMID: 28570937 DOI: 10.1016/j.jenvman.2017.05.063] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 05/20/2023]
Abstract
The aim of this paper is to provide a review on the usage of different anchoring media (supports) for immobilising commonly employed photocatalysts for degradation of organic pollutants. The immobilisation of nano-sized photocatalysts can eliminate costly and impractical post-treatment recovery of spent photocatalysts in largescale operations. Some commonly employed immobilisation aids such as glass, carbonaceous substances, zeolites, clay and ceramics, polymers, cellulosic materials and metallic agents that have been previously discussed by various research groups have been reviewed. The study revealed that factors such as high durability, ease of availability, low density, chemical inertness and mechanical stability are primary factors responsible for the selection of suitable supports for catalysts. Common techniques for immobilisation namely, dip coating, cold plasma discharge, polymer assisted hydrothermal decomposition, RF magnetron sputtering, photoetching, solvent casting, electrophoretic deposition and spray pyrolysis have been discussed in detail. Finally, some common techniques adopted for the characterisation of the catalyst particles and their uses are also discussed.
Collapse
Affiliation(s)
- B Srikanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - R Goutham
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - R Badri Narayan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - A Ramprasath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India
| | - K P Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, TN, India.
| | - A R Sankaranarayanan
- Department of Civil Architectural and Environmental Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|