1
|
Paul T, Voth GA. Exploring the structural and dynamical features of bacterial-tubulin FtsZ. Biophys J 2025:S0006-3495(25)00244-9. [PMID: 40247617 DOI: 10.1016/j.bpj.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/24/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
FtsZ, a bacterial tubulin, plays a crucial role in the cytokinesis process. It shares structural similarities with tubulin, as it consists of two domains-N-terminal and C-terminal domains. The protein assembles to form single-stranded protofilaments that exhibit a dynamic phenomenon known as treadmilling where the FtsZ filaments appear to execute a unidirectional movement even though individual monomers constituting the filament do not move. Despite forming protofilaments, an FtsZ molecule requires a conformational switch to form stable contacts with neighboring subunits in a filament. Therefore, FtsZ has two well-characterized conformations based on its polymerization propensity: 1) R state, preferred by the monomeric FtsZ and 2) T state, preferred by the polymeric FtsZ. The treadmilling ability of FtsZ is coupled with the conformational switch and the GTPase activity of the protein as hydrolysis-deficient mutants of FtsZ do not treadmill. We employ all-atom molecular dynamics simulations to investigate certain structural and dynamical features of the protofilaments by considering FtsZ heptamers as our model system. We simulated FtsZ filaments in three nucleotide states-GTP, GDP, and GDP-Pi-to understand the conformational states of the terminal monomers, interface dynamics of the filaments, and important interactions at the protein interdomain and interface regions. Our study reveals that the γ-phosphate binding loop T3 prompts the structural rearrangements at the interface post hydrolysis.
Collapse
Affiliation(s)
- Tamsuk Paul
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Sciò P, Scoffone VC, Parisi A, Bufano M, Caneva M, Trespidi G, Irudal S, Barbieri G, Cariani L, Orena BS, Daccò V, Imperi F, Buroni S, Coluccia A. Identification of a New FtsZ Inhibitor by Virtual Screening, Mechanistic Insights, and Structure-Activity Relationship Analyses. ACS Infect Dis 2025; 11:998-1007. [PMID: 40100965 PMCID: PMC11998009 DOI: 10.1021/acsinfecdis.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Antimicrobial resistance (AMR) poses a major threat to human health globally. Approximately 5 million deaths were attributed to AMR in 2019, and this figure is predicted to worsen, reaching 10 million deaths by 2050. In the search for new compounds that can tackle AMR, FtsZ inhibitors represent a valuable option. In the present study, a structure-based virtual screening is reported, which led to the identification of derivative C11 endowed with an excellent minimum inhibitory concentration value of 2 μg/mL against Staphylococcus aureus. Biochemical assays clarified that compound C11 targets FtsZ by inhibiting its polymerization process. C11 also showed notable antimicrobial activity against S. aureus cystic fibrosis isolates and methicillin-resistant S. aureus strains. Derivative C11 did not show cytotoxicity, while it had a synergistic effect with methicillin. C11 also showed increased survival in the Galleria mellonella infection model. Lastly, structure-activity relationship and binding mode analyses were reported.
Collapse
Affiliation(s)
- Pietro Sciò
- Department
of Drug Chemistry and Technologies Laboratory Affiliated with the
Institute Pasteur Italy − Cenci Bolognetti Foundation, Sapienza University of Rome, Rome 00185, Italy
| | - Viola Camilla Scoffone
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Anastasia Parisi
- Department
of Drug Chemistry and Technologies Laboratory Affiliated with the
Institute Pasteur Italy − Cenci Bolognetti Foundation, Sapienza University of Rome, Rome 00185, Italy
| | - Marianna Bufano
- Department
of Drug Chemistry and Technologies Laboratory Affiliated with the
Institute Pasteur Italy − Cenci Bolognetti Foundation, Sapienza University of Rome, Rome 00185, Italy
| | - Martina Caneva
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Gabriele Trespidi
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Samuele Irudal
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Giulia Barbieri
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Lisa Cariani
- SC Microbiology
and Virology, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Beatrice Silvia Orena
- SC Microbiology
and Virology, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Valeria Daccò
- Pediatric
Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Francesco Imperi
- Department
of Science, University of Roma Tre, Rome 00154, Italy
| | - Silvia Buroni
- Department
of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Antonio Coluccia
- Department
of Drug Chemistry and Technologies Laboratory Affiliated with the
Institute Pasteur Italy − Cenci Bolognetti Foundation, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
3
|
Kwon Y, Ha Y, Lee S, Park J, Bhak G, Paik SR. Freeze-Induced Protein Assembly of α-Synuclein into Stable Microspheres to Fabricate Light-Induced Cargo Release Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:594-606. [PMID: 39727059 DOI: 10.1021/acsami.4c17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization. MSs transform into amyloid fibril condensates when heated to 70 °C, and the drug is loaded via centrifugal membrane filtration. Additionally, the MSs were shielded with an iron-alginate layer embedded with gold nanoparticles (AuNPs) to prevent premature leakage and to control drug release. This takes advantage of the photothermal effect of AuNPs, resulting in combined cytotoxicity between the drug and heat. Therefore, drug-loaded MSs comprising αS and AuNPs can be suggested as light-controllable drug delivery systems that exhibit chemical and physical anticancer therapeutic effects.
Collapse
Affiliation(s)
- Yeji Kwon
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yosub Ha
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soonkoo Lee
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongha Park
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ghibom Bhak
- Chemical Engineering Department, Faculty of Chemical Sciences, University of Salamanca, Salamanca 37008, Spain
| | - Seung R Paik
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Wang YT, Liu LT, Hou B, Yao CM, Wang XF, Lu B. Recent advances in studies on FtsZ inhibitors. Biochem Pharmacol 2024; 230:116551. [PMID: 39307317 DOI: 10.1016/j.bcp.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
With the abuse of antibiotics, multidrug resistant strains continue to emerge and spread rapidly. Therefore, there is an urgent need to develop new antimicrobial drugs. As a highly conserved cell division protein in bacteria, filamenting temperature-sensitive mutant Z (FtsZ) has been identified as a potential antimicrobial target. This paper reviews the structure, function, and action mechanism of FtsZ and a variety of natural and synthetic compounds targeting FtsZ, including 3-MBA derivatives, taxane derivatives, cinnamaldehyde, curcumin, quinoline and quinazoline derivatives, aromatic compounds, purpurin, and totarol. From these studies, FtsZ has a clear supporting role in the field of antimicrobial drug discovery. The urgent need and interest of antibacterial drugs will contribute to the discovery of new clinical drugs targeting FtsZ.
Collapse
Affiliation(s)
- Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China.
| | - Lan-Tian Liu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Bo Hou
- School of Life Science and Technology, Xidian University, Xi'an 710126, PR China
| | - Chun-Meng Yao
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Xu-Fang Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
5
|
Poddar SM, Chakraborty J, Gayathri P, Srinivasan R. Disruption of salt bridge interactions in the inter-domain cleft of the tubulin-like protein FtsZ of Escherichia coli makes cells sensitive to the cell division inhibitor PC190723. Cytoskeleton (Hoboken) 2024. [PMID: 39230425 DOI: 10.1002/cm.21924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
FtsZ forms a ring-like assembly at the site of division in bacteria. It is the first protein involved in the formation of the divisome complex to split the cell into two halves, indicating its importance in bacterial cell division. FtsZ is an attractive target for developing new anti-microbial drugs to overcome the challenges of antibiotic resistance. The most potent inhibitor against FtsZ is PC190723, which is effective against all strains and species of Staphylococcus, including the methicillin- and multi-drug-resistant Staphylococcus aureus and strains of Bacillus. However, FtsZs from bacteria such as E. coli, Streptococcus, and Enterococcus were shown to be resistant to this inhibitor. In this study, we provide further evidence that the three pairwise bridging interactions, between residues S227 and G191, R307 and E198 and D299 and R202, between S7, S9, S10 β-strands and the H7 helix occlude the inhibitor from binding to E. coli FtsZ. We generated single, double and triple mutations to disrupt those bridges and tested the effectiveness of PC190723 directly on Z-ring assembly in vivo. Our results show that the disruption of S227-G191 and R307-E198 bridges render EcFtsZ highly sensitive to PC190723 for Z-ring assembly. Ectopic expression of the double mutants, FtsZ S227I R307V results in hypersensitivity of the susceptible E. coli imp4213 strain to PC190723. Our studies could further predict the effectiveness of PC190723 or its derivatives towards FtsZs of other bacterial genera.
Collapse
Affiliation(s)
- Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| | | | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| |
Collapse
|
6
|
Takasawa T, Matsui T, Watanabe G, Kodera Y. Molecular dynamics simulations reveal differences in the conformational stability of FtsZs derived from Staphylococcus aureus and Bacillus subtilis. Sci Rep 2024; 14:16043. [PMID: 38992051 PMCID: PMC11239868 DOI: 10.1038/s41598-024-66763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
FtsZ is highly conserved among bacteria and plays an essential role in bacterial cell division. The tense conformation of FtsZ bound to GTP assembles into a straight filament via head-to-tail associations, and then the upper subunit of FtsZ hydrolyzes GTP bound to the lower FtsZ subunit. The subunit with GDP bound disassembles accompanied by a conformational change in the subunit from the tense to relaxed conformation. Although crystal structures of FtsZ derived from several bacterial species have been determined, the conformational change from the relaxed to tense conformation has only been observed in Staphylococcus aureus FtsZ (SaFtsZ). Recent cryo-electron microscopy analyses revealed the three-dimensional reconstruction of the protofilament, in which tense molecules assemble via head-to-tail associations. However, the lower resolution of the protofilament suggested that the flexibility of the FtsZ protomers between the relaxed and tense conformations caused them to form in less-strict alignments. Furthermore, this flexibility may also prevent FtsZs other than SaFtsZ from crystalizing in the tense conformation, suggesting that the flexibility of bacterial FtsZs differs. In this study, molecular dynamics simulations were performed using SaFtsZ and Bacillus subtilis FtsZ in several situations, which suggested that different features of the FtsZs affect their conformational stability.
Collapse
Affiliation(s)
- Taichi Takasawa
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takashi Matsui
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Go Watanabe
- Department of Data Science, School of Frontier Engineering, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa, 243-0435, Japan.
| | - Yoshio Kodera
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
- Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
7
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
8
|
Importance of the 2,6-Difluorobenzamide Motif for FtsZ Allosteric Inhibition: Insights from Conformational Analysis, Molecular Docking and Structural Modifications. Molecules 2023; 28:molecules28052055. [PMID: 36903302 PMCID: PMC10003973 DOI: 10.3390/molecules28052055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
A conformational analysis and molecular docking study comparing 2,6-difluoro-3-methoxybenzamide (DFMBA) with 3-methoxybenzamide (3-MBA) has been undertaken for investigating the known increase of FtsZ inhibition related anti S. aureus activity due to fluorination. For the isolated molecules, the calculations reveal that the presence of the fluorine atoms in DFMBA is responsible for its non-planarity, with a dihedral angle of -27° between the carboxamide and the aromatic ring. When interacting with the protein, the fluorinated ligand can thus more easily adopt the non-planar conformation found in reported co-crystallized complexes with FtsZ, than the non-fluorinated one. Molecular docking studies of the favored non-planar conformation of 2,6-difluoro-3-methoxybenzamide highlights the strong hydrophobic interactions between the difluoroaromatic ring and several key residues of the allosteric pocket, precisely between the 2-fluoro substituent and residues Val203 and Val297 and between the 6-fluoro group and the residues Asn263. The docking simulation in the allosteric binding site also confirms the critical importance of the hydrogen bonds between the carboxamide group with the residues Val207, Leu209 and Asn263. Changing the carboxamide functional group of 3-alkyloxybenzamide and 3-alkyloxy-2,6-difluorobenzamide to a benzohydroxamic acid or benzohydrazide led to inactive compounds, confirming the importance of the carboxamide group.
Collapse
|
9
|
Obtainment of Threo and Erythro Isomers of the 6-Fluoro-3-(2,3,6,7,8,9-hexahydronaphtho[2,3-b][1,4]dioxin-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxamide. MOLBANK 2023. [DOI: 10.3390/m1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
2,6-difluorobenzamides have been deeply investigated as antibacterial drugs in the last few decades. Several 3-substituted-2,6-difluorobenzamides have proved their ability to interfere with the bacterial cell division cycle by inhibiting the protein FtsZ, the key player of the whole process. Recently, we developed a novel family of 1,4-tetrahydronaphthodioxane benzamides, having an ethoxy linker, which reached sub-micromolar MICs towards Gram-positive Staphylococcus aureus and Bacillus subtilis. A further investigation of their mechanism of action should require the development of a fluorescent probe, and the consequent definition of a synthetic pathway for its obtainment. In the present work, we report the obtainment of an unexpected bicyclic side product, 6-fluoro-3-(2,3,6,7,8,9-hexahydronaphtho[2,3-b][1,4]dioxin-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxamide, coming from the substitution of one aromatic fluorine by the in situ formed alkoxy group, in the final opening of an epoxide intermediate. This side product was similarly achieved, in good yields, by opening the ring of both erythro and threo epoxides, and the two compounds were fully characterized using HRMS, 1H-NMR, 13C-NMR, HPLC and DSC.
Collapse
|
10
|
McCoy KM, Fritzsching KJ, McDermott AE. GTP-Bound Escherichia coli FtsZ Filaments Are Composed of Tense Monomers: a Dynamic Nuclear Polarization-Nuclear Magnetic Resonance Study Using Interface Detection. mBio 2022; 13:e0235822. [PMID: 36214571 PMCID: PMC9765660 DOI: 10.1128/mbio.02358-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
FtsZ filaments are the major structural component of the bacterial Z ring and are drivers of bacterial division. Crystal structures for FtsZ from some Gram-positive bacteria in the presence of GTP analogs suggest the possibility of a high-energy, "tense" conformation. It remains important to elucidate whether this tense form is the dominant form in filaments. Using dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) and differential isotopic labeling, we directly detected residues located at the intermonomer interface of GTP-bound wild-type (WT) Escherichia coli FtsZ filaments. We combined chemical shift prediction, homology modeling, and heteronuclear dipolar recoupling techniques to characterize the E. coli FtsZ filament interface and demonstrated that the monomers in active filaments assume a tense conformation. IMPORTANCE Bacterial replication is dependent on the cytoskeletal protein FtsZ, which forms filaments that scaffold and recruit other essential division proteins. While the FtsZ monomer is well studied across organisms, many questions remain about how the filaments form and function. Recently, a second monomer form was identified in Staphylococcus aureus that has far-reaching implications for FtsZ structure and function. However, to date, this form has not been directly observed outside S. aureus. In this study, we used solid-state NMR and dynamic nuclear polarization (DNP) to directly study the filaments of E. coli FtsZ to demonstrate that E. coli FtsZ filaments are primarily composed of this second, "tense" form of the monomer. This work is the first time GTP-bound, wild-type FtsZ filaments have been studied directly at atomic resolution and is an important step forward for the study of FtsZ filaments.
Collapse
Affiliation(s)
- Kelsey M. McCoy
- Department of Chemistry, Columbia University, New York, New York, USA
| | | | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. Int J Biol Macromol 2022; 219:428-437. [PMID: 35932806 DOI: 10.1016/j.ijbiomac.2022.07.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
Abstract
Salmonella Typhi is emerging as a drug-resistant pathogen, particularly in developing countries. Hence, the progressive development of new antibiotics against novel drug targets is essential to prevent the spread of infections and mortality. The cell division protein FtsZ is an ideal drug target as the cell wall synthesis in bacteria is driven by the dynamic treadmilling nature of the FtsZ. The polymerization of the FtsZ provides the essential mechanical constricting force and flexibility to modulate the cell wall synthesis. Any alteration in FtsZ polymerization leads to the bactericidal or bacteriostatic effect. In this study, we have evaluated the secondary metabolites of natural compounds berberine chloride, cinnamaldehyde, scopoletin, quercetin and eugenol as potential inhibitors of FtsZ from Salmonella Typhi (stFtsZ) using computational, biochemical, and in vivo cell-based assays. Out of these five compounds, berberine chloride and cinnamaldehyde exhibited the best binding affinity of Kd = 7 μM and 10 μM, respectively and inhibit stFtsZ GTPase activity and polymerization by 70 %. The compound berberine chloride showed the best MIC of 500 μg/mL and 175 μg/mL against gram-negative and gram-positive bacterial strains. The findings support that these natural compounds can be used as a backbone structure to develop a broad spectrum of antibacterial agents.
Collapse
|
12
|
Andreu JM, Huecas S, Araújo-Bazán L, Vázquez-Villa H, Martín-Fontecha M. The Search for Antibacterial Inhibitors Targeting Cell Division Protein FtsZ at Its Nucleotide and Allosteric Binding Sites. Biomedicines 2022; 10:1825. [PMID: 36009372 PMCID: PMC9405007 DOI: 10.3390/biomedicines10081825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
The global spread of bacterial antimicrobial resistance is associated to millions of deaths from bacterial infections per year, many of which were previously treatable. This, combined with slow antibiotic deployment, has created an urgent need for developing new antibiotics. A still clinically unexploited mode of action consists in suppressing bacterial cell division. FtsZ, an assembling GTPase, is the key protein organizing division in most bacteria and an attractive target for antibiotic discovery. Nevertheless, developing effective antibacterial inhibitors targeting FtsZ has proven challenging. Here we review our decade-long multidisciplinary research on small molecule inhibitors of bacterial division, in the context of global efforts to discover FtsZ-targeting antibiotics. We focus on methods to characterize synthetic inhibitors that either replace bound GTP from the FtsZ nucleotide binding pocket conserved across diverse bacteria or selectively bind into the allosteric site at the interdomain cleft of FtsZ from Bacillus subtilis and the pathogen Staphylococcus aureus. These approaches include phenotype screening combined with fluorescence polarization screens for ligands binding into each site, followed by detailed cytological profiling, and biochemical and structural studies. The results are analyzed to design an optimized workflow to identify effective FtsZ inhibitors, and new approaches for the discovery of FtsZ-targeting antibiotics are discussed.
Collapse
Affiliation(s)
- José M. Andreu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain;
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
13
|
Ruiz FM, Huecas S, Santos-Aledo A, Prim EA, Andreu JM, Fernández-Tornero C. FtsZ filament structures in different nucleotide states reveal the mechanism of assembly dynamics. PLoS Biol 2022; 20:e3001497. [PMID: 35312677 PMCID: PMC8936486 DOI: 10.1371/journal.pbio.3001497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Treadmilling protein filaments perform essential cellular functions by growing from one end while shrinking from the other, driven by nucleotide hydrolysis. Bacterial cell division relies on the primitive tubulin homolog FtsZ, a target for antibiotic discovery that assembles into single treadmilling filaments that hydrolyse GTP at an active site formed upon subunit association. We determined high-resolution filament structures of FtsZ from the pathogen Staphylococcus aureus in complex with different nucleotide analogs and cations, including mimetics of the ground and transition states of catalysis. Together with mutational and biochemical analyses, our structures reveal interactions made by the GTP γ-phosphate and Mg2+ at the subunit interface, a K+ ion stabilizing loop T7 for co-catalysis, new roles of key residues at the active site and a nearby crosstalk area, and rearrangements of a dynamic water shell bridging adjacent subunits upon GTP hydrolysis. We propose a mechanistic model that integrates nucleotide hydrolysis signaling with assembly-associated conformational changes and filament treadmilling. Equivalent assembly mechanisms may apply to more complex tubulin and actin cytomotive filaments that share analogous features with FtsZ. Bacterial cell division critically relies on the tubulin homolog FtsZ, which assembles into filaments that treadmill, fuelled by GTP hydrolysis. This structural and biochemical study of FtsZ from Staphylocuccus aureus reveals the mechanism of GTP hydrolysis and its connection with filament dynamics.
Collapse
Affiliation(s)
- Federico M. Ruiz
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | - Elena A. Prim
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - José M. Andreu
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
- * E-mail: (JMA); (CFT)
| | | |
Collapse
|
14
|
Pradhan P, Margolin W, Beuria TK. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol 2021; 12:732796. [PMID: 34566937 PMCID: PMC8456036 DOI: 10.3389/fmicb.2021.732796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Widespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy. FtsZ, a bacterial cytoskeletal homolog of eukaryotic tubulin, plays a highly conserved and foundational role in cell division and has been the primary focus of research on small molecule cell division inhibitors. FtsZ contains two drug-binding pockets: the GTP binding site situated at the interface between polymeric subunits, and the inter-domain cleft (IDC), located between the N-terminal and C-terminal segments of the core globular domain of FtsZ. The majority of anti-FtsZ molecules bind to the IDC. Compounds that bind instead to the GTP binding site are much less useful as potential antimicrobial therapeutics because they are often cytotoxic to mammalian cells, due to the high sequence similarity between the GTP binding sites of FtsZ and tubulin. Fortunately, the IDC has much less sequence and structural similarity with tubulin, making it a better potential target for drugs that are less toxic to humans. Over the last decade, a large number of natural and synthetic IDC inhibitors have been identified. Here we outline the molecular structure of IDC in detail and discuss how it has become a crucial target for broad spectrum and species-specific antibacterial agents. We also outline the drugs that bind to the IDC and their modes of action.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | | |
Collapse
|
15
|
Huecas S, Araújo-Bazán L, Ruiz FM, Ruiz-Ávila LB, Martínez RF, Escobar-Peña A, Artola M, Vázquez-Villa H, Martín-Fontecha M, Fernández-Tornero C, López-Rodríguez ML, Andreu JM. Targeting the FtsZ Allosteric Binding Site with a Novel Fluorescence Polarization Screen, Cytological and Structural Approaches for Antibacterial Discovery. J Med Chem 2021; 64:5730-5745. [PMID: 33908781 PMCID: PMC8478281 DOI: 10.1021/acs.jmedchem.0c02207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacterial resistance to antibiotics makes previously manageable infections again disabling and lethal, highlighting the need for new antibacterial strategies. In this regard, inhibition of the bacterial division process by targeting key protein FtsZ has been recognized as an attractive approach for discovering new antibiotics. Binding of small molecules to the cleft between the N-terminal guanosine triphosphate (GTP)-binding and the C-terminal subdomains allosterically impairs the FtsZ function, eventually inhibiting bacterial division. Nonetheless, the lack of appropriate chemical tools to develop a binding screen against this site has hampered the discovery of FtsZ antibacterial inhibitors. Herein, we describe the first competitive binding assay to identify FtsZ allosteric ligands interacting with the interdomain cleft, based on the use of specific high-affinity fluorescent probes. This novel assay, together with phenotypic profiling and X-ray crystallographic insights, enables the identification and characterization of FtsZ inhibitors of bacterial division aiming at the discovery of more effective antibacterials.
Collapse
Affiliation(s)
- Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Federico M Ruiz
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura B Ruiz-Ávila
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - R Fernando Martínez
- Dept. Química Orgánica, Facultad de Ciencias Químicas, UCM, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Andrea Escobar-Peña
- Dept. Química Orgánica, Facultad de Ciencias Químicas, UCM, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Marta Artola
- Dept. Química Orgánica, Facultad de Ciencias Químicas, UCM, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Dept. Química Orgánica, Facultad de Ciencias Químicas, UCM, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mar Martín-Fontecha
- Dept. Química Orgánica, Facultad de Ciencias Químicas, UCM, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Carlos Fernández-Tornero
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María L López-Rodríguez
- Dept. Química Orgánica, Facultad de Ciencias Químicas, UCM, Avda. Complutense s/n, 28040 Madrid, Spain
| | - José M Andreu
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
16
|
FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division. Nat Commun 2021; 12:2448. [PMID: 33907196 PMCID: PMC8079713 DOI: 10.1038/s41467-021-22526-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the central role of division in bacterial physiology, how division proteins work together as a nanoscale machine to divide the cell remains poorly understood. Cell division by cell wall synthesis proteins is guided by the cytoskeleton protein FtsZ, which assembles at mid-cell as a dense Z-ring formed of treadmilling filaments. However, although FtsZ treadmilling is essential for cell division, the function of FtsZ treadmilling remains unclear. Here, we systematically resolve the function of FtsZ treadmilling across each stage of division in the Gram-positive model organism Bacillus subtilis using a combination of nanofabrication, advanced microscopy, and microfluidics to measure the division-protein dynamics in live cells with ultrahigh sensitivity. We find that FtsZ treadmilling has two essential functions: mediating condensation of diffuse FtsZ filaments into a dense Z-ring, and initiating constriction by guiding septal cell wall synthesis. After constriction initiation, FtsZ treadmilling has a dispensable function in accelerating septal constriction rate. Our results show that FtsZ treadmilling is critical for assembling and initiating the bacterial cell division machine. Bacterial cell division by cell wall synthesis proteins is guided by treadmilling filaments of the cytoskeleton protein FtsZ. Here authors use nanofabrication, advanced microscopy, and microfluidics to resolve the function of FtsZ treadmilling in the Gram-positive model organism Bacillus subtilis.
Collapse
|
17
|
Lv D, Li J, Ye S. The Assembly Switch Mechanism of FtsZ Filament Revealed by All-Atom Molecular Dynamics Simulations and Coarse-Grained Models. Front Microbiol 2021; 12:639883. [PMID: 33859629 PMCID: PMC8042166 DOI: 10.3389/fmicb.2021.639883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 01/14/2023] Open
Abstract
Bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, and assembles into dynamic filaments that are essential for cell division. Here, we used a multi-scale computational strategy that combined all-atom molecular dynamics (MD) simulations and coarse-grained models to reveal the conformational dynamics of assembled FtsZ. We found that the top end of a filament is highly dynamic and can undergo T-to-R transitions in both GTP- and GDP-bound states. We observed several subcategories of nucleation related dimer species, which leading to a feasible nucleation pathway. In addition, we observed that FtsZ filament exhibits noticeable amounts of twisting, indicating a substantial helicity of the FtsZ filament. These results agree with the previously models and experimental data. Anisotropy network model (ANM) analysis revealed a polymerization enhanced assembly cooperativity, and indicated that the cooperative motions in FtsZ are encoded in the structure. Taken together, our study provides a molecular-level understanding of the diversity of the structural states of FtsZ and the relationships among polymerization, hydrolysis, and cooperative assembly, which should shed new light on the molecular basis of FtsZ’s cooperativity.
Collapse
Affiliation(s)
- Dashuai Lv
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Institute of Quantitative Biology, Hangzhou, China
| | - Sheng Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
19
|
Battaje RR, Bhondwe P, Dhaked HPS, Panda D. Evidence of conformational switch in Streptococcus pneumoniae FtsZ during polymerization. Protein Sci 2020; 30:523-530. [PMID: 33341988 DOI: 10.1002/pro.4015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
FtsZ, the master coordinator of bacterial cell division, assembles into filaments in the presence of nucleotide. FtsZ from Streptococcus pneumoniae bears two tryptophan residues (W294 and W378) in its amino acid sequence. The tryptophan fluorescence of FtsZ increases during the assembly of FtsZ. We hypothesized that this increase in the fluorescence intensity was due to the change in the environment of one or both tryptophan residues. To examine this, we constructed two mutants (W294F and W378F) of FtsZ by individually replacing tryptophan with phenylalanine. The mutants displayed similar secondary structures, GTPase activity, and polymerization ability as the wild type FtsZ. During the polymerization, only one tryptophan (W294) showed an increase in its fluorescence intensity. Using time-correlated single-photon counting, the fluorescence lifetime of W294 was found to be significantly higher than W378, indicating that W294 was more buried in the structure than W378. The lifetime of W294 further increased during polymer formation, while that of W378 remained unchanged. Fluorescence quenching experiment suggested that the solvent exposure of W294 reduced during the polymerization of FtsZ. W294 is located near the T-7 loop of the protein, a region important for the monomer-monomer interaction during the formation of a protofilament. The results indicated that the region around W294 of S. pneumoniae FtsZ undergoes a conformational switch during polymerization as seen for FtsZ from other bacteria.
Collapse
Affiliation(s)
- Rachana Rao Battaje
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prajakta Bhondwe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
20
|
Andreu JM. How Protein Filaments Treadmill. Biophys J 2020; 119:717-720. [PMID: 32730792 DOI: 10.1016/j.bpj.2020.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- José M Andreu
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| |
Collapse
|
21
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
22
|
Naz F, Mashkoor M, Sharma P, Haque MA, Kapil A, Kumar M, Kaur P, Abdul Samath E. Drug repurposing approach to target FtsZ cell division protein from Salmonella Typhi. Int J Biol Macromol 2020; 159:1073-1083. [PMID: 32417543 DOI: 10.1016/j.ijbiomac.2020.05.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/04/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
Abstract
Drug repurposing is an efficient alternative approach to counter the increasing drug-resistant pathogens to treat infectious diseases. FtsZ is an essential bacterial cytokinesis protein involved in the formation of cell-division complex and targeting FtsZ using FDA approved drugs is a promising strategy to identify and develop a new antibacterial drug. Using in silico pharmacophore-based screening of drug bank, molecular docking and molecular dynamics simulations, we identified six drugs inhibiting the function of stFtsZ from Salmonella Typhi. The selected drugs target stFtsZ at the hydrophobic cleft formed between the C-terminal domain and helix α7 with binding energy better than -8 kcal/mol. Out of these six drugs, benzethonium chloride showed promising results at 8 μM concentration where it inhibits stFtsZ GTPase activity by 80% and prevents polymerization. Benzethonium chloride also possesses an excellent antibacterial activity against the bacterial culture of Salmonella Typhi (ATCC 19430), Staphylococcus aureus (ATCC 43300) and Escherichia coli (ATCC 25922) with the MIC values of 8 μg/mL, 1 μg/mL and 12 μg/mL, respectively. Based on our current study, the scaffold of benzethonium chloride can be used for the development of broad-spectrum antibacterial agents against drug-resistant pathogens.
Collapse
Affiliation(s)
- Farah Naz
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muneera Mashkoor
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
23
|
Huecas S, Canosa-Valls AJ, Araújo-Bazán L, Ruiz FM, Laurents DV, Fernández-Tornero C, Andreu JM. Nucleotide-induced folding of cell division protein FtsZ from Staphylococcus aureus. FEBS J 2020; 287:4048-4067. [PMID: 31997533 DOI: 10.1111/febs.15235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Abstract
The essential bacterial division protein FtsZ uses GTP binding and hydrolysis to assemble into dynamic filaments that treadmill around the Z-ring, guiding septal wall synthesis and cell division. FtsZ is a structural homolog of tubulin and a target for discovering new antibiotics. Here, using FtsZ from the pathogen S. aureus (SaFtsZ), we reveal that, prior to assembly, FtsZ monomers require nucleotide binding for folding; this is possibly relevant to other mesophilic FtsZs. Apo-SaFtsZ is essentially unfolded, as assessed by nuclear magnetic resonance and circular dichroism. Binding of GTP (≥ 1 mm) dramatically shifts the equilibrium toward the active folded protein. Supportingly, SaFtsZ refolded with GDP crystallizes in a native structure. Apo-SaFtsZ also folds with 3.4 m glycerol, enabling high-affinity GTP binding (KD 20 nm determined by isothermal titration calorimetry) similar to thermophilic stable FtsZ. Other stabilizing agents that enhance nucleotide binding include ethylene glycol, trimethylamine N-oxide, and several bacterial osmolytes. High salt stabilizes SaFtsZ without bound nucleotide in an inactive twisted conformation. We identified a cavity behind the SaFtsZ-GDP nucleotide-binding pocket that harbors different small compounds, which is available for extended nucleotide-replacing inhibitors. Furthermore, we devised a competition assay to detect any inhibitors that overlap the nucleotide site of SaFtsZ, or Escherichia coli FtsZ, employing osmolyte-stabilized apo-FtsZs and the specific fluorescence anisotropy change in mant-GTP upon dissociation from the protein. This robust assay provides a basis to screening for high-affinity GTP-replacing ligands, which combined with structural studies and phenotypic profiling should facilitate development of a next generation of FtsZ-targeting antibacterial inhibitors.
Collapse
Affiliation(s)
- Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Federico M Ruiz
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | | | - José M Andreu
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| |
Collapse
|
24
|
Ferrer-González E, Fujita J, Yoshizawa T, Nelson JM, Pilch AJ, Hillman E, Ozawa M, Kuroda N, Al-Tameemi HM, Boyd JM, LaVoie EJ, Matsumura H, Pilch DS. Structure-Guided Design of a Fluorescent Probe for the Visualization of FtsZ in Clinically Important Gram-Positive and Gram-Negative Bacterial Pathogens. Sci Rep 2019; 9:20092. [PMID: 31882782 PMCID: PMC6934700 DOI: 10.1038/s41598-019-56557-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Addressing the growing problem of antibiotic resistance requires the development of new drugs with novel antibacterial targets. FtsZ has been identified as an appealing new target for antibacterial agents. Here, we describe the structure-guided design of a new fluorescent probe (BOFP) in which a BODIPY fluorophore has been conjugated to an oxazole-benzamide FtsZ inhibitor. Crystallographic studies have enabled us to identify the optimal position for tethering the fluorophore that facilitates the high-affinity FtsZ binding of BOFP. Fluorescence anisotropy studies demonstrate that BOFP binds the FtsZ proteins from the Gram-positive pathogens Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus pneumoniae with Kd values of 0.6-4.6 µM. Significantly, BOFP binds the FtsZ proteins from the Gram-negative pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii with an even higher affinity (Kd = 0.2-0.8 µM). Fluorescence microscopy studies reveal that BOFP can effectively label FtsZ in all the above Gram-positive and Gram-negative pathogens. In addition, BOFP is effective at monitoring the impact of non-fluorescent inhibitors on FtsZ localization in these target pathogens. Viewed as a whole, our results highlight the utility of BOFP as a powerful tool for identifying new broad-spectrum FtsZ inhibitors and understanding their mechanisms of action.
Collapse
Affiliation(s)
- Edgar Ferrer-González
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-087, Japan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Julia M Nelson
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Alyssa J Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Elani Hillman
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Mayuki Ozawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Natsuko Kuroda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan
| | - Hassan M Al-Tameemi
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Edmond J LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Shiga, 525-8577, Japan.
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA.
| |
Collapse
|
25
|
Araújo‐Bazán L, Huecas S, Valle J, Andreu D, Andreu JM. Synthetic developmental regulator MciZ targets FtsZ across
Bacillus
species and inhibits bacterial division. Mol Microbiol 2019; 111:965-980. [DOI: 10.1111/mmi.14198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/20/2023]
Affiliation(s)
| | - Sonia Huecas
- Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Javier Valle
- Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
| | - David Andreu
- Department of Experimental and Health Sciences Universitat Pompeu Fabra Barcelona Spain
| | | |
Collapse
|
26
|
Lui HK, Gao W, Cheung KC, Jin WB, Sun N, Kan JW, Wong IL, Chiou J, Lin D, Chan EW, Leung YC, Chan TH, Chen S, Chan KF, Wong KY. Boosting the efficacy of anti-MRSA β-lactam antibiotics via an easily accessible, non-cytotoxic and orally bioavailable FtsZ inhibitor. Eur J Med Chem 2019; 163:95-115. [DOI: 10.1016/j.ejmech.2018.11.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
|
27
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Huecas S, Ramírez-Aportela E, Vergoñós A, Núñez-Ramírez R, Llorca O, Díaz JF, Juan-Rodríguez D, Oliva MA, Castellen P, Andreu JM. Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail. Biophys J 2017; 113:1831-1844. [PMID: 29045877 DOI: 10.1016/j.bpj.2017.08.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022] Open
Abstract
FtsZ is a self-assembling GTPase that forms, below the inner membrane, the mid-cell Z-ring guiding bacterial division. FtsZ monomers polymerize head to tail forming tubulin-like dynamic protofilaments, whose organization in the Z-ring is an unresolved problem. Rather than forming a well-defined structure, FtsZ protofilaments laterally associate in vitro into polymorphic condensates typically imaged on surfaces. We describe here nanoscale self-organizing properties of FtsZ assemblies in solution that underlie Z-ring assembly, employing time-resolved x-ray scattering and cryo-electron microscopy. We find that FtsZ forms bundles made of loosely bound filaments of variable length and curvature. Individual FtsZ protofilaments further bend upon nucleotide hydrolysis, highlighted by the observation of some large circular structures with 2.5-5° curvature angles between subunits, followed by disassembly end-products consisting of highly curved oligomers and 16-subunit -220 Å diameter mini-rings, here observed by cryo-electron microscopy. Neighbor FtsZ filaments in bundles are laterally spaced 70 Å, leaving a gap in between. In contrast, close contact between filament core structures (∼50 Å spacing) is observed in straight polymers of FtsZ constructs lacking the C-terminal tail, which is known to provide a flexible tether essential for FtsZ functions in cell division. Changing the length of the intrinsically disordered C-tail linker modifies the interfilament spacing. We propose that the linker prevents dynamic FtsZ protofilaments in bundles from sticking to one another, holding them apart at a distance similar to the lateral spacing observed by electron cryotomography in several bacteria and liposomes. According to this model, weak interactions between curved polar FtsZ protofilaments through their the C-tails may facilitate the coherent treadmilling dynamics of membrane-associated FtsZ bundles in reconstituted systems, as well as the recently discovered movement of FtsZ clusters around bacterial Z-rings that is powered by GTP hydrolysis and guides correct septal cell wall synthesis and cell division.
Collapse
Affiliation(s)
- Sonia Huecas
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | - Oscar Llorca
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain; Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | | | | | - María A Oliva
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Patricia Castellen
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain; Department of Chemistry, State University of Ponta Grossa, Paraná, Brazil
| | - José M Andreu
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
29
|
Fujita J, Maeda Y, Mizohata E, Inoue T, Kaul M, Parhi AK, LaVoie EJ, Pilch DS, Matsumura H. Structural Flexibility of an Inhibitor Overcomes Drug Resistance Mutations in Staphylococcus aureus FtsZ. ACS Chem Biol 2017; 12:1947-1955. [PMID: 28621933 PMCID: PMC5705026 DOI: 10.1021/acschembio.7b00323] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the effort to combat antibiotic resistance, inhibitors of the essential bacterial protein FtsZ have emerged as a promising new class of compounds with clinical potential. One such FtsZ inhibitor (TXA707) is associated with potent activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) that are resistant to current standard-of-care antibiotics. However, mutations in S. aureus FtsZ (SaFtsZ) that confer resistance to TXA707 have been observed, with mutations in the Gly196 and Gly193 residues being among the most prevalent. Here, we describe structural studies of an FtsZ inhibitor, TXA6101, which retains activity against MRSA isolates that express either G196S or G193D mutant FtsZ. We present the crystal structures of TXA6101 in complex with both wild-type SaFtsZ and G196S mutant SaFtsZ, as well the crystal structure of TXA707 in complex with wild-type SaFtsZ. Comparison of the three structures reveals a molecular basis for the differential targeting abilities of TXA6101 and TXA707. The greater structural flexibility of TXA6101 relative to TXA707 enables TXA6101 to avoid steric clashes with Ser196 and Asp193. Our structures also demonstrate that the binding of TXA6101 induces previously unobserved conformational rearrangements of SaFtsZ residues in the binding pocket. In aggregate, the structures reported in this work reveal key factors for overcoming drug resistance mutations in SaFtsZ and offer a structural basis for the design of FtsZ inhibitors with enhanced antibacterial potency and reduced susceptibility to mutational resistance.
Collapse
Affiliation(s)
- Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN
| | - Yoko Maeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN
| | - Malvika Kaul
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Ajit K. Parhi
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, NJ, 08852, USA
| | - Edmond J. LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Daniel S. Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Shiga 525-8577, JAPAN
| |
Collapse
|
30
|
Wagstaff JM, Tsim M, Oliva MA, García-Sanchez A, Kureisaite-Ciziene D, Andreu JM, Löwe J. A Polymerization-Associated Structural Switch in FtsZ That Enables Treadmilling of Model Filaments. mBio 2017; 8:e00254-17. [PMID: 28465423 PMCID: PMC5414002 DOI: 10.1128/mbio.00254-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial cell division in many organisms involves a constricting cytokinetic ring that is orchestrated by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at the site of division that have recently been shown to treadmill around the division ring, guiding septal wall synthesis. Here, using X-ray crystallography of Staphylococcus aureus FtsZ (SaFtsZ), we reveal how an FtsZ can adopt two functionally distinct conformations, open and closed. The open form is found in SaFtsZ filaments formed in crystals and also in soluble filaments of Escherichia coli FtsZ as deduced by electron cryomicroscopy. The closed form is found within several crystal forms of two nonpolymerizing SaFtsZ mutants and corresponds to many previous FtsZ structures from other organisms. We argue that FtsZ's conformational switch is polymerization-associated, driven by the formation of the longitudinal intersubunit interfaces along the filament. We show that such a switch provides explanations for both how treadmilling may occur within a single-stranded filament and why filament assembly is cooperative.IMPORTANCE The FtsZ protein is a key molecule during bacterial cell division. FtsZ forms filaments that organize cell membrane constriction, as well as remodeling of the cell wall, to divide cells. FtsZ functions through nucleotide-driven filament dynamics that are poorly understood at the molecular level. In particular, mechanisms for cooperative assembly (nonlinear dependency on concentration) and treadmilling (preferential growth at one filament end and loss at the other) have remained elusive. Here, we show that most likely all FtsZ proteins have two distinct conformations, a "closed" form in monomeric FtsZ and an "open" form in filaments. The conformational switch that occurs upon polymerization explains cooperativity and, in concert with polymerization-dependent nucleotide hydrolysis, efficient treadmilling of FtsZ polymers.
Collapse
Affiliation(s)
| | - Matthew Tsim
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - María A Oliva
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
31
|
Fujita J, Harada R, Maeda Y, Saito Y, Mizohata E, Inoue T, Shigeta Y, Matsumura H. Identification of the key interactions in structural transition pathway of FtsZ from Staphylococcus aureus. J Struct Biol 2017; 198:65-73. [PMID: 28456664 DOI: 10.1016/j.jsb.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
The tubulin-homolog protein FtsZ is essential for bacterial cell division. FtsZ polymerizes to form protofilaments that assemble into a contractile ring-shaped structure in the presence of GTP. Recent studies showed that FtsZ treadmilling coupled with the GTPase activity drives cell wall synthesis and bacterial cell division. The treadmilling caused by assembly and disassembly of FtsZ links to a conformational change of the monomer from a tense (T) to a relaxed (R) state, but considerable controversy still remains concerning the mechanism. In this study, we report crystal structures of FtsZ from Staphylococcus aureus corresponding to the T and R state conformations in the same crystal, indicating the structural equilibrium of the two state. The two structures identified a key residue Arg29, whose importance was also confirmed by our modified MD simulations. Crystal structures of the R29A mutant showed T and R state-like conformations with slight but important structural changes compared to those of wild-type. Collectively, these data provide new insights for understanding how intramolecular interactions are related to the structural transition of FtsZ.
Collapse
Affiliation(s)
- Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuhei Harada
- Graduate School of Pure and Applied Sciences/Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Yoko Maeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Saito
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuteru Shigeta
- Graduate School of Pure and Applied Sciences/Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|