1
|
Zhang X, Zhou Y, Xiong W, Wei W, Jiang W. Co-production of xylose, lignin, and ethanol from eucalyptus through a choline chloride-formic acid pretreatment. BIORESOURCE TECHNOLOGY 2022; 359:127502. [PMID: 35724907 DOI: 10.1016/j.biortech.2022.127502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A choline chloride-formic acid (ChCl-FA) pretreatment followed by enzymatic hydrolysis and fermentation were developed in this work for co-produce bioethanol, xylose, and lignin from eucalyptus. Results showed that ChCl-FA pretreatment can simultaneously degrade the xylan (∼95.2%) and lignin (∼74.4%) in eucalyptus, and obtained the pretreated eucalyptus having high glucan content and a numbers of cracks and holes, which was conducive to follow-up cellulase attacking. The hydrolysis experiments showed the maximum yield of glucose of 100 g eucalyptus was 35.3 g, which was equivalent to 90.3% of glucan in eucalyptus feedstock. The fermentation of enzymatic hydrolysate finally achieved the ethanol yield of 16.5 g, which corresponded to 74.5% theoretical ethanol yield from initial glucan in eucalyptus. In addition, 12.1 g xylose and 23.9 g lignin also could be obtained in pretreated liquid or/and hydrolysis residue, which represented for 61.4% xylan and 80.7% lignin in eucalyptus feedstock, respectively.
Collapse
Affiliation(s)
- Xiaohua Zhang
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yaohong Zhou
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wanming Xiong
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Weikun Jiang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology/Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
2
|
Deng Z, Xia A, Huang Y, Zhu X, Zhu X, Liao Q. The correlation between the physicochemical properties and enzymatic hydrolyzability of hydrothermal pretreated wheat straw: A quantitative analysis. BIORESOURCE TECHNOLOGY 2022; 359:127475. [PMID: 35714782 DOI: 10.1016/j.biortech.2022.127475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal pretreatment with diluted acid or alkali can disrupt the compact structure of wheat straw at a moderate temperature for efficient enzymatic saccharification. However, the quantitative analysis between the physicochemical properties and enzymatic hydrolyzability of hydrothermal pretreated lignocellulose was rarely investigated, which hindered the development of model-based applications for process design and control. Herein, correlation analysis (CA) and principal component analysis (PCA) were conducted to elucidate the dominant factors affecting the enzymatic hydrolyzability and quantitative relationship between them. CA results suggested the major positive factor affecting carbohydrate conversion was cellulose content (r = 0.86). Through logarithmic processing and linear combination, these intercorrelated factors were successfully converted into two newly uncorrelated variables named the first principal component (PC1) and the second principal component (PC2). The initial hydrolysis rate and carbohydrate conversion can be well predicted by PC1 and PC2 scores through multiple linear regression with a high R-squared (0.91 and 0.80).
Collapse
Affiliation(s)
- Zhichao Deng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
3
|
Surface Characterization of Powdered Cellulose Activated by Potassium Hydroxide in Dry Condition Through Ball Milling. POLYSACCHARIDES 2020. [DOI: 10.3390/polysaccharides1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The surface chemical compositions of powdered cellulose have been characterized utilizing X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) techniques. Powdered cellulose was prepared by milling of bleached softwood pulp residues through a lab-scale planetary ball mill. Here we show how milling a mixture of the powdered cellulose with potassium hydroxide determines the surface chemical compositions of the obtained powdered cellulose, in a completely dry condition. The XPS analysis indicated the presence of new carbon and oxygen atoms as C4, C5, and O3. In turn, the FTIR analysis showed the stretching vibrations of the carbon–carbon double bond. The results suggest the formation of active oxygenated species on powdered cellulose surfaces.
Collapse
|
4
|
Effect of Cellulose Reducing Ends on the Reinforcing Capacity of Powdered Cellulose in Polypropylene Composites. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3040098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Powdered cellulose-reinforced (20 wt%) polypropylene composites were prepared by melt compounding and subsequent injection moldings. We assessed the effect of cellulose reducing ends on the capacity of powdered cellulose to reinforce polypropylene composites after seven days exposure to air circulation during the conditioning of samples. Tensile tests on the composites were performed at 5.08 mm/min. Fourier transform infrared spectroscopy revealed some changes that occurred within the composites by demonstrating a practical decrease in –C=O (1744 cm−1) absorption band intensity. A thermogravimetric analysis indicated differences within the thermal behavior of the prepared composites, showing a higher onset of degradation. Scanning electron microscopy of the fracture areas, together with load–extension curves, further characterized the development of interfacial cellulose/matrix adhesion as well as the brittle and ductile behavior of the composites. The results indicate that the thermal and tensile properties of powdered cellulose/polypropylene are improved by decreasing the amount of cellulose reducing ends in the system.
Collapse
|
5
|
Ma R, Zhang X, Wang Y, Zhang X. New Insights Toward Quantitative Relationships between Lignin Reactivity to Monomers and Their Structural Characteristics. CHEMSUSCHEM 2018; 11:2146-2155. [PMID: 29702732 DOI: 10.1002/cssc.201800550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/26/2018] [Indexed: 05/02/2023]
Abstract
The heterogeneous and complex structural characteristics of lignin present a significant challenge to predict its processability (e.g., depolymerization, modifications etc.) to valuable products. This study provides a detailed characterization and comparison of structural properties of seven representative biorefinery lignin samples derived from forest and agricultural residues, which were subjected to representative pretreatment methods. A range of wet chemistry and spectroscopy methods were applied to determine specific lignin structural characteristics such as functional groups, inter-unit linkages, and peak molecular weight. In parallel, oxidative depolymerization of these lignin samples to either monomeric phenolic compounds or dicarboxylic acids were conducted, and the product yields were quantified. Based on these results (lignin structural characteristics and monomer yields), we applied for the first time the multivariable linear estimation (MVLE) approach using R Statistics (an open-source programming language and software environment for statistical computing and graphics) to gain insight toward a quantitative correlation between lignin structural properties and their conversion reactivity toward oxidative depolymerization to monomers.
Collapse
Affiliation(s)
- Ruoshui Ma
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Xiumei Zhang
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yi Wang
- College of Civil Engineering, Portland State University, 1825 SW Broadway, Portland, OR, 97207, USA
| | - Xiao Zhang
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
6
|
Fu Y, Gu BJ, Wang J, Gao J, Ganjyal GM, Wolcott MP. Novel micronized woody biomass process for production of cost-effective clean fermentable sugars. BIORESOURCE TECHNOLOGY 2018; 260:311-320. [PMID: 29631181 DOI: 10.1016/j.biortech.2018.03.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Thermo-chemical pretreatments of biomass typically result in environmental impacts from water use and emission. The degradation byproducts in the resulting sugars can be inhibitory to the activities of enzymes and yeasts. The results of this study showed that combining existing commercial comminution technology can reduce total energy consumption with improved saccharification yield while eliminating chemical use. Impact mill was found to be the most efficient milling for size reduction of forest residual chips from ca. 2 mm to a specific value below 100 µm. The further micronization effectively disrupted the recalcitrance of the woody biomass and produced the highly saccharifiable substrates for downstream processing. In addition, extrusion can be integrated into a clean cellulosic sugar process for further fibrillation in place of the conventional mixing processing. The highest energy efficiency was observed on the impact-milled samples with 0.515 kg sugars kWh-1.
Collapse
Affiliation(s)
- Yu Fu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China; Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA.
| | - Bon-Jae Gu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Jinwu Wang
- Forest Products Laboratory, United States Department of Agriculture Forest Service, Madison, WI 53706, USA
| | - Johnway Gao
- Global Cellulose Fibers, International Paper, Federal Way, WA 98001, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Michael P Wolcott
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
7
|
Mayer-Laigle C, Blanc N, Rajaonarivony RK, Rouau X. Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour. Bioengineering (Basel) 2018; 5:E41. [PMID: 29865229 PMCID: PMC6027489 DOI: 10.3390/bioengineering5020041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022] Open
Abstract
The comminution of lignocellulosic biomass is a key operation for many applications as bio-based materials, bio-energy or green chemistry. The grinder used can have a significant impact on the properties of the ground powders, of those of the end-products and on the energy consumption. Since several years, the milling of lignocellulosic biomass has been the subject of numerous studies most often focused on specific materials and/or applications but there is still a lack of generic knowledge about the relation between the histological structure of the raw materials, the milling technologies and the physical and chemical properties of the powders. This review aims to point out the main process parameters and plant raw material properties that influence the milling operation and their consequences on the properties of ground powders and on the energy consumption during the comminution.
Collapse
Affiliation(s)
- Claire Mayer-Laigle
- UMR Ingénierie des Agropolymères et des Technologies Emergentes (IATE), University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Nicolas Blanc
- UMR Ingénierie des Agropolymères et des Technologies Emergentes (IATE), University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Rova Karine Rajaonarivony
- UMR Ingénierie des Agropolymères et des Technologies Emergentes (IATE), University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Xavier Rouau
- UMR Ingénierie des Agropolymères et des Technologies Emergentes (IATE), University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
8
|
Raj T, Gaur R, Lamba BY, Singh N, Gupta RP, Kumar R, Puri SK, Ramakumar SSV. Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility. BIORESOURCE TECHNOLOGY 2018; 249:139-145. [PMID: 29040847 DOI: 10.1016/j.biortech.2017.09.202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
An insight into the properties of cell wall of mustard stalk (MS) pretreated by five ionic liquids (ILs) revealed ILs interaction with cellulose, hemicellulose and lignin components. Differential Scanning Calorimetry (DSC) showed increased pore size coupled with increased population of pores evoked by certain ILs in better facilitating enzymatic accessibility. Interestingly, all the five ILs predominantly increased the propensity of two pore sizes formation; 19 and 198 nm, but remarkable difference in the pore volumes of pretreated MS suggested the supremacy of [OAc]- based ILs, resulting in higher glucose yields. Cellulose I to II transition in pretreated MS was supported by the reduced total crystallinity index (TCI), lateral order index (LOI) values. Strong inverse correlation existed between the said parameters and residual acetyl content with enzymatic hydrolysis (R2 > 0.8). An inverse relationship between hydrogen bond basicity, LOI and TCI suggested it to be a good indicator of IL pretreatment efficiency.
Collapse
Affiliation(s)
- Tirath Raj
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007 India; College of Engineering, Department of Chemistry, University of Petroleum & Energy Studies, Village & P.O Bidholi, Prem Nagar, Dehradun (UA) 248007, India
| | - Ruchi Gaur
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007 India
| | - Bhawna Yadav Lamba
- College of Engineering, Department of Chemistry, University of Petroleum & Energy Studies, Village & P.O Bidholi, Prem Nagar, Dehradun (UA) 248007, India
| | - Nitu Singh
- Analytical Division, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007 India
| | - Ravi P Gupta
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007 India
| | - Ravindra Kumar
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007 India.
| | - Suresh K Puri
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007 India
| | - S S V Ramakumar
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007 India
| |
Collapse
|
9
|
Gao C, Xiao W, Ji G, Zhang Y, Cao Y, Han L. Regularity and mechanism of wheat straw properties change in ball milling process at cellular scale. BIORESOURCE TECHNOLOGY 2017; 241:214-219. [PMID: 28570886 DOI: 10.1016/j.biortech.2017.04.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
To investigate the change of structure and physicochemical properties of wheat straw in ball milling process at cellular scale, a series of wheat straws samples with different milling time were produced using an ultrafine vibration ball mill. A multitechnique approach was used to analyze the variation of wheat straw properties. The results showed that the characteristics of wheat straw powder displayed regular changes as a function of the milling time, i.e., the powder underwent the inversion of breakage to agglomerative regime during wheat straw ball milling process. The crystallinity index, bulk density and water retention capacity of wheat straw were exponential relation with ball milling time. Moreover, ball milling continually converted macromolecules of wheat straw cell wall into water-soluble substances resulting in the water extractives proportional to milling time.
Collapse
Affiliation(s)
- Chongfeng Gao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Guanya Ji
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Yang Zhang
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Yaoyao Cao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| |
Collapse
|
10
|
Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. BIORESOURCE TECHNOLOGY 2017; 238:254-262. [PMID: 28437643 DOI: 10.1016/j.biortech.2017.03.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 05/27/2023]
Abstract
This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW80, BMW120) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW120 was achieved, which was three times as high as the conversion of BMW80. The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR80 and HR120, and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose.
Collapse
Affiliation(s)
- Lanxing Du
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; Composite Materials and Engineering Center, Washington State University, Pullman, WA 99163, USA
| | - Jinwu Wang
- Forest Products Laboratory, US Forest Service, Madison, WI 53726, USA
| | - Yang Zhang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chusheng Qi
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Michael P Wolcott
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99163, USA
| | - Zhiming Yu
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|