1
|
Wang M, Wei ZW, Ryan KS. A heme-dependent enzyme forms the hydrazine in the antibiotic negamycin. Nat Chem Biol 2025:10.1038/s41589-025-01898-0. [PMID: 40312596 DOI: 10.1038/s41589-025-01898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Negamycin, a hydrazine-containing dipeptide-like antibiotic, was first isolated in 1970 from three strains of Streptomyces purpeofuscus. Its pronounced antibacterial properties render it an appealing candidate for combating multi-drug-resistant Gram-negative bacteria. Additionally, the unique readthrough-promoting activity makes it a subject for research as a potential therapeutic agent for Duchenne muscular dystrophy and other hereditary diseases. Here we use the unusual (R)-β-lysine found in negamycin as a guide to identify the biosynthetic pathway of negamycin and then carry out gene deletion and chemical complementation, stable isotope feeding and enzyme assays to elucidate the key precursors for negamycin assembly. Our work identified NegB as a lysine-2,3-aminomutase that converts lysine into (R)-β-lysine and NegJ as a heme-dependent, N-N bond-forming enzyme. We show that NegJ, together with a ferredoxin encoded outside of the negamycin gene cluster, directly forms hydrazinoacetic acid from glycine and nitrite. NegJ is a novel biocatalyst for N-N bond formation, and our work highlights its potential for genome mining of N-N bond-containing natural products.
Collapse
Affiliation(s)
- Menghua Wang
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zi-Wang Wei
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Wang X, Aleotti M, Hall M, Cong Z. Biocatalytic Strategies for Nitration Reactions. JACS AU 2025; 5:28-41. [PMID: 39886591 PMCID: PMC11775713 DOI: 10.1021/jacsau.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/01/2025]
Abstract
Nitro compounds are key synthetic intermediates used as enabling tools in synthesis and found in a large range of essential compounds, including pharmaceuticals, pesticides, and various organic dyes. Despite recent methodological developments, the industrial preparation of nitro compounds still suffers from harsh reaction conditions, along with poor selectivity and a problematic environmental footprint. Although biological enzymatic methods exist, mild approaches for bionitration are still underexplored. Enzymes, with their exquisite selectivity and compatibility with mild reaction conditions, have the potential to revolutionize the way nitro compounds are prepared. In this perspective, we systematically analyze currently available biological/enzymatic methods, including the oxidation of an amine precursor or methods consisting of direct oxidative nitration and non-oxidative nitration. By examining both the scope and mechanism of these reactions, we aim to present an update on the state-of-the-art while highlighting current challenges in this emerging field. The goal of this perspective is to inspire innovation in enzymatic nitration for sustainable organic synthesis, providing chemists with a valuable guide.
Collapse
Affiliation(s)
- Xiling Wang
- Key
Laboratory of Photoelectric Conversion and Utilization of Solar Energy,
Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels,
Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology,
Chinese Academy of Sciences, Qingdao 266101, China
| | - Matteo Aleotti
- Institute
of Chemistry, University of Graz, Graz 8010, Austria
| | - Mélanie Hall
- Institute
of Chemistry, University of Graz, Graz 8010, Austria
- BioHealth, University of Graz, Graz 8010, Austria
| | - Zhiqi Cong
- Key
Laboratory of Photoelectric Conversion and Utilization of Solar Energy,
Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels,
Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology,
Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
3
|
Tian Q, Ge J, Liu Y, Wu X, Li Z, Cheng G. Palladium-Catalyzed Enantioselective Synthesis of P(V)-Stereogenic Compounds via Desymmetric Annulation of Prochiral Phosphinamides and Aryl Iodides. Org Lett 2025; 27:121-128. [PMID: 39791235 DOI: 10.1021/acs.orglett.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses. It is noteworthy that the synthetic value of this procedure was proven by a variety of transition metal-catalyzed cross-coupling reactions using the C-Br bond on the product as a versatile linchpin electrophile.
Collapse
Affiliation(s)
- Qingyu Tian
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jin Ge
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yaopeng Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Wu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhenghao Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
4
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
5
|
Cui JJ, Zhang Y, Ju KS. Phosphonoalamides Reveal the Biosynthetic Origin of Phosphonoalanine Natural Products and a Convergent Pathway for Their Diversification. Angew Chem Int Ed Engl 2024; 63:e202405052. [PMID: 38780891 PMCID: PMC11867202 DOI: 10.1002/anie.202405052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Phosphonate natural products, with their potent inhibitory activity, have found widespread use across multiple industries. Their success has inspired development of genome mining approaches that continue to reveal previously unknown bioactive scaffolds and biosynthetic insights. However, a greater understanding of phosphonate metabolism is required to enable prediction of compounds and their bioactivities from sequence information alone. Here, we expand our knowledge of this natural product class by reporting the complete biosynthesis of the phosphonoalamides, antimicrobial tripeptides with a conserved N-terminal l-phosphonoalanine (PnAla) residue produced by Streptomyces. The phosphonoalamides result from the convergence of PnAla biosynthesis and peptide ligation pathways. We elucidate the biochemistry underlying the transamination of phosphonopyruvate to PnAla, a new early branchpoint in phosphonate biosynthesis catalyzed by an aminotransferase with evolved specificity for phosphonate metabolism. Peptide formation is catalyzed by two ATP-grasp ligases, the first of which produces dipeptides, and a second which ligates dipeptides to PnAla to produce phosphonoalamides. Substrate specificity profiling revealed a dramatic expansion of dipeptide and tripeptide products, while finding PnaC to be the most promiscuous dipeptide ligase reported thus far. Our findings highlight previously unknown transformations in natural product biosynthesis, promising enzyme biocatalysts, and unveil insights into the diversity of phosphonopeptide natural products.
Collapse
Affiliation(s)
- Jerry J. Cui
- Department of Microbiology, The Ohio State University, 318W. 12th Ave, Columbus, OH-43210 (USA)
| | - Yeying Zhang
- Department of Microbiology, The Ohio State University, 318W. 12th Ave, Columbus, OH-43210 (USA)
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, 318W. 12th Ave, Columbus, OH-43210 (USA)
- Division of Medicinal Chemistry and Pharmacognosy, Center for Applied Plant Sciences, Infectious Disease Institute, The Ohio State University, 318W. 12th Ave, Columbus, OH-43210 (USA)
| |
Collapse
|
6
|
Cui J, Ju KS. Biosynthesis of Bacillus Phosphonoalamides Reveals Highly Specific Amino Acid Ligation. ACS Chem Biol 2024; 19:1506-1514. [PMID: 38885091 PMCID: PMC11259534 DOI: 10.1021/acschembio.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Phosphonate natural products have a history of commercial success across numerous industries due to their potent inhibition of metabolic processes. Over the past decade, genome mining approaches have successfully led to the discovery of numerous bioactive phosphonates. However, continued success is dependent upon a greater understanding of phosphonate metabolism, which will enable the prioritization and prediction of biosynthetic gene clusters for targeted isolation. Here, we report the complete biosynthetic pathway for phosphonoalamides E and F, antimicrobial phosphonopeptides with a conserved C-terminal l-phosphonoalanine (PnAla) residue. These peptides, produced by Bacillus, are the direct result of PnAla biosynthesis and serial ligation by two ATP-grasp ligases. A critical step of this pathway was the reversible transamination of phosphonopyruvate to PnAla by a dedicated transaminase with preference for the forward reaction. The dipeptide ligase PnfA was shown to ligate alanine to PnAla to afford phosphonoalamide E, which was subsequently ligated to alanine by PnfB to form phosphonoalamide F. Specificity profiling of both ligases found each to be highly specific, although the limited acceptance of noncanonical substrates by PnfA allowed for in vitro formation of products incorporating alternative pharmacophores. Our findings further establish the transaminative branch of phosphonate metabolism, unveil insights into the specificity of ATP-grasp ligation, and highlight the biocatalytic potential of biosynthetic enzymes.
Collapse
Affiliation(s)
- Jerry Cui
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Yu C, E R, An Y, Guo X, Bao G, Li Y, Xie J, Sun W. Michael Addition Reaction between Dehydroalanines and Phosphites Enabled the Introduction of Phosphonates into Oligopeptides. Org Lett 2024. [PMID: 38780227 DOI: 10.1021/acs.orglett.4c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A method for introducing a range of phosphonates into oligopeptides through a Michael addition reaction between dehydroalanine and phosphite is presented. The method offers a mild, cheap, and straightforward approach to peptide phosphorylation that has potential applications in chemical biology and medicinal chemistry. Moreover, the introduction of a phosphonate group into short antibacterial peptides is described to demonstrate its utility, leading to the discovery of phosphonated antibacterial peptides with potent broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Johnson CW, Ohashi M, Tang Y. How Fungi Biosynthesize 3-Nitropropanoic Acid: The Simplest yet Lethal Mycotoxin. Org Lett 2024; 26:3158-3163. [PMID: 38588324 PMCID: PMC11390343 DOI: 10.1021/acs.orglett.4c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We uncovered the biosynthetic pathway of the lethal mycotoxin 3-nitropropanoic acid (3-NPA) from koji mold Aspergillus oryzae. The biosynthetic gene cluster (BGC) of 3-NPA, which encodes an amine oxidase and a decarboxylase, is conserved in many fungi used in food processing, although most of the strains have not been reported to produce 3-NPA. Our discovery will lead to efforts that improve the safety profiles of these indispensable microorganisms in making food, alcoholic beverages, and seasoning.
Collapse
Affiliation(s)
- Colin W. Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, 90095, United States
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, 90095, United States
| |
Collapse
|
9
|
Kawai S, Yamada A, Du D, Sugai Y, Katsuyama Y, Ohnishi Y. Identification and Analysis of the Biosynthetic Gene Cluster for the Hydrazide-Containing Aryl Polyene Spinamycin. ACS Chem Biol 2023; 18:1821-1828. [PMID: 37498311 DOI: 10.1021/acschembio.3c00248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Natural products containing nitrogen-nitrogen (N-N) bonds have attracted much attention because of their bioactivities and chemical features. Several recent studies have revealed the nitrous acid-dependent N-N bond-forming machinery. However, the catalytic mechanisms of hydrazide synthesis using nitrous acid remain unknown. Herein, we focused on spinamycin, a hydrazide-containing aryl polyene produced by Streptomyces albospinus JCM3399. In the S. albospinus genome, we discovered a putative spinamycin biosynthetic gene (spi) cluster containing genes that encode a type II polyketide synthase and genes for the secondary metabolism-specific nitrous acid biosynthesis pathway. A gene inactivation experiment showed that this cluster was responsible for spinamycin biosynthesis. A feeding experiment using stable isotope-labeled sodium nitrite and analysis of nitrous acid-synthesizing enzymes in vitro strongly indicated that one of the nitrogen atoms of the hydrazide group was derived from nitrous acid. In vitro substrate specificity analysis of SpiA3, which is responsible for loading a starter substrate onto polyketide synthase, indicated that N-N bond formation occurs after starter substrate loading. In vitro analysis showed that the AMP-dependent ligase SpiA7 catalyzes the diazotization of an amino group on a benzene ring without a hydroxy group, resulting in a highly reactive diazo intermediate, which may be the key step in hydrazide group formation. Therefore, we propose the overall biosynthetic pathway of spinamycin. This study expands our knowledge of N-N bond formation in microbial secondary metabolism.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akito Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Danyao Du
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
Rotilio L, Boverio A, Nguyen QT, Mannucci B, Fraaije MW, Mattevi A. A biosynthetic aspartate N-hydroxylase performs successive oxidations by holding intermediates at a site away from the catalytic center. J Biol Chem 2023; 299:104904. [PMID: 37302552 PMCID: PMC10404684 DOI: 10.1016/j.jbc.2023.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Nitrosuccinate is a biosynthetic building block in many microbial pathways. The metabolite is produced by dedicated L-aspartate hydroxylases that use NADPH and molecular oxygen as co-substrates. Here, we investigate the mechanism underlying the unusual ability of these enzymes to perform successive rounds of oxidative modifications. The crystal structure of Streptomyces sp. V2 L-aspartate N-hydroxylase outlines a characteristic helical domain wedged between two dinucleotide-binding domains. Together with NADPH and FAD, a cluster of conserved arginine residues forms the catalytic core at the domain interface. Aspartate is found to bind in an entry chamber that is close to but not in direct contact with the flavin. It is recognized by an extensive H-bond network that explains the enzyme's strict substrate-selectivity. A mutant designed to create steric and electrostatic hindrance to substrate binding disables hydroxylation without perturbing the NADPH oxidase side-activity. Critically, the distance between the FAD and the substrate is far too long to afford N-hydroxylation by the C4a-hydroperoxyflavin intermediate whose formation is confirmed by our work. We conclude that the enzyme functions through a catch-and-release mechanism. L-aspartate slides into the catalytic center only when the hydroxylating apparatus is formed. It is then re-captured by the entry chamber where it waits for the next round of hydroxylation. By iterating these steps, the enzyme minimizes the leakage of incompletely oxygenated products and ensures that the reaction carries on until nitrosuccinate is formed. This unstable product can then be engaged by a successive biosynthetic enzyme or undergoes spontaneous decarboxylation to produce 3-nitropropionate, a mycotoxin.
Collapse
Affiliation(s)
- Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alessandro Boverio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Quoc-Thai Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Marco W Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Liu W, Lu Z, Yuan S, Jiang X, Xian M. Identification and mechanistic analysis of a bifunctional enzyme involved in the C-N and N-N bond formation. Biochem Biophys Res Commun 2022; 635:154-160. [DOI: 10.1016/j.bbrc.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
12
|
Matsuda K, Arima K, Akiyama S, Yamada Y, Abe Y, Suenaga H, Hashimoto J, Shin-Ya K, Nishiyama M, Wakimoto T. A Natural Dihydropyridazinone Scaffold Generated from a Unique Substrate for a Hydrazine-Forming Enzyme. J Am Chem Soc 2022; 144:12954-12960. [PMID: 35771530 DOI: 10.1021/jacs.2c05269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitrogen-nitrogen bond-containing functional groups are rare, but they are found in a considerably wide class of natural products. Recent clarifications of the biosynthetic routes for such functional groups shed light onto overlooked biosynthetic genes distributed across the bacterial kingdom, highlighting the presence of yet-to-be identified natural products with peculiar functional groups. Here, the genome-mining approach targeting a unique hydrazine-forming gene led to the discovery of actinopyridazinones A (1) and B (2), the first natural products with dihydropyridazinone rings. The structure of actinopyridazinone A was unambiguously established by total synthesis. Biosynthetic studies unveiled the structural diversity of natural hydrazines derived from this family of N-N bond-forming enzymes.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Kuga Arima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoko Akiyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuito Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yo Abe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo 135-0064, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Makoto Nishiyama
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| |
Collapse
|
13
|
Zhang Y, Pham TM, Kayrouz C, Ju KS. Biosynthesis of Argolaphos Illuminates the Unusual Biochemical Origins of Aminomethylphosphonate and N ε-Hydroxyarginine Containing Natural Products. J Am Chem Soc 2022; 144:9634-9644. [PMID: 35616638 DOI: 10.1021/jacs.2c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphonate natural products have a history of successful application in medicine and biotechnology due to their ability to inhibit essential cellular pathways. This has inspired efforts to discover phosphonate natural products by prioritizing microbial strains whose genomes encode uncharacterized biosynthetic gene clusters (BGCs). Thus, success in genome mining is dependent on establishing the fundamental principles underlying the biosynthesis of inhibitory chemical moieties to facilitate accurate prediction of BGCs and the bioactivities of their products. Here, we report the complete biosynthetic pathway for the argolaphos phosphonopeptides. We uncovered the biochemical origins of aminomethylphosphonate (AMPn) and Nε-hydroxyarginine, two noncanonical amino acids integral to the antimicrobial function of argolaphos. Critical to this pathway were dehydrogenase and transaminase enzymes dedicated to the conversion of hydroxymethylphosphonate to AMPn. The interconnected activities of both enzymes provided a solution to overcome unfavorable energetics, empower cofactor regeneration, and mediate intermediate toxicity during these transformations. Sequential ligation of l-arginine and l-valine was afforded by two GCN5-related N-acetyltransferases in a tRNA-dependent manner. AglA was revealed to be an unusual heme-dependent monooxygenase that hydroxylated the Nε position of AMPn-Arg. As the first biochemically characterized member of the YqcI/YcgG protein family, AglA enlightens the potential functions of this elusive group, which remains biochemically distinct from the well-established P450 monooxygenases. The widespread distribution of AMPn and YqcI/YcgG genes among actinobacterial genomes suggests their involvement in diverse metabolic pathways and cellular functions. Our findings illuminate new paradigms in natural product biosynthesis and realize a significant trove of AmPn and Nε-hydroxyarginine natural products that await discovery.
Collapse
Affiliation(s)
- Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chase Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States.,Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States.,Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Fu N, Becker T, Brandt W, Kunert M, Burse A, Boland W. Involvement of CYP347W1 in neurotoxin 3-nitropropionic acid-based chemical defense in mustard leaf beetle Phaedon cochleariae. INSECT SCIENCE 2022; 29:453-466. [PMID: 34235855 DOI: 10.1111/1744-7917.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Chrysomelina beetlesstore 3-nitropropionic acid in form of a pretoxin, isoxazolin-5-one glucoside-conjugated ester, to protect themselves against predators. Here we identified a cytochrome P450 monooxygenase, CYP347W1, to be involved in the production of the 3-nitropropionic acid moiety of the isoxazolin-5-one glucoside ester. Knocking down CYP347W1 led to a significant depletion in the concentration of the isoxazolin-5-one glucoside ester and an increase in the concentration of the isoxazolin-5-one glucoside in the larval hemolymph. Enzyme assays with the heterologously expressed CYP347W1 showed free β-alanine was not the direct substrate. Homology modeling indicated that β-alanine-CoA ester can fit into CYP347W1's active site. Furthermore, we proved that Phaedon cochleariae eggs are not able to de novo synthesize 3-NPA, although both isoxazolin-5-one glucoside and its 3-NPA-conjugated ester are present in the eggs. These results provide direct evidence for the involvement of CYP347W1 in the biosynthesis of a P. cochleariae chemical defense compound.
Collapse
Affiliation(s)
- Nanxia Fu
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Key Laboratory of Tea Biology and Resource Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Tobias Becker
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Maritta Kunert
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Antje Burse
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Medical Technology and Biotechnology, Ernst Abbe Hochschule Jena, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
15
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
16
|
Del Rio Flores A, Twigg FF, Du Y, Cai W, Aguirre DQ, Sato M, Dror MJ, Narayanamoorthy M, Geng J, Zill NA, Zhai R, Zhang W. Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore. Nat Chem Biol 2021; 17:1305-1313. [PMID: 34725510 PMCID: PMC8605994 DOI: 10.1038/s41589-021-00895-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
Triacsins are an intriguing class of specialized metabolites possessing a conserved N-hydroxytriazene moiety not found in any other known natural products. Triacsins are notable as potent acyl-CoA synthetase inhibitors in lipid metabolism, yet their biosynthesis has remained elusive. Through extensive mutagenesis and biochemical studies, we here report all enzymes required to construct and install the N-hydroxytriazene pharmacophore of triacsins. Two distinct ATP-dependent enzymes were revealed to catalyze the two consecutive N-N bond formation reactions, including a glycine-utilizing, hydrazine-forming enzyme (Tri28) and a nitrite-utilizing, N-nitrosating enzyme (Tri17). This study paves the way for future mechanistic interrogation and biocatalytic application of enzymes for N-N bond formation.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Frederick F Twigg
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Daniel Q Aguirre
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | | | - Jiaxin Geng
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nicholas A Zill
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States.
- Chan Zuckerberg Biohub, San Francisco, CA, United States.
| |
Collapse
|
17
|
Valentino H, Sobrado P. Characterization of a Nitro-Forming Enzyme Involved in Fosfazinomycin Biosynthesis. Biochemistry 2021; 60:2851-2864. [PMID: 34516102 DOI: 10.1021/acs.biochem.1c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-hydroxylating monooxygenases (NMOs) are a subclass of flavin-dependent enzymes that hydroxylate nitrogen atoms. Recently, unique NMOs that perform multiple reactions on one substrate molecule have been identified. Fosfazinomycin M (FzmM) is one such NMO, forming nitrosuccinate from aspartate (Asp) in the fosfazinomycin biosynthetic pathway in some Streptomyces sp. This work details the biochemical and kinetic analysis of FzmM. Steady-state kinetic investigation shows that FzmM performs a coupled reaction with Asp (kcat, 3.0 ± 0.01 s-1) forming nitrosuccinate, which can be converted to fumarate and nitrite by the action of FzmL. FzmM displays a 70-fold higher kcat/KM value for NADPH compared to NADH and has a narrow optimal pH range (7.5-8.0). Contrary to other NMOs where the kred is rate-limiting, FzmM exhibits a very fast kred (50 ± 0.01 s-1 at 4 °C) with NADPH. NADPH binds at a KD value of ∼400 μM, and hydride transfer occurs with pro-R stereochemistry. Oxidation of FzmM in the absence of Asp exhibits a spectrum with a shoulder at ∼370 nm, consistent with the formation of a C(4a)-hydroperoxyflavin intermediate, which decays into oxidized flavin and hydrogen peroxide at a rate 100-fold slower than the kcat. This reaction is enhanced in the presence of Asp with a slightly faster kox than the kcat, suggesting that flavin dehydration or Asp oxidation is partially rate limiting. Multiple sequence analyses of FzmM to NMOs identified conserved residues involved in flavin binding but not for NADPH. Additional sequence analysis to related monooxygenases suggests that FzmM shares sequence motifs absent in other NMOs.
Collapse
Affiliation(s)
- Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
A [3Fe-4S] cluster and tRNA-dependent aminoacyltransferase BlsK in the biosynthesis of Blasticidin S. Proc Natl Acad Sci U S A 2021; 118:2102318118. [PMID: 34282016 DOI: 10.1073/pnas.2102318118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blasticidin S is a peptidyl nucleoside antibiotic. Its biosynthesis involves a cryptic leucylation and two leucylated intermediates, LDBS and LBS, have been found in previous studies. Leucylation has been proposed to be a new self-resistance mechanism during blasticidin S biosynthesis, and the leucyl group was found to be important for the methylation of β-amino group of the arginine side chain. However, the responsible enzyme and its associated mechanism of the leucyl transfer process remain to be elucidated. Here, we report results investigating the leucyl transfer step forming the intermediate LDBS in blasticidin biosynthesis. A hypothetical protein, BlsK, has been characterized by genetic and in vitro biochemical experiments. This enzyme catalyzes the leucyl transfer from leucyl-transfer RNA (leucyl-tRNA) to the β-amino group on the arginine side chain of DBS. Furthermore, BlsK was found to contain an iron-sulfur cluster that is necessary for activity. These findings provide an example of an iron-sulfur protein that catalyzes an aminoacyl-tRNA (aa-tRNA)-dependent amide bond formation in a natural product biosynthetic pathway.
Collapse
|
19
|
Abstract
Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have found practical application as agrochemicals, pharmaceuticals, bioregulators, and othrs. In recent years, a large number of phosphorus compounds containing P-O, P-N, P-C bonds have been isolated from natural sources. Many of them have shown interesting biological properties and have become the objects of intensive scientific research. Most of these compounds contain asymmetric centers, the absolute configurations of which have a significant effect on the biological properties of the products of their transformations. This area of research on natural phosphorus compounds is still little-studied, that prompted us to analyze and discuss it in our review. Moreover natural organophosphorus compounds represent interesting models for the development of new biologically active compounds, and a number of promising drugs and agrochemicals have already been obtained on their basis. The review also discusses the history of the development of ideas about the role of organophosphorus compounds and stereochemistry in the origin of life on Earth, starting from the prebiotic period, that allows us in a new way to consider this most important problem of fundamental science.
Collapse
|
20
|
Kawai S, Sugaya Y, Hagihara R, Tomita H, Katsuyama Y, Ohnishi Y. Complete Biosynthetic Pathway of Alazopeptin, a Tripeptide Consisting of Two Molecules of 6-Diazo-5-oxo-l-norleucine and One Molecule of Alanine. Angew Chem Int Ed Engl 2021; 60:10319-10325. [PMID: 33624374 DOI: 10.1002/anie.202100462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/06/2022]
Abstract
DON (6-diazo-5-oxo-l-norleucine), a diazo-containing amino acid, has been studied for more than 60 years as a potent antitumor agent, but its biosynthesis has not been elucidated. Here we reveal the complete biosynthetic pathway of alazopeptin, the tripeptide Ala-DON-DON, which has antitumor activity, by gene inactivation and in vitro analysis of recombinant enzymes. We also established heterologous production of N-acetyl-DON in Streptomyces albus. DON is synthesized from lysine by three enzymes and converted to alazopeptin by five enzymes and one carrier protein. Most interestingly, transmembrane protein AzpL was indicated to catalyze diazotization using 5-oxolysine and nitrous acid as substrates. Site-directed mutagenesis of AzpL indicated that the hydroxy group of Tyr-93 is important for the diazotization. These findings expand our knowledge of the enzymology of N-N bond formation.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuko Sugaya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryota Hagihara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroya Tomita
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
21
|
Kawai S, Sugaya Y, Hagihara R, Tomita H, Katsuyama Y, Ohnishi Y. Complete Biosynthetic Pathway of Alazopeptin, a Tripeptide Consisting of Two Molecules of 6‐Diazo‐5‐oxo‐
l
‐norleucine and One Molecule of Alanine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yuko Sugaya
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Ryota Hagihara
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hiroya Tomita
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
22
|
Chen L, Deng Z, Zhao C. Nitrogen-Nitrogen Bond Formation Reactions Involved in Natural Product Biosynthesis. ACS Chem Biol 2021; 16:559-570. [PMID: 33721494 DOI: 10.1021/acschembio.1c00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Construction of nitrogen-nitrogen bonds involves sophisticated biosynthetic mechanisms to overcome the difficulties inherent to the nucleophilic nitrogen atom of amine. Over the past decade, a multitude of reactions responsible for nitrogen-nitrogen bond formation in natural product biosynthesis have been uncovered. On the basis of the intrinsic properties of these reactions, this Review classifies these reactions into three categories: comproportionation, rearrangement, and radical recombination reactions. To expound the metallobiochemistry underlying nitrogen-nitrogen bond formation reactions, we discuss the enzymatic mechanisms in comparison to well characterized canonical heme-dependent enzymes, mononuclear nonheme iron-dependent enzymes, and nonheme di-iron enzymes. We also illuminate the intermediary properties of nitrogen oxide species NO2-, NO+, and N2O3 in nitrogen-nitrogen bond formation reactions with clues derived from inorganic nitrogen metabolism driven by anammox bacteria and nitrifying bacteria. These multidimentional discussions will provide further insights into the mechanistic proposals of nitrogen-nitrogen bond formation in natural product biosynthesis.
Collapse
Affiliation(s)
- Linyue Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| |
Collapse
|
23
|
Reis RAG, Li H, Johnson M, Sobrado P. New frontiers in flavin-dependent monooxygenases. Arch Biochem Biophys 2021; 699:108765. [PMID: 33460580 DOI: 10.1016/j.abb.2021.108765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Flavin-dependent monooxygenases catalyze a wide variety of redox reactions in important biological processes and are responsible for the synthesis of highly complex natural products. Although much has been learned about FMO chemistry in the last ~80 years of research, several aspects of the reactions catalyzed by these enzymes remain unknown. In this review, we summarize recent advancements in the flavin-dependent monooxygenase field including aspects of flavin dynamics, formation and stabilization of reactive species, and the hydroxylation mechanism. Novel catalysis of flavin-dependent N-oxidases involving consecutive oxidations of amines to generate oximes or nitrones is presented and the biological relevance of the products is discussed. In addition, the activity of some FMOs have been shown to be essential for the virulence of several human pathogens. We also discuss the biomedical relevance of FMOs in antibiotic resistance and the efforts to identify inhibitors against some members of this important and growing family enzymes.
Collapse
Affiliation(s)
| | - Hao Li
- Department of Biochemistry, Blacksburg, VA, 24061, USA
| | - Maxim Johnson
- Department of Biochemistry, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry, Blacksburg, VA, 24061, USA; Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
24
|
Katsuyama Y, Matsuda K. Recent advance in the biosynthesis of nitrogen–nitrogen bond–containing natural products. Curr Opin Chem Biol 2020; 59:62-68. [DOI: 10.1016/j.cbpa.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
|
25
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
26
|
Kafarski P. Phosphonopeptides containing free phosphonic groups: recent advances. RSC Adv 2020; 10:25898-25910. [PMID: 35518575 PMCID: PMC9055344 DOI: 10.1039/d0ra04655h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphonopeptides are mimetics of peptides in which phosphonic acid or related (phosphinic, phosphonous etc.) group replaces either carboxylic acid group present at C-terminus, is located in the peptidyl side chain, or phosphonamidate or phosphinic acid mimics peptide bond. Acting as inhibitors of key enzymes related to variable pathological states they display interesting and useful physiologic activities with potential applications in medicine and agriculture. Since the synthesis and biological properties of peptides containing C-terminal diaryl phosphonates and those with phosphonic fragment replacing peptide bond were comprehensively reviewed, this review concentrate on peptides holding free, unsubstituted phosphonic acid moiety. There are two groups of such mimetics: (i) peptides in which aminophosphonic acid is located at C-terminus of the peptide chain with most of them (including antibiotics isolated from bacteria and fungi) exhibiting antimicrobial activity; (ii) non-hydrolysable analogues of phosphonoamino acids, which are useful tools to study physiologic effects of phosphorylations.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-305 Wrocław Poland
| |
Collapse
|
27
|
Small-Molecule Acetylation by GCN5-Related N-Acetyltransferases in Bacteria. Microbiol Mol Biol Rev 2020; 84:84/2/e00090-19. [PMID: 32295819 DOI: 10.1128/mmbr.00090-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acetylation is a conserved modification used to regulate a variety of cellular pathways, such as gene expression, protein synthesis, detoxification, and virulence. Acetyltransferase enzymes transfer an acetyl moiety, usually from acetyl coenzyme A (AcCoA), onto a target substrate, thereby modulating activity or stability. Members of the GCN5- N -acetyltransferase (GNAT) protein superfamily are found in all domains of life and are characterized by a core structural domain architecture. These enzymes can modify primary amines of small molecules or of lysyl residues of proteins. From the initial discovery of antibiotic acetylation, GNATs have been shown to modify a myriad of small-molecule substrates, including tRNAs, polyamines, cell wall components, and other toxins. This review focuses on the literature on small-molecule substrates of GNATs in bacteria, including structural examples, to understand ligand binding and catalysis. Understanding the plethora and versatility of substrates helps frame the role of acetylation within the larger context of bacterial cellular physiology.
Collapse
|
28
|
Sieber S, Daeppen C, Jenul C, Mannancherril V, Eberl L, Gademann K. Biosynthesis and Structure–Activity Relationship Investigations of the Diazeniumdiolate Antifungal Agent Fragin. Chembiochem 2020; 21:1587-1592. [DOI: 10.1002/cbic.201900755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Sieber
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christophe Daeppen
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christian Jenul
- Institute of Plant BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Vidya Mannancherril
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Leo Eberl
- Institute of Plant BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Karl Gademann
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
29
|
Wang M, Niikura H, He H, Daniel‐Ivad P, Ryan KS. Biosynthesis of the N–N‐Bond‐Containing Compound
l
‐Alanosine. Angew Chem Int Ed Engl 2020; 59:3881-3885. [DOI: 10.1002/anie.201913458] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Menghua Wang
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Haruka Niikura
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Hai‐Yan He
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Phillip Daniel‐Ivad
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Katherine S. Ryan
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
30
|
Wang M, Niikura H, He H, Daniel‐Ivad P, Ryan KS. Biosynthesis of the N–N‐Bond‐Containing Compound
l
‐Alanosine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Menghua Wang
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Haruka Niikura
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Hai‐Yan He
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Phillip Daniel‐Ivad
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Katherine S. Ryan
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
31
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
32
|
Zhao G, Yao S, Rothchild KW, Liu T, Liu Y, Lian J, He H, Ryan KS, Du Y. The Biosynthetic Gene Cluster of Pyrazomycin—A C‐Nucleoside Antibiotic with a Rare Pyrazole Moiety. Chembiochem 2019; 21:644-649. [DOI: 10.1002/cbic.201900449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Shunyu Yao
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Kristina W. Rothchild
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Tengfei Liu
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Yu Liu
- College of Life SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Jiazhang Lian
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Hai‐Yan He
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Katherine S. Ryan
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Yi‐Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| |
Collapse
|
33
|
Katsuyama Y. Mining novel biosynthetic machineries of secondary metabolites from actinobacteria. Biosci Biotechnol Biochem 2019; 83:1606-1615. [DOI: 10.1080/09168451.2019.1606700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Secondary metabolites produced by actinobacteria have diverse structures and important biological activities, making them a useful source of drug development. Diversity of the secondary metabolites indicates that the actinobacteria exploit various chemical reactions to construct a structural diversity. Thus, studying the biosynthetic machinery of these metabolites should result in discovery of various enzymes catalyzing interesting and useful reactions. This review summarizes our recent studies on the biosynthesis of secondary metabolites from actinobacteria, including the biosynthesis of nonproteinogenic amino acids used as building blocks of nonribosomal peptides, the type II polyketide synthase catalyzing polyene scaffold, the nitrous acid biosynthetic pathway involved in secondary metabolite biosynthesis and unique cytochrome P450 catalyzing nitrene transfer. These findings expand the knowledge of secondary metabolite biosynthesis machinery and provide useful tools for future bioengineering.
Collapse
Affiliation(s)
- Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
34
|
Twigg FF, Cai W, Huang W, Liu J, Sato M, Perez TJ, Geng J, Dror MJ, Montanez I, Tong TL, Lee H, Zhang W. Identifying the Biosynthetic Gene Cluster for Triacsins with an N-Hydroxytriazene Moiety. Chembiochem 2019; 20:1145-1149. [PMID: 30589194 PMCID: PMC6590916 DOI: 10.1002/cbic.201800762] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/05/2022]
Abstract
Triacsins are a family of natural products having in common an N-hydroxytriazene moiety not found in any other known secondary metabolites. Though many studies have examined the biological activity of triacsins in lipid metabolism, their biosynthesis has remained unknown. Here we report the identification of the triacsin biosynthetic gene cluster in Streptomyces aureofaciens ATCC 31442. Bioinformatic analysis of the gene cluster led to the discovery of the tacrolimus producer Streptomyces tsukubaensis NRRL 18488 as a new triacsin producer. In addition to targeted gene disruption to identify necessary genes for triacsin production, stable isotope feeding was performed in vivo to advance the understanding of N-hydroxytriazene biosynthesis.
Collapse
Affiliation(s)
- Frederick F Twigg
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wei Huang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Joyce Liu
- Department of Bioengineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Michio Sato
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Tynan J Perez
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Jiaxin Geng
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94704, USA
| | - Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Ismael Montanez
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Tate L Tong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Hyunsu Lee
- Department of Chemistry, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
- Chan Zuckerberg Biohub, 499 Illinois St., San Francisco, CA, 94158, USA
| |
Collapse
|
35
|
Zuo R, Ding Y. Direct Aromatic Nitration System for Synthesis of Nitrotryptophans in Escherichia coli. ACS Synth Biol 2019; 8:857-865. [PMID: 30865826 DOI: 10.1021/acssynbio.8b00534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitrotryptophan and its analogues are useful building blocks for synthesizing bioactive and biotechnologically relevant chemicals, materials, and proteins. However, synthetic routes to enantiopure nitro-containing tryptophan derivatives are either complex and polluting or even unestablished yet. Herein, we describe microbial production of 4-NO2-l-tryptophan (Nitrotrp) and its analogues by designing and expressing the biosynthetic pathway in Escherichia coli. The biosynthetic pathway comprised one engineered self-sufficient P450 TB14 of Streptomyces origin for direct nitration of the C-4 of l-Trp indole and one nitric oxide synthase from Bacillus subtilis (BsNOS) for the production of nitric oxide (NO) from l-Arg to support the direct aromatic nitration. As both TB14 and BsNOS require reducing agent NADPH for their reactions, we also included one glucose dehydrogenase (GDH) from B. subtilis for in situ NADPH regeneration. The initially designed pathway led to 16.2 ± 2.3 mg/L of Nitrotrp by the engineered E. coli fermented in the M9 minimal medium for 3 days. A combination of the design and screening of three additional pathways, fermentation optimization and the knockout of competitive metabolic pathways together improved the Nitrotrp titer to around 192 mg/L within 20 h. Finally, the whole-cell biotransformation system produced eight Nitrotrp analogues with their titers varying from 2.5 to 61.5 mg/L. This work provides the first microbial direct aromatic nitration processes and sets the stage for the development of biocatalytic routes to other useful nitroaromatics in the future.
Collapse
Affiliation(s)
- Ran Zuo
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
36
|
Huang C, Yang C, Fang Z, Zhang L, Zhang W, Zhu Y, Zhang C. Discovery of Stealthin Derivatives and Implication of the Amidotransferase FlsN3 in the Biosynthesis of Nitrogen-Containing Fluostatins. Mar Drugs 2019; 17:md17030150. [PMID: 30836614 PMCID: PMC6470958 DOI: 10.3390/md17030150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diazobenzofluorene-containing atypical angucyclines exhibit promising biological activities. Here we report the inactivation of an amidotransferase-encoding gene flsN3 in Micromonospora rosaria SCSIO N160, a producer of fluostatins. Bioinformatics analysis indicated that FlsN3 was involved in the diazo formation. Chemical investigation of the flsN3-inactivation mutant resulted in the isolation of a variety of angucycline aromatic polyketides, including four racemic aminobenzo[b]fluorenes stealthins D–G (9–12) harboring a stealthin C-like core skeleton with an acetone or butanone-like side chain. Their structures were elucidated on the basis of nuclear magnetic resonance (NMR) spectroscopic data and X-ray diffraction analysis. A plausible mechanism for the formation of stealthins D–G (9–12) was proposed. These results suggested a functional role of FlsN3 in the formation/modification of N–N bond-containing fluostatins.
Collapse
Affiliation(s)
- Chunshuai Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Chunfang Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Zhuangjie Fang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
37
|
Bougioukou DJ, Ting CP, Peck SC, Mukherjee S, van der Donk WA. Use of the dehydrophos biosynthetic enzymes to prepare antimicrobial analogs of alaphosphin. Org Biomol Chem 2019; 17:822-829. [PMID: 30608108 DOI: 10.1039/c8ob02860e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-terminal domain of the dehydrophos biosynthetic enzyme DhpH (DhpH-C) catalyzes the condensation of Leu-tRNALeu with (R)-1-aminoethylphosphonate, the aminophosphonate analog of alanine called Ala(P). The product of this reaction, Leu-Ala(P), is a phosphonodipeptide, a class of compounds that have previously been investigated for use as clinical antibiotics. In this study, we show that DhpH-C is highly substrate tolerant and can condense various aminophosphonates (Gly(P), Ser(P), Val(P), 1-amino-propylphosphonate, and phenylglycine(P)) to Leu. Moreover, the enzyme is also tolerant with respect to the amino acid attached to tRNALeu. Using a mutant of leucyl tRNA synthetase that is deficient in its proofreading ability allowed the preparation of a series of aminoacyl-tRNALeu derivatives (Ile, Ala, Val, Met, norvaline, and norleucine). DhpH-C accepted these aminoacyl-tRNA derivatives and condensed the amino acid with l-Ala(P) to form the corresponding phosphonodipeptides. A subset of these peptides displayed antimicrobial activities demonstrating that the enzyme is a versatile biocatalyst for the preparation of antimicrobial peptides. We also investigated another enzyme from the dehydrophos biosynthetic pathway, the 2-oxoglutarate dependent enzyme DhpA. This enzyme oxidizes 2-hydroxyethylphosphonate to 1,2-dihydroxyethylphosphonate en route to l-Ala(P), but longer incubation results in overoxidation to 1-oxo-2-hydroxyethylphosphonate. This α-ketophosphonate was converted by the pyridoxal phosphate dependent enzyme DhpD into l-Ser(P). Thus, the dehydrophos biosynthetic enzymes can generate not only l-Ala(P) but also l-Ser(P).
Collapse
Affiliation(s)
- Despina J Bougioukou
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
38
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
McAlpine JB, Chen SN, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji NY, Johnson TA, Kingston DGI, Koshino H, Lee HW, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam JW, Neupane RP, Niemitz M, Nuzillard JM, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault JH, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang BG, Williams CM, Williams PG, Wist J, Yue JM, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 2019; 36:35-107. [PMID: 30003207 PMCID: PMC6350634 DOI: 10.1039/c7np00064b] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.
Collapse
Affiliation(s)
- James B McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Andrei Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universita` del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | | | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Stefan Bluml
- University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Young H Choi
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - David Coppage
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Michael T Crimmins
- Kenan and Caudill Laboratories of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marie Csete
- University of Southern California, Huntington Medical Research Institutes, 99 N. El Molino Ave., Pasadena, CA 91101, USA
| | - Pradeep Dewapriya
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joseph M Egan
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mary J Garson
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Grégory Genta-Jouve
- C-TAC, UMR 8638 CNRS, Faculté de Pharmacie de Paris, Paris-Descartes University, Sorbonne, Paris Cité, 4, Aveue de l'Observatoire, 75006 Paris, France
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Precilia Hermanto
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luke Hunter
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Damien Jeannerat
- University of Geneva, Department of Organic Chemistry, 30 quai E. Ansermet, CH 1211 Geneva 4, Switzerland
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
| | - Tyler A Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Guy Lewin
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Tadeusz F Molinski
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Bradley S Moore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Joo-Won Nam
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ram P Neupane
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Matthias Niemitz
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jean-Marc Nuzillard
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Nicholas H Oberlies
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | | | - Guohui Pan
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - D Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Jean-Hugues Renault
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - José Rivera-Chávez
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Wolfgang Robien
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Carla M Saunders
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Thomas J Schmidt
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Seger
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ben Shen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Steinbeck
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Hermann Stuppner
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Sonja Sturm
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Orazio Taglialatela-Scafati
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Dean J Tantillo
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Robert Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bin-Gui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China and Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Craig M Williams
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip G Williams
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Julien Wist
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jian-Min Yue
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Chen Zhang
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Zhengren Xu
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - David C Lankin
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Jonathan Bisson
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| |
Collapse
|
40
|
Wang KKA, Ng TL, Wang P, Huang Z, Balskus EP, van der Donk WA. Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin. Nat Commun 2018; 9:3687. [PMID: 30206228 PMCID: PMC6133997 DOI: 10.1038/s41467-018-06083-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023] Open
Abstract
Fosfazinomycin and kinamycin are natural products that contain nitrogen-nitrogen (N-N) bonds but that are otherwise structurally unrelated. Despite their considerable structural differences, their biosynthetic gene clusters share a set of genes predicted to facilitate N-N bond formation. In this study, we show that for both compounds, one of the nitrogen atoms in the N-N bond originates from nitrous acid. Furthermore, we show that for both compounds, an acetylhydrazine biosynthetic synthon is generated first and then funneled via a glutamyl carrier into the respective biosynthetic pathways. Therefore, unlike other pathways to N-N bond-containing natural products wherein the N-N bond is formed directly on a biosynthetic intermediate, during the biosyntheses of fosfazinomycin, kinamycin, and related compounds, the N-N bond is made in an independent pathway that forms a branch of a convergent route to structurally complex natural products.
Collapse
Affiliation(s)
- Kwo-Kwang A Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Tai L Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Zedu Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemistry, Fudan University, Shanghai, 200438-6789, China
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138, MA, USA.
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Howard Hughes Medical Institute, Chevy Chase, 20815, MD, USA.
| |
Collapse
|
41
|
Hagihara R, Katsuyama Y, Sugai Y, Onaka H, Ohnishi Y. Novel desferrioxamine derivatives synthesized using the secondary metabolism-specific nitrous acid biosynthetic pathway in Streptomyces davawensis. J Antibiot (Tokyo) 2018; 71:911-919. [PMID: 30120394 DOI: 10.1038/s41429-018-0088-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Recently, a novel nitrous acid biosynthetic pathway composed of two enzymes was discovered to be involved in the biosynthesis of cremeomycin for the formation of its diazo group. In this pathway, CreE oxidizes L-aspartic acid to nitrosuccinic acid and CreD liberates nitrous acid from nitrosuccinic acid. Bioinformatic analysis showed that various actinobacteria have putative secondary metabolite biosynthesis gene clusters containing creE and creD homologs, suggesting that this pathway is widely used for the biosynthesis of various natural products. Here, we focused on creE and creD homologs (BN159_4422 and BN159_4421) in Streptomyces davawensis. In vitro analysis of recombinant BN159_4422 and BN159_4421 proteins showed that these enzymes synthesized nitrous acid from L-aspartic acid. Secondary metabolites produced by this gene cluster were investigated by comparing the metabolic profiles of the wild-type and ΔBN159_4422 strains. When these strains were co-cultured with Tsukamurella pulmonis TP-B0596, three compounds were specifically produced by the wild-type strain. These compounds were identified as novel desferrioxamine derivatives containing either of two unique five-membered heterocyclic ring structures and shown to have iron-binding properties. A putative desferrioxamine biosynthetic gene cluster was found in the S. davawensis genome, and inactivation of a desD homolog (BN159_5485) also abolished the production of these compounds. We propose that these compounds should be synthesized by the modification of desferrioxamine B and a shorter chain analog using nitrous acid produced by the CreE and CreD homologs. This study provides an important insight into the diverse usage of the secondary metabolism-specific nitrous acid biosynthetic pathway in actinomycetes.
Collapse
Affiliation(s)
- Ryota Hagihara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroyasu Onaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
42
|
Matsuda K, Tomita T, Shin-ya K, Wakimoto T, Kuzuyama T, Nishiyama M. Discovery of Unprecedented Hydrazine-Forming Machinery in Bacteria. J Am Chem Soc 2018; 140:9083-9086. [DOI: 10.1021/jacs.8b05354] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kenichi Matsuda
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuo Shin-ya
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
43
|
Waldman AJ, Balskus EP. Discovery of a Diazo-Forming Enzyme in Cremeomycin Biosynthesis. J Org Chem 2018; 83:7539-7546. [PMID: 29771512 DOI: 10.1021/acs.joc.8b00367] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The molecular architectures and potent bioactivities of diazo-containing natural products have attracted the interest of synthetic and biological chemists. Despite this attention, the biosynthetic enzymes involved in diazo group construction have not been identified. Here, we show that the ATP-dependent enzyme CreM installs the diazo group in cremeomycin via late-stage N-N bond formation using nitrite. This finding should inspire efforts to use diazo-forming enzymes in biocatalysis and synthetic biology as well as enable genome-based discovery of new diazo-containing metabolites.
Collapse
Affiliation(s)
- Abraham J Waldman
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford St , Cambridge , Massachusetts 02138 , United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford St , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
44
|
Goettge MN, Cioni JP, Ju KS, Pallitsch K, Metcalf WW. PcxL and HpxL are flavin-dependent, oxime-forming N-oxidases in phosphonocystoximic acid biosynthesis in Streptomyces. J Biol Chem 2018; 293:6859-6868. [PMID: 29540479 PMCID: PMC5936822 DOI: 10.1074/jbc.ra118.001721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Several oxime-containing small molecules have useful properties, including antimicrobial, insecticidal, anticancer, and immunosuppressive activities. Phosphonocystoximate and its hydroxylated congener, hydroxyphosphonocystoximate, are recently discovered oxime-containing natural products produced by Streptomyces sp. NRRL S-481 and Streptomyces regensis NRRL WC-3744, respectively. The biosynthetic pathways for these two compounds are proposed to diverge at an early step in which 2-aminoethylphosphonate (2AEPn) is converted to (S)-1-hydroxy-2-aminoethylphosphonate ((S)-1H2AEPn) in S. regensis but not in Streptomyces sp. NRRL S-481). Subsequent installation of the oxime moiety into either 2AEPn or (S)-1H2AEPn is predicted to be catalyzed by PcxL or HpxL from Streptomyces sp. NRRL S-481 and S. regensis NRRL WC-3744, respectively, whose sequence and predicted structural characteristics suggest they are unusual N-oxidases. Here, we show that recombinant PcxL and HpxL catalyze the FAD- and NADPH-dependent oxidation of 2AEPn and 1H2AEPn, producing a mixture of the respective aldoximes and nitrosylated phosphonic acid products. Measurements of catalytic efficiency indicated that PcxL has almost an equal preference for 2AEPn and (R)-1H2AEPn. 2AEPn was turned over at a 10-fold higher rate than (R)-1H2AEPn under saturating conditions, resulting in a similar but slightly lower kcat/Km We observed that (S)-1H2AEPn is a relatively poor substrate for PcxL but is clearly the preferred substrate for HpxL, consistent with the proposed biosynthetic pathway in S. regensis. HpxL also used both 2AEPn and (R)-1H2AEPn, with the latter inhibiting HpxL at high concentrations. Bioinformatic analysis indicated that PcxL and HpxL are members of a new class of oxime-forming N-oxidases that are broadly dispersed among bacteria.
Collapse
Affiliation(s)
- Michelle N Goettge
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Joel P Cioni
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Kou-San Ju
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Katharina Pallitsch
- the Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - William W Metcalf
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
45
|
Katsuyama Y, Sato Y, Sugai Y, Higashiyama Y, Senda M, Senda T, Ohnishi Y. Crystal structure of the nitrosuccinate lyase CreD in complex with fumarate provides insights into the catalytic mechanism for nitrous acid elimination. FEBS J 2018; 285:1540-1555. [PMID: 29505698 DOI: 10.1111/febs.14429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 01/30/2023]
Abstract
Enzymes belonging to the aspartase/fumarase superfamily catalyze elimination of various functional groups from succinate derivatives and play an important role in primary metabolism and aromatic compound degradation. Recently, an aspartase/fumarase superfamily enzyme, CreD, was discovered in cremeomycin biosynthesis. This enzyme catalyzes the elimination of nitrous acid from nitrosuccinate synthesized from aspartate by CreE, a flavin-dependent monooxygenase. Nitrous acid generated by this pathway is an important precursor of the diazo group of cremeomycin. CreD is the first aspartase/fumarase superfamily enzyme that was reported to catalyze the elimination of nitrous acid, and therefore we aimed to analyze its reaction mechanism. The crystal structure of CreD was determined by the molecular replacement native-single anomalous diffraction method at 2.18 Å resolution. Subsequently, the CreD-fumarate complex structure was determined at 2.30 Å resolution by the soaking method. Similar to other aspartase/fumarase superfamily enzymes, the crystal structure of CreD was composed of three domains and formed a tetramer. Two molecules of fumarate were observed in one subunit of the CreD-fumarate complex. One of them was located in the active site pocket formed by three different subunits. Intriguingly, no histidine residue, which usually functions as a catalytic acid in aspartase/fumarase superfamily enzymes, was found around the fumarate molecule in the active site. Based on the mutational analysis, we propose a catalytic mechanism of CreD, in which Arg325 acts as a catalytic acid. DATABASES The crystal structures of CreD and the CreD-fumarate complex were deposited to PDB under the accession numbers 5XNY and 5XNZ, respectively. ENZYMES Nitrosuccinate lyase CreD, EC4.3.
Collapse
Affiliation(s)
- Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yukari Sato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yousuke Higashiyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Soken-dai), Tsukuba, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| |
Collapse
|
46
|
Ulrich EC, Bougioukou DJ, van der Donk WA. Investigation of Amide Bond Formation during Dehydrophos Biosynthesis. ACS Chem Biol 2018; 13:537-541. [PMID: 29303545 DOI: 10.1021/acschembio.7b00949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydrophos is a tripeptide phosphonate antibiotic produced by Streptomyces luridus. Its biosynthetic pathway involves the use of aminoacyl-tRNA (aa-tRNA) for amide bond formation. The first amide bond during biosynthesis is formed by DhpH-C, a peptidyltransferase that utilizes Leu-tRNALeu. DhpH-C is a member of a burgeoning family of natural product biosynthetic enzymes that make use of aa-tRNA outside of canonical translation activities in the cell. Here, we used site-directed mutagenesis of both DhpH-C and tRNALeu to investigate the enzyme mechanism and substrate specificity, respectively, and analyzed the substrate scope for the production of a set of dipeptides. DhpH-C appears to recognize both the amino acyl group on the tRNA and the tRNA acceptor stem, and the enzyme can accept other hydrophobic residues, in addition to leucine. These results contribute to a better understanding of enzyme-aa-tRNA interactions and the growing exploration of aa-tRNA usage beyond translation.
Collapse
|
47
|
Liu X, Liu D, Xu M, Tao M, Bai L, Deng Z, Pfeifer BA, Jiang M. Reconstitution of Kinamycin Biosynthesis within the Heterologous Host Streptomyces albus J1074. JOURNAL OF NATURAL PRODUCTS 2018; 81:72-77. [PMID: 29338229 DOI: 10.1021/acs.jnatprod.7b00652] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diazofluorene compounds such as kinamycin and lomaiviticin feature unique molecular structures and compelling medicinal bioactivities. However, a complete understanding of the biosynthetic details for this family of natural products has yet to be fully elucidated. In addition, a lack of genetically and technically amenable production hosts has limited access to the full medicinal potential of these compounds. Here, we report the capture of the complete kinamycin gene cluster from Streptomyces galtieri Sgt26 by bacterial artificial chromosome cloning, confirmed by successful production of kinamycin in the heterologous host Streptomyces albus J1074. Sequence analysis and a series of gene deletion experiments revealed the boundary of the cluster, which spans 75 kb DNA. To probe the last step in biosynthesis, acetylation of kinamcyin F to kinamycin D, gene knockout, and complementation experiments identified a single gene product involved with final acetylation conversions. This study provides full genetic information for the kinamycin gene cluster from S. galtieri Sgt26 and establishes heterologous biosynthesis as a production platform for continued mechanistic assessment of compound formation and utilization.
Collapse
Affiliation(s)
- Xiangyang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Dongxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Buffalo, New York 14260, United States
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200030, People's Republic of China
| |
Collapse
|
48
|
Fields RN, Roy H. Deciphering the tRNA-dependent lipid aminoacylation systems in bacteria: Novel components and structural advances. RNA Biol 2017; 15:480-491. [PMID: 28816600 PMCID: PMC6103681 DOI: 10.1080/15476286.2017.1356980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
tRNA-dependent addition of amino acids to lipids on the outer surface of the bacterial membrane results in decreased effectiveness of antimicrobials such as cationic antimicrobial peptides (CAMPs) that target the membrane, and increased virulence of several pathogenic species. After a brief introduction to CAMPs and the various bacterial resistance mechanisms used to counteract these compounds, this review focuses on recent advances in tRNA-dependent pathways for lipid modification in bacteria. Phenotypes associated with amino acid lipid modifications and regulation of their expression will also be discussed.
Collapse
Affiliation(s)
- Rachel N Fields
- a Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando , Florida , United States of America
| | - Hervé Roy
- a Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando , Florida , United States of America
| |
Collapse
|
49
|
|
50
|
Zhang Q, Li H, Yu L, Sun Y, Zhu Y, Zhu H, Zhang L, Li SM, Shen Y, Tian C, Li A, Liu HW, Zhang C. Characterization of the flavoenzyme XiaK as an N-hydroxylase and implications in indolosesquiterpene diversification. Chem Sci 2017; 8:5067-5077. [PMID: 28970893 PMCID: PMC5613243 DOI: 10.1039/c7sc01182b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/27/2017] [Indexed: 01/10/2023] Open
Abstract
Flavoenzymes are ubiquitous in biological systems and catalyze a diverse range of chemical transformations.
Flavoenzymes are ubiquitous in biological systems and catalyze a diverse range of chemical transformations. The flavoenzyme XiaK from the biosynthetic pathway of the indolosesquiterpene xiamycin A is demonstrated to mediate the in vivo biotransformation of xiamycin A into multiple products, including a chlorinated adduct as well as dimers characterized by C–N and N–N linkages that are hypothesized to form via radical-based mechanisms. Isolation and characterization of XiaK in vitro shows that it acts as a flavin-dependent N-hydroxylase that catalyzes the hydroxylation of xiamycin A at the carbazole nitrogen to form N-hydroxyxiamycin, a product which was overlooked in earlier in vivo experiments because its chemical and chromatographic properties are similar to those of oxiamycin. N-Hydroxyxiamycin is shown to be unstable under aerobic conditions, and characterization by electron paramagnetic resonance spectroscopy demonstrates formation of an N-hydroxycarbazole radical adduct. This radical species is proposed to serve as a key intermediate leading to the formation of the multiple xiamycin A adducts. This study suggests that non-enzyme catalyzed reactions may play a greater role in the biosynthesis of natural products than has been previously recognized.
Collapse
Affiliation(s)
- Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Huixian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ; .,Institute of Marine Natural Products , School of Marine Sciences , South China Sea Resource Exploitation and Protection Collaborative Innovation Center , Sun Yat-sen University , 135 West Xingang Road , Guangzhou 510006 , China
| | - Lu Yu
- Hefei National Laboratory of Microscale Physical Sciences , School of Life Science , University of Science and Technology of China , Hefei , 230027 , China.,High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , 230031 , P. R. China
| | - Yu Sun
- State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Hanning Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Deutschhausstrasse 17a , 35037 Marburg , Germany
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology , School of Life Science , Shandong University , Jinan 250100 , China
| | - Changlin Tian
- Hefei National Laboratory of Microscale Physical Sciences , School of Life Science , University of Science and Technology of China , Hefei , 230027 , China.,High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei , 230031 , P. R. China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy , Department of Chemistry , University of Texas at Austin , Austin , TX 78712 , USA .
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| |
Collapse
|