1
|
Li G, Du Z, Wu C, Liu Y, Xu Y, Lavendomme R, Liang S, Gao EQ, Zhang D. Charge-transfer complexation of coordination cages for enhanced photochromism and photocatalysis. Nat Commun 2025; 16:546. [PMID: 39789017 PMCID: PMC11718061 DOI: 10.1038/s41467-025-55893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BArF-) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method. Enforced arrangement of the multiple electron-deficient pyridinium groups into one cage (1) leads to magnified positive electrostatic field and electron-accepting strength in favor of hosting electron-donating anions, including halides and tetraarylborates. The strong charge-transfer (CT) interactions activate guest-to-host photoinduced electron transfer (PET), leading to pronounced and regulable photochromisms. Both ground-state and radical structures of host and host-guest complexes have been unambiguously characterized by X-ray crystallography. The CT-enhanced PET also enables the use of 1 as an efficient photocatalyst for aerobic oxidation of tetraarylborates into biaryls and phenols. This work presents the solution assembly of soluble Zr-MOCs from cationic ligands with the assistance of solubilizing anions and highlights the great potential of harnessing host-guest CT for boosting PET-based functions and applications.
Collapse
Affiliation(s)
- Gen Li
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zelin Du
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chao Wu
- Department of Computer Science, Durham University, Durham, UK
| | - Yawei Liu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yan Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Shihang Liang
- State Key Laboratory of Petroleum Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing, Beijing, PR China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, PR China.
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, PR China.
| |
Collapse
|
2
|
Foretić B, Klaser T, Ovčar J, Lončarić I, Žilić D, Šantić A, Štefanić Z, Bjelopetrović A, Popović J, Picek I. The Reversible Electron Transfer Within Stimuli-Responsive Hydrochromic Supramolecular Material Containing Pyridinium Oxime and Hexacyanoferrate (II) Ions. Molecules 2024; 29:5611. [PMID: 39683770 DOI: 10.3390/molecules29235611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The structural and electronic features of the stimuli-responsive supramolecular inter-ionic charge-transfer material containing electron accepting N-benzylyridinium-4-oxime cation (BPA4+) and electron donating hexacyanoferrate (II) are reported. The study of reversible stimuli-induced transformation between hydrated reddish-brown (BPA4)4[Fe(CN)6]·10H2O and anhydrous blue (BPA4)4[Fe(CN)6] revealed the origin of observed hydrochromic behavior. The comparison of the crystal structures of decahydrate and anhydrous phase showed that subsequent exclusion/inclusion of lattice water molecules induces structural relocation of one BPA4+ that alter the donor-to-acceptor charge-transfer states, resulting in chromotropism seen as reversible reddish-brown to blue color changes. The decreased donor-acceptor distance in (BPA4)4[Fe(CN)6] enhanced charge-transfer interaction allowing charge separation via one-electron transfer, as evidenced by in-situ ESR and FTIR spectroscopies. The reversibility of hydrochromic behavior was demonstrated by in-situ HT-XRPD, hot-stage microscopic and in situ diffuse-reflectance spectroscopic analyses. The insight into electronic structural features was obtained with density functional theory calculations, employed to elucidate electronic structure for both compounds. The electrical properties of the phases during dehydration process were investigated by temperature-dependent impedance spectroscopy.
Collapse
Affiliation(s)
- Blaženka Foretić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, HR-10000 Zagreb, Croatia
| | - Teodoro Klaser
- Physics Department, Faculty of Science, University of Zagreb, Bijenička cesta 32, HR-10000 Zagreb, Croatia
| | - Juraj Ovčar
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Dijana Žilić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Ana Šantić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Zoran Štefanić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | | | - Jasminka Popović
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Igor Picek
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Hagiwara R, Yoshida R, Okeyoshi K. Bioinspired hydrogels: polymeric designs towards artificial photosynthesis. Chem Commun (Camb) 2024; 60:13314-13324. [PMID: 39484781 DOI: 10.1039/d4cc04033c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aquatic environments host various living organisms with active molecular systems, such as the enzymes in the thylakoid membrane that realise photosynthesis. Various challenges in achieving artificial photosynthesis, such as water splitting, have been studied using both inorganic and organic molecules. However, several problems persist, including diffusion-limited reactions and multiple redox reactions in the liquid phase. In this Feature Article, we discuss the significant challenges in using polymer networks as active mediators for photoinduced water splitting. In the creation of artificial chloroplasts, polymer networks offer various advantages, such as stable dispersions of multiple types of functional molecules and close molecular arrangements. To incorporate these features, stepwise synthesis and integration can be utilized during the hierarchical construction of polymer networks. The constituent molecules such as ruthenium complex and platinum nanoparticles in the photoinduced electron transfer circuits are closely arranged to smoothly operate forward reactions by polymer networks. The quantum efficiency of photoinduced H2 generation in gel systems is considerably higher than that of conventional solution systems. Additionally, a thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) network of microgels can be used to integrate catalytic nanoparticles into the inside by using the electrostatic interaction and the mesh size changes. By focusing on the redox changes of copolymerised molecules that induce swelling/shrinking at a constant temperature, active electron transfer can be precisely achieved using the coil-globule transition of the PNIPAAm having viologen. This article highlights the potential of polymer networks to develop strategies for active electron transfer and energy conversion systems similar to those found in living organisms.
Collapse
Affiliation(s)
- Reina Hagiwara
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Okeyoshi
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
4
|
Yu YT, Li SH, Li ZY, Zeng JG, Liu CJ, Li L. A novel viologen-based hybrid crystalline material for photochromic glass films, information storage and anti-counterfeiting. Dalton Trans 2024; 53:17565-17570. [PMID: 39392740 DOI: 10.1039/d4dt02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Information storage and anti-counterfeiting are two very important applications of photochromic materials. Photochromic materials with both information storage and anti-counterfeiting should meet the requirements including fast coloration, good stability and reversibility, low storage cost, and practical application value. Herein, a novel viologen-based coordination polymer, Cd[(pbpy)0.5(HBTC)Cl]·2H2O (1) (pbpy = 1,1'-[1,4-phenylenebis-(methylene)]bis(4,4'-bipyridinium); HBTC2- = 1,3,5-benzenetricarboxylic acid), has been constructed. Compound 1 not only exhibits selective amine sensing properties, but also shows excellent photochromic properties, and the anti-counterfeiting of a two-dimensional code can be also realized through the color-changing behavior. Meanwhile, photochromic glass films of compound 1 were prepared, and compared to traditional optical information storage technology, these photochromic glass films have better water resistance and stability, improving their practical application stability. This work has further enriched the application of photochromic materials in the field of sensing, anti-counterfeiting and information storage.
Collapse
Affiliation(s)
- Yang-Tao Yu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Shu-Hao Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Zhuo-Yu Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jian-Ge Zeng
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Chun-Jie Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Li Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
5
|
Zhang SY, Yang XD, Zhang YJ, Zhou JH, Liu SH, Sun JK. A Versatile Strategy for the Generation of Air-stable Radical-functionalized Materials. SMALL METHODS 2024; 8:e2301468. [PMID: 38295090 DOI: 10.1002/smtd.202301468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Indexed: 02/02/2024]
Abstract
The exploration of a facile approach to create structurally versatile substances carrying air-stable radicals is highly desired, but still a huge challenge in chemistry and materials science. Herein, a non-contact method to generate air-stable radicals by exposing pyridine/imidazole ring-bearing substances to volatile cyanuric chloride vapor, harnessed as a chemical fuel is reported. This remarkable feat is accomplished through a nucleophilic substitution reaction, wherein an intrinsic electron transfer event transpires spontaneously, originating from the chloride anion (Cl-) to the cationic nitrogen (N+) atom, ultimately giving rise to pyridinium/imidazolium radicals. Impressively, the generated radicals exhibit noteworthy stability in the air over one month owing to the delocalization of the unpaired electron through the extended and highly fused π-conjugated pyridinium/imidazolium-triazine unit. Such an approach is universal to diverse substances, including organic molecules, metal-organic complexes, hydrogels, polymers, and organic cage materials. Capitalizing on this versatile technique, surface radical functionalization can be readily achieved across diverse substrates. Moreover, the generated radical species showcase a myriad of high-performance applications, including mimicking natural peroxidase to accelerate oxidation reactions and achieving high-efficiency near-infrared photothermal conversion and photothermal bacterial inhibition.
Collapse
Affiliation(s)
- Su-Yun Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiao-Dong Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Ya-Jun Zhang
- College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Si-Hua Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
6
|
Getzner L, Paliwoda D, Vendier L, Lawson-Daku LM, Rotaru A, Molnár G, Cobo S, Bousseksou A. Combining electron transfer, spin crossover, and redox properties in metal-organic frameworks. Nat Commun 2024; 15:7192. [PMID: 39169011 PMCID: PMC11339071 DOI: 10.1038/s41467-024-51385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Hofmann coordination polymers (CPs) that couple the well-studied spin transition of the FeII central ion with electron-responsive ligands provide an innovative strategy toward multifunctional metal-organic frameworks (MOFs). Here, we developed a 2D planar network consisting of metal-cyanide-metal sheets in an unusual coordination mode, brought about by infinitely π-stacked redox-active bipyridinium derivatives as axial ligands. The obtained family of materials show vivid thermochromism attributed to electron transfer and/or electronic spin state change processes that can occur either independently or concomitantly. Importantly, the redox activity of the ligands within the structure leads to the quasi-reversible electrochemical reduction reaction on a spin-crossover complex at solid state. These observations have been confirmed via temperature-dependent single-crystal X-ray diffraction, magnetic measurements, Mössbauer, EPR, optical and vibrational spectroscopies as well as quantum chemical calculations.
Collapse
Affiliation(s)
- Livia Getzner
- LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
| | - Damian Paliwoda
- LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
| | - Laure Vendier
- LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
| | - Latévi Max Lawson-Daku
- Faculté des Sciences - Université de Genève, 30 quai Ernest Ansermet, CH-1211 Genève 4, Suisse, Switzerland
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Gábor Molnár
- LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
| | - Saioa Cobo
- LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France.
| | | |
Collapse
|
7
|
Huang MF, Cao LH, Zhou B. A solvent-controlled photoresponsive ionic hydrogen-bonded organic framework for encryption applications. Chem Commun (Camb) 2024; 60:3437-3440. [PMID: 38444288 DOI: 10.1039/d4cc00701h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two novel ionic hydrogen-bonded organic frameworks (iHOF-17 and iHOF-18) were obtained by integrating organosulfonic acids with amidine salts. Among them, iHOF-18 exhibits fast, reversible, and high-contrast UV-induced photochromic properties, and this property is solvent-controlled. This work provides valuable insights for designing advanced anti-counterfeiting techniques and encryption applications.
Collapse
Affiliation(s)
- Ming-Feng Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Bin Zhou
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
8
|
Li K, Ying J, Liu T, Tian A, Wang X. A series of viologen complexes containing thiophene and Br - dual fluorescent chromophores for continuous visual sensing of pH and Hg 2. Dalton Trans 2024; 53:2741-2748. [PMID: 38226649 DOI: 10.1039/d3dt03415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The mercury ion (Hg2+) is a typical high-toxicity substance that can cause severe damage to the environment and human bodies. For the detection of Hg2+, there are still significant challenges in the detection range and limit of detection (LOD). In this study, three viologen-based fluorescent probes are developed, CdCl4(Btybipy) (1), ZnBr4(Btybipy) (2), CdBr4(Btybipy) (3) (Btybipy = bis-1-thiophen-3-ylmethyl-[4,4']-bipyridinyl) through conventional solvent methods for detecting pH and Hg2+. Reversible discoloration and fluorescence response behaviour in the pH range of 4-12.8 is demonstrated by viologen-based fluorescent probes, which exhibit "ON-OFF-ON" signal changes. Compared with complex 1, it is surprising to find that complexes 2-3 display both fluorescence enhancement and fluorescence quenching simultaneously with the addition of different concentrations of Hg2+ (0-20 and 25-400 μM). There is broad linearity in the range of 0-20 and 50-300 μM with LODs of 2.14 and 3.13 nM, respectively. This occurrence of dual-signal modes is attributed to the participation of Br- and the thiophene S atom as dual chromophores in the coordination reaction of Hg2+. Dual-signal mode output, high sensitivity, wide detection range, and low LODs are exhibited by these fluorescent probes. The unique coordination reaction between Br- and the thiophene S atom with Hg2+ can provide a potential strategy for the exploitation of promising sensing platforms for monitoring Hg2+.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
9
|
Lu H, Zheng Z, Hou H, Bai Y, Qiu J, Wang J, Lin J. Fine-Tuning X-Ray Sensitivity in Organic-Inorganic Hybrids via an Unprecedented Mixed-Ligand Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305378. [PMID: 37939314 PMCID: PMC10767407 DOI: 10.1002/advs.202305378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Crystalline organic-inorganic hybrids, which exhibit colorimetric responses to ionizing radiation, have recently been recognized as promising alternatives to conventional X-ray dosimeters. However, X-ray-responsive organic-inorganic hybrids are scarce and the strategy to fine-tune their detection sensitivity remains elusive. Herein, an unprecedented mixed-ligand strategy is reported to modulate the X-ray detection efficacy of organic-inorganic hybrids. Deliberately blending the stimuli-responsive terpyridine carboxylate ligand (tpc- ) and the auxiliary pba- group with different ratios gives rise to two OD thorium-bearing clusters (Th-102 and Th-103) and a 1D coordination polymer (Th-104). Notably, distinct X-ray sensitivity is evident as a function of molar ratio of the tpc- ligand, following the trend of Th-102 > Th-103 > Th-104. Moreover, Th-102, which is exclusively built from the tpc- ligands with the highest degree of π-π interactions, exhibits the most sensitive radiochromic and fluorochromic responses toward X-ray with the lowest detection limit of 1.5 mGy. The study anticipates that this mixed-ligand strategy will be a versatile approach to tune the X-ray sensing efficacy of organic-inorganic hybrids.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Huiliang Hou
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Yaoyao Bai
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jie Qiu
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jian‐Qiang Wang
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Jian Lin
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| |
Collapse
|
10
|
Liu JY, Zhang XH, Fang H, Zhang SQ, Chen Y, Liao Q, Chen HM, Chen HP, Lin MJ. Novel Semiconductive Ternary Hybrid Heterostructures for Artificial Optoelectronic Synapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302197. [PMID: 37403302 DOI: 10.1002/smll.202302197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Synaptic devices that mimic biological synapses are considered as promising candidates for brain-inspired devices, offering the functionalities in neuromorphic computing. However, modulation of emerging optoelectronic synaptic devices has rarely been reported. Herein, a semiconductive ternary hybrid heterostructure is prepared with a D-D'-A configuration by introducing polyoxometalate (POM) as an additional electroactive donor (D') into a metalloviologen-based D-A framework. The obtained material features an unprecedented porous 8-connected bcu-net that accommodates nanoscale [α-SiW12 O40 ]4- counterions, displaying uncommon optoelectronic responses. Besides, the fabricated synaptic device based on this material can achieve dual-modulation of synaptic plasticity due to the synergetic effect of electron reservoir POM and photoinduced electron transfer. And it can successfully simulate learning and memory processes similar to those in biological systems. The result provides a facile and effective strategy to customize multi-modality artificial synapses in the field of crystal engineering, which opens a new direction for developing high-performance neuromorphic devices.
Collapse
Affiliation(s)
- Jing-Yan Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiang-Hong Zhang
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Hua Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qing Liao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hong-Ming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hui-Peng Chen
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
11
|
Zhang S, Liu X, Hao P, Li G, Shen J, Fu Y. Dual Photo-/Electrochromic Pyromellitic Diimide-Based Coordination Polymer. Inorg Chem 2023; 62:14912-14921. [PMID: 37667503 DOI: 10.1021/acs.inorgchem.3c01613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
By the combination of N,N'-bis(carboxymethyl)-pyromellitic diimide (H2CMPMD, 1) and zinc ions, a novel PMD-based coordination polymer (CP), [Zn(CMPMD)(DMF)1.5]·0.5DMF (2) (DMF = N,N'-dimethylformamide), has been prepared and characterized. 1 and 2 exhibit completely different photochromic properties, which are mainly reflected in the photoresponsive rate (5 s for 1 vs 1 s for 2) and coloration contrast (from colorless to light green for 1 vs green for 2). This phenomenon should be attributed to the introduction of zinc ions and the consequent formation of the distinct interfacial contacts of electron donors (EDs) and electron acceptors (EAs) (dn-π = 3.404 and 3.448 Å for 1 vs dn-π = 3.343, 3.359, 3.398, and 3.495 Å for 2), suggesting a subtle modulating effect of metal ions on interfacial contacts, photoinduced intermolecular electron transfer (PIET) and photochromic behaviors. Interestingly, the photochromic performance of 2 can be enhanced after the removal of coordinated DMF, which might be ascribed to the decrease of the distance of EDs/EAs caused by lattice shrinkage, which further improves the efficiency of PIET. Meanwhile, 2 displays rapid electrochromic behavior with an obvious reversible color change from colorless to green, which can be used in an electrochromic device. This work develops a new type of EA for the construction of stimuli-responsive functional materials with excellent dual photo-/electrochromic properties.
Collapse
Affiliation(s)
- Shimin Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Xiaoxia Liu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Pengfei Hao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Gaopeng Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Junju Shen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Yunlong Fu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
12
|
Luo Y, Liu JP, Li LK, Zang SQ. Multi-Stimuli-Responsive Chromic Behaviors of an All-in-One Viologen-Based Cd(II) Complex. Inorg Chem 2023; 62:14385-14392. [PMID: 37607345 DOI: 10.1021/acs.inorgchem.3c02070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A one-dimensional Cd(II) chain coordination polymer constructed by an electron-deficient viologen-anchored carboxylate ligand was successfully synthesized. Owing to the favorable stimuli-chromic properties of viologen, the title compound shows reversible photochromism, thermochromism, electrochromism, and naked-eye-detectable differentiable vapochromic response to different volatile amines. The chromic behaviors of it are ascribed to the formation of viologen radicals triggered by external stimuli. And the differentiated response to volatile amines is attributed to the size effect of the amines as well as the steric hindrance effect of forming α/β Cv-H···Namines interactions of the viologen unit to further affect the occurrence of electron transfer. Such an all-in-one crystalline material might have more practical applications in photoelectric, erasable inkless printing, light printing, and volatile amine detection fields.
Collapse
Affiliation(s)
- Yun Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jia-Pei Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
13
|
Kang M, Gao B, Zhang S, Hao P, Li G, Shen J, Fu Y. The effect of conjugation degree of aromatic carboxylic acids on electronic and photo-responsive behaviors of naphthalenediimide-based coordination polymers. Dalton Trans 2023; 52:12030-12037. [PMID: 37581277 DOI: 10.1039/d3dt01662e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Three novel naphthalenediimide-based (NDI-based) coordination polymers (CPs), namely [Cd(3-PMNDI)(2,2'-BPDC)] (1), [Cd2(3-PMNDI)1.5(4,4'-BPDC)2(H2O)3]·DMF (2) and [Cd(3-PMNDI)(4,4'-SDC)] (3) (2,2'-H2BPDC = 2,2'-biphenyldicarboxylic acid, 4,4'-H2BPDC = 4,4'-biphenyldicarboxylic acid, 4,4'-H2SDC = 4,4'-stilbenedicarboxylic acid, 3-PMNDI = N,N'-bis(3-pyridylmethyl)-1,4,5,8-naphthalenediimide, and DMF = N,N'-dimethylformamide), have been designed and synthesized here from electron-deficient PMNDI (electron acceptors, EAs) and electron-rich aromatic carboxylic acids (electron donors, EDs) in the presence of cadmium ions. The introduction of aromatic carboxylic acids with different sizes and conjugation degrees leads to the generation of a two-dimensional (2D) layer in 1, a two-fold interpenetrated three-dimensional (3D) network in 2 and an eight-fold interpenetrated 3D framework in 3. Furthermore, the use of distinct electron-donating aromatic carboxylic acids and the consequent different numbers and strengths of lone pair-π and π-π interactions in the interfacial contacts of EDs/EAs give rise to distinct intermolecular charge transfer (ICT) and initial colors of the three CPs, and consequently cause different photoinduced intermolecular electron transfer (PIET) and distinguishing photo-responsive behaviors (weak photochromic performance for 1, excellent photochromic properties for 2 and non-photochromism for 3). This study indicates that an appropriate ICT is beneficial for PIET, but too weak or too strong ICT is not conducive to PIET, which provides an effective strategy for the construction of functional CPs with distinguishing photo-responsive properties through the subtle balance of ICT and PIET.
Collapse
Affiliation(s)
- Ming Kang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Bohong Gao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Shimin Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Pengfei Hao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Gaopeng Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Junju Shen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Yunlong Fu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| |
Collapse
|
14
|
Sui Q, Wang HC, Zhang YY, Sun R, Jin XX, Wang BW, Wang L, Gao S. Piezochromism and Conductivity Modulations under High Pressure by Manipulating the Viologen Radical Concentration. Chemistry 2023; 29:e202301575. [PMID: 37306241 DOI: 10.1002/chem.202301575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Manipulating the radical concentration to modulate the properties in solid multifunctional materials is an attractive topic in various frontier fields. Viologens have the unique redox capability to generate radical states through reversible electron transfer (ET) under external stimuli. Herein, taking the viologens as the model, two kinds of crystalline compounds with different molecule-conjugated systems were designed and synthesized. By subjecting the specific model viologens to pressure, the cross-conjugated 2-X all exhibit much higher radical concentrations, along with more sensitive piezochromic behaviors, compared to the linear-conjugated 1-X. Unexpectedly, we find that the electrical resistance (R) of 1-NO3 decreased by three orders of magnitude with the increasing pressure, while that in high-radical-concentration 2-NO3 remained almost unchanged. To date, such unusual invariant conductivity has not been documented in molecular-based materials under high pressure, breaking the conventional wisdom that the generations of radicals are beneficial to improve conductivity. We highlight that adjusting the molecular conjugation modes can be used as an effective way to regulate the radical concentrations and thus modulate properties rationally.
Collapse
Affiliation(s)
- Qi Sui
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - He-Chong Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004, P. R. China
| | - Yan-Yan Zhang
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xin-Xin Jin
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
15
|
Yang XD, Zhou JH, Cui JW, Yang J, Jia HP, Sun JK, Zhang J. Long-Lived Multiple Charge Separation by Proton-Coupled Electron Transfer. Angew Chem Int Ed Engl 2023; 62:e202215591. [PMID: 36691958 DOI: 10.1002/anie.202215591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Multiple charge separation has been successfully realized by a proton-coupled electron transfer reaction in an organic cocrystal. Benefiting from the adjustable electronic energy level of the electron donor and acceptor through thermal-induced proton migration, distinct optical absorption behaviors combined with color changes to blue or green are observed in these charge-separated states. It is of interest to note that such charge-separated states exhibit a longer lifetime of over a month as a result of the excellent coplanarity and π-π interaction of the electron acceptors. Moreover, the enhanced absorption toward longer wavelengths endows the charge-separated state with near-infrared (808 nm) photothermal conversion for imaging and bacterial inhibition, whereby the conversion performance can be controlled by the degree of proton migration.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jing-Wang Cui
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jie Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Hong-Peng Jia
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
16
|
Yang Z, Fu Z, Liu H, Wu M, Li N, Wang K, Zhang ST, Zou B, Yang B. Pressure-induced room-temperature phosphorescence enhancement based on purely organic molecules with a folded geometry. Chem Sci 2023; 14:2640-2645. [PMID: 36908955 PMCID: PMC9993843 DOI: 10.1039/d3sc00172e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The pressure-dependent luminescence behavior of purely organic compounds is an important topic in the field of stimulus-responsive smart materials. However, the relevant studies are mainly limited to the investigation of fluorescence properties, while room-temperature phosphorescence (RTP) of purely organic compounds has not been investigated. Here, we filled in this gap regarding pressure-dependent RTP by using a model molecule selenanthrene (SeAN) with a folded geometry. For the first time to the best of our knowledge, a unique phenomenon involving pressure-induced RTP enhancement was discovered in an SeAN crystal, and an underlying mechanism involving folding-induced spin-orbit coupling enhancement was revealed. Pressure-induced RTP enhancement was also observed in an analog of SeAN also showing a folded geometry, but in this case yielded a white-light emission that is very rare in purely organic RTP-displaying materials.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Min Wu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
17
|
Lu H, Huang H, Yang J, Zheng Z, Dong X, Zhao L, Xu C, Hu J, Liu H, Qian Y, Wang JQ, Lin J. Incorporating Photochromic Viologen Derivative to Unprecedentedly Boost UV Sensitivity in Photoelectrochromic Hydrogel. ACS Sens 2023; 8:1609-1615. [PMID: 36853222 DOI: 10.1021/acssensors.2c02737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Developing ultraviolet (UV) radiation sensors featuring high sensitivity, ease of operation, and rapid readout is highly desired in diverse fields. However, the strategies to enhance sensitivity of UV detection remain limited particularly for photochromic materials, which show colorimetric response toward UV irradiation. Guided by our initial goal of facilitating easier handling, we formulated a viologen derivative ([H2L]-SC) incorporating hydrogel-based UV sensor which not only inherits the photochromism of [H2L]-SC but also engenders an unprecedented reversible photoelectrochromic response that is absent in either [H2L]-SC or hydrogel alone. Judicious synergy between photochromic [H2L]-SC and polyacrylamide (PAM) converts the colorimetric response of [H2L]-SC into the electrical resistance change of [H2L]-SC@PAM, which amplifies the UV sensitivity of [H2L]-SC by 2 orders of magnitude. Explicitly, the limit of detection (LOD) for UV decreases from 296.3 mJ/cm2 based on the UV-vis absorption spectra of [H2L]-SC to 2.83 mJ/cm2 derived from the resistance variation of [H2L]-SC@PAM. Moreover, linear correlation between the resistance reduction rate of [H2L]-SC@PAM and UV dose rate can be established, rendering it as a dual platform for quantifying both the accumulated UV dose and the instant dose rate. In addition, the proposed strategy based on constructing photoelectrochromic hybrids offers a new pathway to boost the UV sensitivity that could be universal for other photochromic materials.
Collapse
Affiliation(s)
- Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Hailong Huang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Junpu Yang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, P. R. China
| | - Zhaofa Zheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Xue Dong
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Lianjie Zhao
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Jun Hu
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, P. R. China
| |
Collapse
|
18
|
Shu Y, Liu L, Li BY, Jia ZW, Chen XX, Gao Y, Li R. Photochromic, fluorescence modulation and inkless printing of a zinc(II) inorganic–organic hybrid material based on 2,3-pyridinecarboxylic acid. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Tao CA, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Wen SZ, Zhong SD, Kan WQ, Zhao PS, He YC. Experimental and theoretical investigation on the hydrochromic property of a Ni(II)-containing coordination polymer with an inclined 2D → 3D polycatenation architecture. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Trovato V, Sfameni S, Rando G, Rosace G, Libertino S, Ferri A, Plutino MR. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022; 27:5709. [PMID: 36080476 PMCID: PMC9457686 DOI: 10.3390/molecules27175709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years thanks to the Internet of Things (IoT), the demand for the development of miniaturized and wearable sensors has skyrocketed. Among them, novel sensors for wearable medical devices are mostly needed. The aim of this review is to summarize the advancements in this field from current points of view, focusing on sensors embedded into textile fabrics. Indeed, they are portable, lightweight, and the best candidates for monitoring biometric parameters. The possibility of integrating chemical sensors into textiles has opened new markets in smart clothing. Many examples of these systems are represented by color-changing materials due to their capability of altering optical properties, including absorption, reflectance, and scattering, in response to different external stimuli (temperature, humidity, pH, or chemicals). With the goal of smart health monitoring, nanosized sol-gel precursors, bringing coupling agents into their chemical structure, were used to modify halochromic dyestuffs, both minimizing leaching from the treated surfaces and increasing photostability for the development of stimuli-responsive sensors. The literature about the sensing properties of functionalized halochromic azo dyestuffs applied to textile fabrics is reviewed to understand their potential for achieving remote monitoring of health parameters. Finally, challenges and future perspectives are discussed to envisage the developed strategies for the next generation of functionalized halochromic dyestuffs with biocompatible and real-time stimuli-responsive capabilities.
Collapse
Affiliation(s)
- Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Sebania Libertino
- Institute of Microelectronics and MicrosystemsCNR–IMM, Ottava Strada 5, 95121 Catania, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|
22
|
Parsimehr H, Ehsani A. Stimuli-Responsive Electrochemical Energy Storage Devices. CHEM REC 2022; 22:e202200075. [PMID: 35832003 DOI: 10.1002/tcr.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Electrochemical energy storage (EES) devices have been swiftly developed in recent years. Stimuli-responsive EES devices that respond to different external stimuli are considered the most advanced EES devices. The stimuli-responsive EES devices enhanced the performance and applications of the EES devices. The capability of the EES devices to respond to the various external stimuli due to produced advanced EES devices that distinguished the best performance and interactions in different situations. The stimuli-responsive EES devices have responsive behavior to different external stimuli including chemical compounds, electricity, photons, mechanical tensions, and temperature. All of these advanced responsiveness behaviors have originated from the functionality and specific structure of the EES devices. The multi-responsive EES devices have been recognized as the next generation of stimuli-responsive EES devices. There are two main steps in developing stimuli-responsive EES devices in the future. The first step is the combination of the economical, environmental, electrochemical, and multi-responsiveness priorities in an EES device. The second step is obtaining some advanced properties such as biocompatibility, flexibility, stretchability, transparency, and wearability in novel stimuli-responsive EES devices. Future studies on stimuli-responsive EES devices will be allocated to merging these significant two steps to improve the performance of the stimuli-responsive EES devices to challenge complicated situations.
Collapse
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
23
|
Li Q, Zhang Q, Xue ZZ, Hu JX, Wang GM. Photoactive Anthracene-9,10-dicarboxylic Acid for Tuning of Photochromism in the Cd/Zn Coordination Polymers. Inorg Chem 2022; 61:10792-10800. [PMID: 35796673 DOI: 10.1021/acs.inorgchem.2c01019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transfer photochromic materials with photo-triggered radicals have received huge interest from chemists due to their potentialities in anticounterfeiting, displays, energy conversion, and information storage. However, utilizing the sole carboxylic acid to synthesize novel electron transfer photochromic species is still confronted with huge challenges. Herein, an acentric three-dimensional network Cd2(ADC)2(DMF)2(H2O) (1; ADC = anthracene-9,10-dicarboxylate; DMF = N,N-dimethylformamide) and a two-dimensional layer Zn(ADC)(H2O)·DMA·H2O (2; DMA = N,N-dimethylacetamide) were synthesized and characterized via a photoactive H2ADC ligand. Both compounds exhibited electron transfer photochromism with the formation of radical photoproducts at the solid state, which was revealed by IR, UV-Vis absorption, photoluminescence and electron spin resonance spectra, and magnetic susceptibility measurements. Density functional theory calculations for 1 showed that the coloration process is a metal-assisted ligand-to-ligand electron transfer process between adjacent ADC molecules, and photogenerated stable radicals are delocalized over the ADC components. Compared with 1, the shorter distances between ADC components via coordination bonds promoted 2 to exhibit a higher coloration efficiency and larger quantity of photogenerated radicals. Furthermore, both compounds showed unexpected radical-actuated photochromism in aqueous solution. This work showed that the carboxylic acid ligands, without viologen acceptors, could construct the electron transfer photochromic complexes, showing a novel kind of ligand for the design of hybrid photochromic materials.
Collapse
Affiliation(s)
- Qi Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Qian Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
24
|
Yu S, Ying J, Tian A. Applications of Viologens in Organic and Inorganic Discoloration Materials. Chempluschem 2022; 87:e202200171. [PMID: 35876415 DOI: 10.1002/cplu.202200171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Indexed: 11/06/2022]
Abstract
Viologen derived from 4,4'-bipyridine has attracted much attention because of its color changing properties with electron transfer, unique redox stability and structural diversity. These characteristics have led to its successful use in various applications, in particular in color-changing materials. In the past few years, researchers have been working on the syntheses of viologen-based color-changing functional materials, and such materials have been widely used in many fields. In photochromic materials, it is used as anti-counterfeiting material; in thermochromic, it is used as memory storage material, and in electrochromic, it is used as a battery material. This Review discusses the progress of viologen in organic and inorganic discoloration materials in recent years. The syntheses of viologen and its derivatives are summarized, and its application in the field of discoloration materials is introduced.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
25
|
Li HY, Hua X, Fu T, Liu XF, Zang SQ. Photochromic and electrochromic properties of a viologen-based multifunctional Cd-MOF. Chem Commun (Camb) 2022; 58:7753-7756. [PMID: 35731228 DOI: 10.1039/d2cc02703h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of novel multifunctional MOF materials [Cd2(L)2(D/L-Lm)(H2O)2]·5H2O (denoted as D/L-Cd-MOF) has been synthesized by combining the viologen-functionalized ligand H2L+Cl- and chiral D/L-tartaric acid (H2Lm) with a simple solvothermal method. Due to the unique photoelectric response properties of the viologen units, reversible photochromic and electrochromic properties have been combined in D/L-Cd-MOF, which points to a new way of designing and constructing multifunctional photoelectric materials.
Collapse
Affiliation(s)
- Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ting Fu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Fei Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Li Q, Wei W, Xue Z, Mu Y, Pan J, Hu J, Wang G. Achieving an electron transfer photochromic complex for switchable white-light emission. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Photochromic characteristics, photomodulated luminescence and ammonia vapor sensing properties of three D-A supramolecular assemblies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Liu J, Zhang X, Zhang J, Zhang S, Chen Y, Chen H, Chen H, Lin M. Interpenetration of Donor-Acceptor Hybrid Frameworks for Highly Sensitive Thermal Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24575-24582. [PMID: 35588378 DOI: 10.1021/acsami.2c03578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Donor-acceptor (D-A) alignment that integrates D-A pairs into the modular and versatile crystalline metal-organic frameworks is a powerful strategy to precisely fabricate multifunctional materials with unique optoelectronic properties and applications at the molecular level. Herein, we reported an unprecedented threefold interpenetrating D-A hybrid framework by incorporating an electron-deficient linear viologen zwitterion into the lead-halide systems. The 1D iodoplumbate nanoribbon and interpenetrating close-packed D-A structure endowed this hitherto unknown semiconductive alignment with the anisotropic conductivity and high stability. When used in a thermal sensor, it presented exceptional electrical properties with a high sensitivity (high thermal index B of 4671 K) and decent temperature coefficient of resistivity (0.72% °C-1) in wide operational temperature ranges (40-220 °C), which are among the best of the related thermistors. This work develops a pathway to bridge the gaps between hybrid materials and electron devices.
Collapse
Affiliation(s)
- Jingyan Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xianghong Zhang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Jiangyan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuquan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou 350002, China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hongming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Meijin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
29
|
Nishiuchi T, Aibara S, Yamakado T, Kimura R, Saito S, Sato H, Kubo T. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs. Chemistry 2022; 28:e202200286. [PMID: 35333427 DOI: 10.1002/chem.202200286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Overcrowded ethylenes composed of 10-methyleneanthrone and two bulky aromatic rings contain a twisted carbon-carbon double (C=C) bond as well as a folded anthrone unit. As such, they are unique frustrated aromatic enes (FAEs). Various colored crystals of these FAEs, obtained in different solvents, correspond to multiple metastable conformations of the FAEs with various twist and fold angles of the C=C bond, as well as various dihedral angles of attached aryl units with respect to the C=C bond. The relationships between color and these parameters associated with conformational features around the C=C bond were elucidated in experimental and computational studies. Owing to the fact that they are separated by small energy barriers, the variously colored conformations in the FAE crystal change in response to various external stimuli, such as mechanical grinding, hydrostatic pressure and thermal heating.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Seito Aibara
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuya Yamakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Ryo Kimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
30
|
Cui S, Zhang W, Zhu B, Yuan N, Yu J, Sun Z, Li J, Zuo M. Two novel cadmium coordination polymers bearing viologen-derived ligand: Structure and photochromism properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Molecular salts of the isoniazid derivatives. Expanding the scope of sulfonate-pyridinium synthon to design materials. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
UV and X-ray dual photochromism of a Zn(II)-viologen coordination polymer and its application in inkless and erasable printing. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Synthesis and properties of a novel photochromic metal organic framework for rapid amine selective sensing and Cr2O72− detection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
A novel multifunctional Cd (II) coordination polymer based on viologen: photochromic, photocontrolled fluorescence and amines detection. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Zhu B, Jin Y, Chu J, Zuo M, Cui S. Metal-organic framework bearing new viologen ligand for ammonia and Cr 2O 7 2- sensing. RSC Adv 2022; 12:6951-6957. [PMID: 35424708 PMCID: PMC8982205 DOI: 10.1039/d2ra00599a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 01/03/2023] Open
Abstract
Three anionic metal-organic frameworks (MOFs) {[Zn3(BTEC)2(H2O)(4-BCBPY)]·(H2O)} n (1-3) (BTEC4- = 1,2,4,5-benzenetetracarboxylic acid anion, 4-BCBPY2+ = 1,1'-bis(4-cyanobenzyl)-4,4'-bipyridinium dication) were synthesized in the reaction of 1,2,4,5-benzenetetracarboxylic acid with different metal salts such as ZnNO3, ZnCl2, and ZnSO4, under solvothermal conditions in the presence of 1,1'-bis(4-cyanobenzyl)-4,4'-bipyridinium chloride. Single crystal X-ray diffraction analysis shows that compounds 1, 2 and 3 have MOF structures based on binuclear metal building units, which are connected by two protonated BTEC4- ligands and three zinc ions, and the viologen cation 4-BCBPY2+ is located in the channel to achieve charge balance. Compounds 1, 2 and 3 have good photosensitivity, respond to sunlight, UV light and blue ray, and turn blue. The D-A distance and π-π stacking distance of the discolored samples (1P, 2P and 3P) changed. In addition, the three compounds showed visible color changes to ammonia vapor, rapidly changing from white to blue. At the same time, the three compounds exhibited fluorescence quenching to ammonia vapor and Cr2O7 2-. It is further proved that compounds 1, 2 and 3 are fluorescent sensors with a low detection limit (for Cr2O7 2-: 10-5 M) and high sensitivity for ammonia vapor and Cr2O7 2-. It was found that photochromic behavior, ammonia sensing properties can be tuned by the nature of metal salts.
Collapse
Affiliation(s)
- Baili Zhu
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| | - Yunpeng Jin
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| | - Jingying Chu
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| | - Minghui Zuo
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| | - Shuxin Cui
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University Mudanjiang 157011 People's Republic of China
| |
Collapse
|
36
|
Zhang Q, Hu J, Li Q, Feng D, Gao Z, Wang G. Single molecule magnetic behavior and photo-enhanced proton conductivity in a series of photochromic complexes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Chen Z, Ye F, Shao T, Wu Y, Chen M, Zhang Y, Zhao X, Zou B, Ma Y. Stress-Dependent Multicolor Mechanochromism in Epoxy Thermosets Based on Rhodamine and Diaminodiphenylmethane Mechanophores. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhongtao Chen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fangjun Ye
- Beijing National Laboratory for Molecular Science, College of Chemistry, Peking University, Beijing 100871, China
| | - Tianyin Shao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Mao Chen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiuli Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Science, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Luo Y, Ying SW, Li SJ, Li LK, Li HY, Asad M, Zang SQ, Mak TCW. Photo/Electrochromic Dual Responsive Behavior of a Cage-like Zr(IV)-Viologen Metal-Organic Polyhedron (MOP). Inorg Chem 2022; 61:2813-2823. [PMID: 35113540 DOI: 10.1021/acs.inorgchem.1c03203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stable stimulus-responsive materials are highly desirable due to their widespread potential applications and growing demand in recent decades. Despite the fact that viologen derivatives have long been known as excellent photochromic and electrochromic materials, the development of stable viologen-based multifunctional smart materials with short coloration times remains an exciting topic. To obtain photochromic and electrochromic dual responsive materials, embedding the viologen ligand into a robust metal oxide cluster to increase its stability and sensitivity is an effective strategy. Herein, a viologen-based metal-organic polyhedron (MOP) {[Zr6L3(μ3-O)2(μ2-OH)6Cp6]·8Cl·CH3OH·DMF} [Zr-MOP-1; H2L·2Cl = 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium dichloride, and Cp = η5-C5H5] was successfully prepared and characterized. It consists of trinuclear Zr-oxygen secondary building units and exhibits reversible photochromic and electrochromic dual responsive behaviors. As expected, the designed robust viologen-based nanocage with a V2E3 (V = vertex, and E = edge) topology can maintain its stability and rapid photo/electrochromic behaviors with an obvious reversible change in color from purple (brown) to green, mainly due to the enclosed cluster structure and the abundant free viologen radicals that originate from the effective Cl → N and O → N electron transfers. Spectroelectrochemistry and theoretical calculations of this Zr-MOP were also performed to verify the chromic mechanism.
Collapse
Affiliation(s)
- Yun Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Si-Wei Ying
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shi-Jun Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Muhammad Asad
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
39
|
Palmquist MS, Gruschka MC, Dorsainvil JM, Delawder AO, Saak TM, Danielson MK, Barnes JC. Electrostatic loading and photoredox-based release of molecular cargo from oligoviologen-crosslinked microparticles. Polym Chem 2022; 13:2115-2122. [PMID: 36188127 PMCID: PMC9518833 DOI: 10.1039/d2py00249c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although on-demand cargo release has been demonstrated in a wide range of microparticle platforms, many existing methods lack specific loading interactions and/or undergo permanent damage to the microparticle to release...
Collapse
Affiliation(s)
- Mark S Palmquist
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Max C Gruschka
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Jovelt M Dorsainvil
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Abigail O Delawder
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Tiana M Saak
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Mary K Danielson
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Jonathan C Barnes
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
40
|
Hao P, Gao B, Li GP, Shen J, Fu Y. Ultrafast visible-light photochromic properties of naphthalenediimide-based coordination polymers for visual detecting/filtering blue light. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00100d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel naphthalenediimide-based (NDI-based) coordination polymers (CPs) [Cd∙(3-PMNDI)∙(HNDC)2∙(DMF)] (1) and [Cd∙(4-PMNDI)∙(NDC)]∙DMF (2) (H2NDC = 1,4-naphthalenedicarboxylic acid, 3-/4-PMNDI = N,N′-bis(3-/4-pyridylmethyl)-1,4,5,8-naphthalenediimide, DMF = N,N′-dimethylformamide), have been designed and synthesized, which are constructed...
Collapse
|
41
|
Zhu BL, Jin YP, Jiang J, Zuo MH, Cui SX. Two new photochromic supramolecular compositions based on viologen: photocontrolled fluorescence, aniline detection and inkless erasable printing performance. NEW J CHEM 2022. [DOI: 10.1039/d1nj04918f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two multifunctional supramolecular components synthesized by two different viologen ligands and pyromellitic acid.
Collapse
Affiliation(s)
- Bai-Li Zhu
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| | - Yun-Peng Jin
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| | - Jian Jiang
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| | - Ming-Hui Zuo
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| | - Shu-Xin Cui
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China
| |
Collapse
|
42
|
Hu K, Zeng L, Kong X, Huang Z, Yu J, Mei L, Chai Z, Shi W. Viologen‐Based Uranyl Coordination Polymers: Anion‐Induced Structural Diversity and the Potential as a Fluorescent Probe. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kong‐Qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Wen Zeng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐He Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Wei Huang
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Ji‐Pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Fang Chai
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Wei‐Qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
43
|
Pan QY, Sun ME, Zhang C, Li LK, Liu HL, Li KJ, Li HY, Zang SQ. A multi-responsive indium-viologen hybrid with ultrafast-response photochromism and electrochromism. Chem Commun (Camb) 2021; 57:11394-11397. [PMID: 34648612 DOI: 10.1039/d1cc05070b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel 0D organic-inorganic metal halide hybrid (C13H16N2O2)2InCl6·Cl (1) has been obtained by integrating the mono-viologen derivative with InCl3. Compound 1 exhibits reversible and ultrafast UV/sunlight/X-ray induced photochromic properties, as well as excellent electrochromic performance, which is the first example of an indium-based organic-inorganic chromic hybrid.
Collapse
Affiliation(s)
- Qiu-Yue Pan
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Meng-En Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Chong Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Hua-Li Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Kai-Jie Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| |
Collapse
|
44
|
Liu J, Lu Y, Liu N. The influence of secondary building linkers on the photochromism of bipyridinium-based complexes. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Yang DD, Zheng HW, Liang QF, Wu M, Li JB, Duan R, Jiang FB, Zheng XJ. A Multistimuli Responsive Crystalline Cd(II)-Viologen Coordination Polymer with Single-Crystal-Single-Crystal Transformation. Inorg Chem 2021; 60:13500-13509. [PMID: 34403261 DOI: 10.1021/acs.inorgchem.1c01832] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is necessary to develop stable and fast multistimuli responsive materials due to the growing demand in our daily life. In this work, a new viologen-based Cd-complex (1) exhibits multiple thermochromic and photochromic behaviors through 10 states with 7 colors. For example, it responds to both Cu Kα/Mo Kα X-ray sources and UV dual light quickly with a color change from colorless to dark blue (1X) (Cu Kα/Mo Kα X-ray sources) and cyan (1-UV) (UV light), respectively. Interestingly, it exhibits a three-step coloration phenomenon when heated, which is unprecedented in viologen compounds. Crystal 1 undergoes a color change to pink, blue, and brown under 130, 180, and 240 °C, respectively. In addition, upon fumigation, both 1P and 1Q undergo a decoloration process to colorless (1K) and yellow (1T), respectively. Four more states (1P, 1K, 1T, and 1O) obtained via dehydration-hydration treatment are all photochromic. More importantly, via single-crystal-single-crystal transformation (SC-SC), the photochromic and thermochromic behaviors of 1 were investigated from the molecular level, which is also rather rare for thermochromic species. The detailed electron donor and the pathways for electron transfer were clearly given according to the results of crystal structure. The colorful states upon external stimuli may be attributed to the multiple pathways for electron transfer.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Min Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Jia-Bin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ran Duan
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fu-Bin Jiang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
46
|
Minghui Zuo, Zhou J, Yu J, Cui S. Temperature Tuned Two Novel 3D Zn(II) Metal Organic Frameworks Exhibiting Luminescence Properties. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621070159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213891] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Sun Z, Ni Y, Prakasam T, Liu W, Wu H, Zhang Z, Di H, Baldridge KK, Trabolsi A, Olson MA. The Unusual Photochromic and Hydrochromic Switching Behavior of Cellulose-Embedded 1,8-Naphthalimide-Viologen Derivatives in the Solid-State. Chemistry 2021; 27:9360-9371. [PMID: 33831265 DOI: 10.1002/chem.202100601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 01/25/2023]
Abstract
Stimuli-responsive chromic materials such as photochromics, hydrochromics, thermochromics, and electrochromics have a long history of capturing the attention of scientists due to their potential industrial applications and novelty in popular culture. However, hybrid chromic materials that combine two or more stimuli-triggered color changing properties are not so well known. Herein, we report a design strategy that has led to a series of emissive 1,8-naphthalimide-viologen dyads which exhibit unusual dual photochromic and hydrochromic switching behavior in the solid-state when embedded in a cellulose matrix. This behavior manifests as reversible solid state fluorescence hydrochromism upon changes in atmospheric relative humidity (RH), and reversible solid state photochromism upon generation of a cellulose-stabilized viologen radical cation. In this design strategy, the bipyridinium unit serves as both a water-sensitive receptor for the hydrochromic fluorophore-receptor system, and a photochromic group, capable of eliciting its own visible colorimetric response, generating a fluorescence quenching radical cation with prolonged exposure to ultraviolet (UV) light. These dyes can be inkjet-printed onto cellulose paper or drop-cast as cellulose powder-based films and can be unidirectionally cycled between three different states which can be characteristically visualized under UV light or visible light. The material's photochromism, hydrochromism, and underlying mechanism of action was investigated using computational analysis, dynamic vapor sorption/desorption isotherms, electron paramagnetic resonance spectroscopy, and variable humidity UV-Vis adsorption and fluorescence spectroscopies.
Collapse
Affiliation(s)
- Zhimin Sun
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yanhai Ni
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois, USA
| | - Zhao Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Haiting Di
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Kim K Baldridge
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Ali Trabolsi
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois, USA
| |
Collapse
|
49
|
Kachwal V, Laskar IR. Mechanofluorochromism with Aggregation-Induced Emission (AIE) Characteristics: A Perspective Applying Isotropic and Anisotropic Force. Top Curr Chem (Cham) 2021; 379:28. [PMID: 34105028 DOI: 10.1007/s41061-021-00341-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Organic mechanofluorochromic (MFC) materials (that change their emission under anisotropic and isotropic pressure) have attracted a great attention in recent years due to their promising applications in sensing pressure, storage devices, security inks, three-dimensional (3D) printing, etc. Stimuli-responsive organic materials with aggregation-induced emission (AIE) characteristics would be an interesting class of materials to enrich the chemistry of MFC compounds. A diamond anvil cell (DAC) is a small tool that is employed to generate high and uniform pressure on materials over a small area. This article discusses the relationship between the chemical structure of AIE compounds and the change in emission properties under anisotropic (mechanical grinding) and isotropic (hydrostatic) pressure. The luminescent properties of such materials depend on the molecular rearrangement in the lattice, conformational changes, excited state transitions and weak intermolecular interactions. Hence, studying the change in luminescent property of these compounds under varying pressure will provide a deeper understanding of the excited-state properties of various emissive compounds with stress. The development of such materials and studies into the effect of pressure on their luminescence properties are summarized.
Collapse
Affiliation(s)
- Vishal Kachwal
- Department of Chemistry, BITS PILANI, Pilani campus, Pilani, India
| | | |
Collapse
|
50
|
Photochromism and photo-switchable luminescence properties of a methacrylate-based inorganic-organic hybrid compound. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|