1
|
Ang I, Yousafzai MS, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioeng 2024; 8:026109. [PMID: 38706957 PMCID: PMC11069407 DOI: 10.1063/5.0191765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.
Collapse
Affiliation(s)
- Ida Ang
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Pandey M, Suh YJ, Kim M, Davis HJ, Segall JE, Wu M. Mechanical compression regulates tumor spheroid invasion into a 3D collagen matrix. Phys Biol 2024; 21:036003. [PMID: 38574674 DOI: 10.1088/1478-3975/ad3ac5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Uncontrolled growth of tumor cells in confined spaces leads to the accumulation of compressive stress within the tumor. Although the effects of tension within 3D extracellular matrices (ECMs) on tumor growth and invasion are well established, the role of compression in tumor mechanics and invasion is largely unexplored. In this study, we modified a Transwell assay such that it provides constant compressive loads to spheroids embedded within a collagen matrix. We used microscopic imaging to follow the single cell dynamics of the cells within the spheroids, as well as invasion into the 3D ECMs. Our experimental results showed that malignant breast tumor (MDA-MB-231) and non-tumorigenic epithelial (MCF10A) spheroids responded differently to a constant compression. Cells within the malignant spheroids became more motile within the spheroids and invaded more into the ECM under compression; whereas cells within non-tumorigenic MCF10A spheroids became less motile within the spheroids and did not display apparent detachment from the spheroids under compression. These findings suggest that compression may play differential roles in healthy and pathogenic epithelial tissues and highlight the importance of tumor mechanics and invasion.
Collapse
Affiliation(s)
- Mrinal Pandey
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, United States of America
| | - Young Joon Suh
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, United States of America
| | - Minha Kim
- Department of Biological Sciences, Cornell University, 216 Stimson Hall, Ithaca, NY 14853, United States of America
| | - Hannah Jane Davis
- Department of Biological Sciences, Cornell University, 216 Stimson Hall, Ithaca, NY 14853, United States of America
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States of America
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, United States of America
| |
Collapse
|
3
|
Bertillot F, Andrique L, Ureña Martin C, Zajac O, de Plater L, Norton MM, Richard A, Alessandri K, Gurchenkov BG, Fage F, Asnacios A, Lamaze C, Das M, Maître JL, Nassoy P, Matic Vignjevic D. Compressive stress triggers fibroblasts spreading over cancer cells to generate carcinoma in situ organization. Commun Biol 2024; 7:184. [PMID: 38360973 PMCID: PMC10869726 DOI: 10.1038/s42003-024-05883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
At the early stage of tumor progression, fibroblasts are located at the outer edges of the tumor, forming an encasing layer around it. In this work, we have developed a 3D in vitro model where fibroblasts' layout resembles the structure seen in carcinoma in situ. We use a microfluidic encapsulation technology to co-culture fibroblasts and cancer cells within hollow, permeable, and elastic alginate shells. We find that in the absence of spatial constraint, fibroblasts and cancer cells do not mix but segregate into distinct aggregates composed of individual cell types. However, upon confinement, fibroblasts enwrap cancer cell spheroid. Using a combination of biophysical methods and live imaging, we find that buildup of compressive stress is required to induce fibroblasts spreading over the aggregates of tumor cells. We propose that compressive stress generated by the tumor growth might be a mechanism that prompts fibroblasts to form a capsule around the tumor.
Collapse
Affiliation(s)
- Fabien Bertillot
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Laetitia Andrique
- LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400, Talence, France
- Institut d'Optique Graduate School & CNRS UMR 5298, F-33400, Talence, France
- VoxCell, TBM-Core, CNRS UMS 3427 & INSERM US 005, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Carlos Ureña Martin
- Institut Curie, PSL Research University, CNRS UMR3666-INSERM U1143, F-75005, Paris, France
| | - Olivier Zajac
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
| | - Ludmilla de Plater
- Institut Curie, PSL Research University, U934/UMR3215, F-75005, Paris, France
| | - Michael M Norton
- VoxCell, TBM-Core, CNRS UMS 3427 & INSERM US 005, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Aurélien Richard
- LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400, Talence, France
- Institut d'Optique Graduate School & CNRS UMR 5298, F-33400, Talence, France
- VoxCell, TBM-Core, CNRS UMS 3427 & INSERM US 005, Univ. Bordeaux, F-33000, Bordeaux, France
| | - Kevin Alessandri
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
| | - Basile G Gurchenkov
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
| | - Florian Fage
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR7057, F-75013, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR7057, F-75013, Paris, France
| | - Christophe Lamaze
- Institut Curie, PSL Research University, CNRS UMR3666-INSERM U1143, F-75005, Paris, France
| | - Moumita Das
- Rochester Institute of Technology, Rochester, NY, USA
| | - Jean- Léon Maître
- Institut Curie, PSL Research University, U934/UMR3215, F-75005, Paris, France
| | - Pierre Nassoy
- LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400, Talence, France.
- Institut d'Optique Graduate School & CNRS UMR 5298, F-33400, Talence, France.
| | | |
Collapse
|
4
|
Lawson-Keister E, Zhang T, Nazari F, Fagotto F, Manning ML. Differences in boundary behavior in the 3D vertex and Voronoi models. PLoS Comput Biol 2024; 20:e1011724. [PMID: 38181065 PMCID: PMC10796063 DOI: 10.1371/journal.pcbi.1011724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 11/30/2023] [Indexed: 01/07/2024] Open
Abstract
An important open question in the modeling of biological tissues is how to identify the right scale for coarse-graining, or equivalently, the right number of degrees of freedom. For confluent biological tissues, both vertex and Voronoi models, which differ only in their representation of the degrees of freedom, have effectively been used to predict behavior, including fluid-solid transitions and cell tissue compartmentalization, which are important for biological function. However, recent work in 2D has hinted that there may be differences between the two models in systems with heterotypic interfaces between two tissue types, and there is a burgeoning interest in 3D tissue models. Therefore, we compare the geometric structure and dynamic sorting behavior in mixtures of two cell types in both 3D vertex and Voronoi models. We find that while the cell shape indices exhibit similar trends in both models, the registration between cell centers and cell orientation at the boundary are significantly different between the two models. We demonstrate that these macroscopic differences are caused by changes to the cusp-like restoring forces introduced by the different representations of the degrees of freedom at the boundary, and that the Voronoi model is more strongly constrained by forces that are an artifact of the way the degrees of freedom are represented. This suggests that vertex models may be more appropriate for 3D simulations of tissues with heterotypic contacts.
Collapse
Affiliation(s)
- Elizabeth Lawson-Keister
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, New York, United States of America
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fatemeh Nazari
- School of Biomedical Engineering, Ecole Centrale de Lille, Villeneuve-d’Ascq, France
- Centre de Recherche en Biologie cellulaire de Montpellier, University of Montpellier and CNRS, Montpellier, France
| | - François Fagotto
- Centre de Recherche en Biologie cellulaire de Montpellier, University of Montpellier and CNRS, Montpellier, France
| | - M. Lisa Manning
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
5
|
Boot RC, Roscani A, van Buren L, Maity S, Koenderink GH, Boukany PE. High-throughput mechanophenotyping of multicellular spheroids using a microfluidic micropipette aspiration chip. LAB ON A CHIP 2023; 23:1768-1778. [PMID: 36809459 PMCID: PMC10045894 DOI: 10.1039/d2lc01060g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 05/31/2023]
Abstract
Cell spheroids are in vitro multicellular model systems that mimic the crowded micro-environment of biological tissues. Their mechanical characterization can provide valuable insights in how single-cell mechanics and cell-cell interactions control tissue mechanics and self-organization. However, most measurement techniques are limited to probing one spheroid at a time, require specialized equipment and are difficult to handle. Here, we developed a microfluidic chip that follows the concept of glass capillary micropipette aspiration in order to quantify the viscoelastic behavior of spheroids in an easy-to-handle, more high-throughput manner. Spheroids are loaded in parallel pockets via a gentle flow, after which spheroid tongues are aspirated into adjacent aspiration channels using hydrostatic pressure. After each experiment, the spheroids are easily removed from the chip by reversing the pressure and new spheroids can be injected. The presence of multiple pockets with a uniform aspiration pressure, combined with the ease to conduct successive experiments, allows for a high throughput of tens of spheroids per day. We demonstrate that the chip provides accurate deformation data when working at different aspiration pressures. Lastly, we measure the viscoelastic properties of spheroids made of different cell lines and show how these are consistent with previous studies using established experimental techniques. In summary, our chip provides a high-throughput way to measure the viscoelastic deformation behavior of cell spheroids, in order to mechanophenotype different tissue types and examine the link between cell-intrinsic properties and overall tissue behavior.
Collapse
Affiliation(s)
- Ruben C Boot
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Alessio Roscani
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Samadarshi Maity
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
6
|
Park J, Kim S, Hong J, Jeon JS. Enabling perfusion through multicellular tumor spheroids promoting lumenization in a vascularized cancer model. LAB ON A CHIP 2022; 22:4335-4348. [PMID: 36226506 DOI: 10.1039/d2lc00597b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A tumor is composed of heterogeneous cell population, which is known as tumor stroma. In particular, blood vessels have an indispensable role in the tumor microenvironment acting as a key player in anti-cancer drug delivery. Recently, efforts have been made to accurately recapitulate the microenvironment by employing distinct cell types, however, the proper formation of perfusable tumor tissue is challenging. Here, perfusable tumor tissue is engineered by implanting multicellular tumor spheroids inside the microfluidic devices. Blood perfusion, spheroid growth, and vascular dynamics were monitored according to the spheroid composition and the contribution of internal and external vascular cells to spheroid perfusion was analyzed. Most notably, the increased penetration depth of fluorescence conjugated anti-cancer drug was observed in tri-culture spheroids. The implementation of tumor microenvironment reconstruction developed in this study not only creates a perfusable tumor vascular model but can also be utilized as a novel drug screening platform with patient-derived samples.
Collapse
Affiliation(s)
- Joonha Park
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Seunggyu Kim
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jiman Hong
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
7
|
Suh YJ, Pandey M, Segall JE, Wu M. Tumor spheroid invasion in epidermal growth factor gradients revealed by a 3D microfluidic device. Phys Biol 2022; 19:10.1088/1478-3975/ac54c7. [PMID: 35158347 PMCID: PMC8957059 DOI: 10.1088/1478-3975/ac54c7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
Epidermal growth factor (EGF), a potent cytokine, is known to promote tumor invasion bothin vivoandin vitro. Previously, we observed that single breast tumor cells (MDA-MB-231 cell line) embedded within a 3D collagen matrix displayed enhanced motility but no discernible chemotaxis in the presence of linear EGF gradients using a microfluidic platform. Inspired by a recent theoretical development that clustered mammalian cells respond differently to chemical gradients than single cells, we studied tumor spheroid invasion within a 3D extracellular matrix (ECM) in the presence of EGF gradients. We found that EGF gradients promoted tumor cell detachment from the spheroid core, and the position of the tumor spheroid core showed a mild chemotactic response towards the EGF gradients. For those tumor cells detached from the spheroids, they showed an enhanced motility response in contrast to previous experimental results using single cells embedded within an ECM. No discernible chemotactic response towards the EGF gradients was found for the cells outside the spheroid core. This work demonstrates that a cluster of tumor cells responds differently than single tumor cells towards EGF gradients and highlights the importance of a tumor spheroid platform for tumor invasion studies.
Collapse
Affiliation(s)
- Young Joon Suh
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853, United States of America
| | - Mrinal Pandey
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853, United States of America
| | - Jeffrey E Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States of America
| | - Mingming Wu
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853, United States of America
| |
Collapse
|
8
|
Mukhopadhyay D, De R. Growth kinetics and power laws indicate distinct mechanisms of cell-cell interactions in the aggregation process. Biophys J 2022; 121:481-490. [PMID: 34968426 PMCID: PMC8822615 DOI: 10.1016/j.bpj.2021.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/20/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023] Open
Abstract
Cellular aggregation is a complex process orchestrated by various kinds of interactions depending on the environment. Different interactions give rise to different pathways of cellular rearrangement and the development of specialized tissues. To distinguish the underlying mechanisms, in this theoretical work, we investigate the spontaneous emergence of tissue patterns from an ensemble of single cells on a substrate following three leading pathways of cell-cell interactions, namely, direct cell adhesion contacts, matrix-mediated mechanical interaction, and chemical signaling. Our analysis shows that the growth kinetics of the aggregation process are distinctly different for each pathway and bear the signature of the specific cell-cell interactions. Interestingly, we find that the average domain size and the mass of the clusters exhibit a power law growth in time under certain interaction mechanisms hitherto unexplored. Further, as observed in experiments, the cluster size distribution can be characterized by stretched exponential functions showing distinct cellular organization processes.
Collapse
Affiliation(s)
- Debangana Mukhopadhyay
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Rumi De
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
9
|
Wang X, Chen S, Nan H, Liu R, Ding Y, Song K, Shuai J, Fan Q, Zheng Y, Ye F, Jiao Y, Liu L. Abnormal Aggregation of Invasive Cancer Cells Induced by Collective Polarization and ECM-Mediated Mechanical Coupling in Coculture Systems. Research (Wash D C) 2021; 2021:9893131. [PMID: 34957406 PMCID: PMC8678614 DOI: 10.34133/2021/9893131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Studies on pattern formation in coculture cell systems can provide insights into many physiological and pathological processes. Here, we investigate how the extracellular matrix (ECM) may influence the patterning in coculture systems. The model coculture system we use is composed of highly motile invasive breast cancer cells, initially mixed with inert nonmetastatic cells on a 2D substrate and covered with a Matrigel layer introduced to mimic ECM. We observe that the invasive cells exhibit persistent centripetal motion and yield abnormal aggregation, rather than random spreading, due to a “collective pulling” effect resulting from ECM-mediated transmission of active contractile forces generated by the polarized migration of the invasive cells along the vertical direction. The mechanism we report may open a new window for the understanding of biological processes that involve multiple types of cells.
Collapse
Affiliation(s)
- Xiaochen Wang
- Beijing National Laboratory for Condensed Matte Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Shaohua Chen
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Ruchuan Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Yu Ding
- Beijing National Laboratory for Condensed Matte Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kena Song
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matte Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matte Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA.,Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Liyu Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.,Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| |
Collapse
|
10
|
Dey S, Das M. Differences in mechanical properties lead to anomalous phase separation in a model cell co-culture. SOFT MATTER 2021; 17:1842-1849. [PMID: 33403381 DOI: 10.1039/d0sm00836b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
During the morphogenesis of tissues and tumors, cells often interact with neighbors with different mechanical properties, but the understanding of its role is lacking. We use active Brownian dynamics simulations to study a model co-culture consisting of two types of cells with the same size and self-propulsion speed, but different mechanical stiffness and cell-cell adhesion. As time evolves, the system phase separates out into clusters with distinct morphologies and transport properties for the two cell types. The density structure factors and the growth of cell clusters deviate from behavior characteristic of the phase separation in binary fluids. Our results capture emergent structure and motility previously observed in co-culture experiments and provide mechanistic insights into intercellular phase separation during development and disease.
Collapse
Affiliation(s)
- Supravat Dey
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA.
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA.
| |
Collapse
|
11
|
Mulligan JA, Ling L, Leartprapun N, Fischbach C, Adie SG. Computational 4D-OCM for label-free imaging of collective cell invasion and force-mediated deformations in collagen. Sci Rep 2021; 11:2814. [PMID: 33531512 PMCID: PMC7854660 DOI: 10.1038/s41598-021-81470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Traction force microscopy (TFM) is an important family of techniques used to measure and study the role of cellular traction forces (CTFs) associated with many biological processes. However, current standard TFM methods rely on imaging techniques that do not provide the experimental capabilities necessary to study CTFs within 3D collective and dynamic systems embedded within optically scattering media. Traction force optical coherence microscopy (TF-OCM) was developed to address these needs, but has only been demonstrated for the study of isolated cells embedded within optically clear media. Here, we present computational 4D-OCM methods that enable the study of dynamic invasion behavior of large tumor spheroids embedded in collagen. Our multi-day, time-lapse imaging data provided detailed visualizations of evolving spheroid morphology, collagen degradation, and collagen deformation, all using label-free scattering contrast. These capabilities, which provided insights into how stromal cells affect cancer progression, significantly expand access to critical data about biophysical interactions of cells with their environment, and lay the foundation for future efforts toward volumetric, time-lapse reconstructions of collective CTFs with TF-OCM.
Collapse
Affiliation(s)
- Jeffrey A. Mulligan
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
12
|
Perez JE, Nagle I, Wilhelm C. Magnetic molding of tumor spheroids: emerging model for cancer screening. Biofabrication 2020; 13. [PMID: 33126227 DOI: 10.1088/1758-5090/abc670] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Three-dimensional tissue culture, and particularly spheroid models, have recently been recognized as highly relevant in drug screening, toxicity assessment and tissue engineering due to their superior complexity and heterogeneity akin to the in vivo microenvironment. However, limitations in size control, shape reproducibility and long maturation times hinder their full applicability. Here, we report a spheroid formation technique based on the magnetic aggregation of cells with internalized magnetic nanoparticles. The method yields magnetic spheroids with high sphericity and allows fine-tuning the final spheroid diameter. Moreover, cohesive spheroids can be obtained in less than 24 hours. We show the proof of concept of the method using the CT26 murine colon carcinoma cell line and how different cell proliferation and invasion potentials can be attained by varying the spheroid size. Additionally, we show how the spheroid maturation impacts cell invasion and doxorubicin penetrability, highlighting the importance of this parameter in drug screening and therapeutic applications. Finally, we demonstrate the capability of the method to allow the measurement of the spheroid surface tension, a relevant output parameter in the context of cancer cell invasion and metastasis. The method can accommodate other cell lines able to be magnetically labeled, as we demonstrate using the U-87 MG human glioblastoma cell line, and shows promise in the therapeutic screening at early time points of tissue formation, as well as in studies of drug and nanoparticle tumor penetration.
Collapse
Affiliation(s)
- Jose Efrain Perez
- Laboratoire Matiere et Systemes Complexes UMR CNRS 7057, University of Paris, Paris, FRANCE
| | - Irène Nagle
- Laboratoire Matiere et Systemes Complexes UMR CNRS 7057, University of Paris, Paris, FRANCE
| | - Claire Wilhelm
- Laboratoire Matiere et Systemes Complexes UMR CNRS 7057, University of Paris, Batiment Condorcet, 10 rue Alice Domon et Leonie Duquet, 75025 Paris Cedax 13, Paris, 75013, FRANCE
| |
Collapse
|
13
|
Huang YL, Shiau C, Wu C, Segall JE, Wu M. The architecture of co-culture spheroids regulates tumor invasion within a 3D extracellular matrix. ACTA ACUST UNITED AC 2020; 15:131-141. [PMID: 33033500 DOI: 10.1142/s1793048020500034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor invasion, the process by which tumor cells break away from their primary tumor and gain access to vascular systems, is an important step in cancer metastasis. Most current 3D tumor invasion assays consisted of single tumor cells embedded within an extracellular matrix (ECM). These assays taught us much of what we know today on how key biophysical (e.g. ECM stiffness) and biochemical (e.g. cytokine gradients) parameters within the tumor microenvironment guided and regulated tumor invasion. One limitation of the single tumor cell invasion assay was that it did not account for cell-cell adhesion within the tumor. In this article, we developed a micrometer scale 3D co-culture spheroid invasion assay that was compatible with microscopic imaging. Micrometer scale co-culture spheroids (1:1 ratio of metastatic breast cancer MDA-MB-231 and non-tumorigenic epithelial MCF-10A cells) were made using an array of microwells, and then were embedded within a collagen matrix in a microfluidic platform. Real time imaging of tumor spheroid invasion revealed that the spatial distribution of the two cell types within the tumor spheroid critically regulated tumor invasion. This work linked tumor architecture with tumor invasion and highlighted the importance of the biophysical cues within the bulk of the tumor in tumor invasion.
Collapse
Affiliation(s)
- Yu Ling Huang
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853
| | - Carina Shiau
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853
| | - Cindy Wu
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853
| | - Jeffrey E Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Mingming Wu
- Department of Biological and Environmental Engineering, 306 Riley-Robb Hall, Cornell University, Ithaca, NY 14853
| |
Collapse
|
14
|
Morley CD, Tordoff J, O'Bryan CS, Weiss R, Angelini TE. 3D aggregation of cells in packed microgel media. SOFT MATTER 2020; 16:6572-6581. [PMID: 32589183 DOI: 10.1039/d0sm00517g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In both natural and applied contexts, investigating cell self-assembly and aggregation within controlled 3D environments leads to improved understanding of how structured cell assemblies emerge, what determines their shapes and sizes, and whether their structural features are stable. However, the inherent limits of using solid scaffolding or liquid spheroid culture for this purpose restrict experimental freedom in studies of cell self-assembly. Here we investigate multi-cellular self-assembly using a 3D culture medium made from packed microgels as a bridge between the extremes of solid scaffolds and liquid culture. We find that cells dispersed at different volume fractions in this microgel-based 3D culture media aggregate into clusters of different sizes and shapes, forming large system-spanning networks at the highest cell densities. We find that the transitions between different states of assembly can be controlled by the level of cell-cell cohesion and by the yield stress of the packed microgel environment. Measurements of aggregate fractal dimension show that those with increased cell-cell cohesion are less sphere-like and more irregularly shaped, indicating that cell stickiness inhibits rearrangements in aggregates, in analogy to the assembly of colloids with strong cohesive bonds. Thus, the effective surface tension often expected to emerge from increased cell cohesion is suppressed in this type of cell self-assembly.
Collapse
Affiliation(s)
- Cameron D Morley
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jesse Tordoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher S O'Bryan
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA and Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Cambridge, MA, USA and Massachusetts Institute of Technology, Synthetic Biology Center, Cambridge, MA, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA and Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA and J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
15
|
Huang YL, Ma Y, Wu C, Shiau C, Segall JE, Wu M. Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion. Sci Rep 2020; 10:9648. [PMID: 32541776 PMCID: PMC7295764 DOI: 10.1038/s41598-020-66528-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor invasion within the interstitial space is critically regulated by the force balance between cell-extracellular matrix (ECM) and cell-cell interactions. Interstitial flows (IFs) are present in both healthy and diseased tissues. However, the roles of IFs in modulating cell force balance and subsequently tumor invasion are understudied. In this article, we develop a microfluidic model in which tumor spheroids are embedded within 3D collagen matrices with well-defined IFs. Using co-cultured tumor spheroids (1:1 mixture of metastatic and non-tumorigenic epithelial cells), we show that IFs downregulate the cell-cell adhesion molecule E-cadherin on non-tumorigenic cells and promote tumor invasion. Our microfluidic model advances current tumor invasion assays towards a more physiologically realistic model using tumor spheroids instead of single cells under perfusion. We identify a novel mechanism by which IFs can promote tumor invasion through an influence on cell-cell adhesion within the tumor and highlight the importance of biophysical parameters in regulating tumor invasion.
Collapse
Affiliation(s)
- Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yujie Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Cindy Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Carina Shiau
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jeffrey E Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461, New York, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Sahu P, Sussman DM, Rübsam M, Mertz AF, Horsley V, Dufresne ER, Niessen CM, Marchetti MC, Manning ML, Schwarz JM. Small-scale demixing in confluent biological tissues. SOFT MATTER 2020; 16:3325-3337. [PMID: 32196025 DOI: 10.1039/c9sm01084j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.
Collapse
Affiliation(s)
- Preeti Sahu
- Department of Physics and BioInspired Syracuse, Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA.
| | - Daniel M Sussman
- Department of Physics and BioInspired Syracuse, Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA. and Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Matthias Rübsam
- Department of Dermatology, CECAD Cologne, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Aaron F Mertz
- Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Eric R Dufresne
- Department of Physics, Yale University, New Haven, CT 06520, USA and Departments of Mechanical Engineering and Materials Science, Chemical and Environmental Engineering, and Cell Biology, Yale University, New Haven, CT 06520, USA and Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Carien M Niessen
- Department of Dermatology, CECAD Cologne, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - M Cristina Marchetti
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - M Lisa Manning
- Department of Physics and BioInspired Syracuse, Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA.
| | - J M Schwarz
- Department of Physics and BioInspired Syracuse, Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA. and Indian Creek Farm, Ithaca, NY 14850, USA
| |
Collapse
|
17
|
Fang G, Lu H, Law A, Gallego-Ortega D, Jin D, Lin G. Gradient-sized control of tumor spheroids on a single chip. LAB ON A CHIP 2019; 19:4093-4103. [PMID: 31712797 DOI: 10.1039/c9lc00872a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multicellular tumor spheroids are attracting more attention as a physiologically relevant in vitro tumor model for biomedical research. The size of spheroids is one of the critical parameters related to drug penetration and cellular responses. It remains challenging to generate a large number of gradient-sized spheroids in one culture vessel. Here, a liquid-dome method was used to simultaneously produce more than 200 gradient-sized spheroids on an agarose chip. Surface tension effect was used to modulate the liquid spatial distribution and achieve a range of spheroid sizes. MCF-7 cells formed multiple spheroids on the chips for concept validation. It showed that different configurations of the liquid domes exhibited different levels of size control. Relative to the smallest spheroids in the configuration, hemispheric and square domes produced spheroids up to 3.4 and 12.8-fold larger in area, respectively. In addition, the co-culture of MCF-7 and fibroblasts helped to elucidate the tendency of fibroblasts towards the spheroid center. Other size-dependent behaviors were profiled; larger spheroids behaved differently from smaller spheroids in terms of spheroid growth, drug penetration and cellular responses. This method breaks the boundary between the preparation of gradient-sized spheroids and significant time/labour demand. It can be useful for drug screening and in vitro tumor modelling.
Collapse
Affiliation(s)
- Guocheng Fang
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Hongxu Lu
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Andrew Law
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - David Gallego-Ortega
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia and St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia. and UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| |
Collapse
|
18
|
Qi Y, Lohman J, Bratlie KM, Peroutka-Bigus N, Bellaire B, Wannemuehler M, Yoon KJ, Barrett TA, Wang Q. Vitamin C and B 3 as new biomaterials to alter intestinal stem cells. J Biomed Mater Res A 2019; 107:1886-1897. [PMID: 31071241 PMCID: PMC6626554 DOI: 10.1002/jbm.a.36715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
Vitamin C (ascorbic acid) and vitamin B3 (niacin) have been extensively studied since the 20th century. In the area of stem cell biology, vitamin C has shown its direct impact toward homeostasis and epigenetic changes (D'Aniello et al., Stem Cells International, 2017, 1-16). Vitamin B3 aids in maintaining healthy intestinal homeostasis and reducing gut inflammation by participating in the rapamycin signaling pathway (Kumar et al., The American Journal of Physiology-Gastrointestinal and Liver Physiology, 2013). In this study, vitamin C and vitamin B3 (600 and 1,200 μg/mL) have been explored as potential new biomaterials to study their effects on four types of intestinal stem cells which are isolated from mice bearing different microbiota. We observed that C3H ASF and 129 ASF IL-10 are more sensitive towardB7 600 μg/mL vitamin B3 and 1,200 μg/mL vitamin C. The lowest growth rate and viability for all types of organoids was with 1,200 μg/mL vitamin C. From quantitative polymerase chain reaction analysis (qPCR analysis), MUC2 was upregulated for 129 ASF and C3H Conv when exposed to 600 μg/mL and 1,200 μg/mL vitamin C. It suggests that large amounts of glycoprotein may be produced after adding high concentrations of vitamin C. Since inflammatory bowel disease has low level of MUC2, this finding may be helpful in restoring mucosal health by upregulating the MUC2 gene while altering patient's microbiota (Sibila et al., Annals of the American Thoracic Society, 2016). These results are expected to have a positive translational impact because this bottom-up strategy would be instrumental in developing Vitamin C and B3 based orally available therapeutic strategies and formula for advancing the fields of gastrointestinal regenerative medicine.
Collapse
Affiliation(s)
- Yijun Qi
- Department of Chemical and Biological Engineering, Iowa State University
| | - Jo Lohman
- Department of Chemical and Biological Engineering, Iowa State University
| | - Kaitlin M Bratlie
- Department of Chemical and Biological Engineering, Iowa State University
- Department of Materials Science and Engineering, Iowa State University
| | | | - Bryan Bellaire
- Department of Vet Microbiology and Preventive Medicine, Iowa State University
| | | | - Kyoung-Jin Yoon
- Department of Vet Diagnostic and Production Animal Medicine, Iowa State University
| | - Terrence A Barrett
- Department of Internal Medicine, Division of Gastroenterology, University of Kentucky
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University
| |
Collapse
|
19
|
Mulligan JA, Feng X, Adie SG. Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy. Sci Rep 2019; 9:4086. [PMID: 30858424 PMCID: PMC6411852 DOI: 10.1038/s41598-019-40608-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular traction forces (CTFs) play an integral role in both physiological processes and disease, and are a topic of interest in mechanobiology. Traction force microscopy (TFM) is a family of methods used to quantify CTFs in a variety of settings. State-of-the-art 3D TFM methods typically rely on confocal fluorescence microscopy, which can impose limitations on acquisition speed, volumetric coverage, and temporal sampling or coverage. In this report, we present the first quantitative implementation of a new TFM technique: traction force optical coherence microscopy (TF-OCM). TF-OCM leverages the capabilities of optical coherence microscopy and computational adaptive optics (CAO) to enable the quantitative reconstruction of 3D CTFs in scattering media with minute-scale temporal sampling. We applied TF-OCM to quantify CTFs exerted by isolated NIH-3T3 fibroblasts embedded in Matrigel, with five-minute temporal sampling, using images spanning a 500 × 500 × 500 μm3 field-of-view. Due to the reliance of TF-OCM on computational imaging methods, we have provided extensive discussion of the equations, assumptions, and failure modes of these methods. By providing high-throughput, label-free, volumetric imaging in scattering media, TF-OCM is well-suited to the study of 3D CTF dynamics, and may prove advantageous for the study of large cell collectives, such as the spheroid models prevalent in mechanobiology.
Collapse
Affiliation(s)
- Jeffrey A Mulligan
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Xinzeng Feng
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Steven G Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
20
|
Suh YJ, Hall MS, Huang YL, Moon SY, Song W, Ma M, Bonassar LJ, Segall JE, Wu M. Glycation of collagen matrices promotes breast tumor cell invasion. Integr Biol (Camb) 2019; 11:109-117. [PMID: 31041443 PMCID: PMC6824929 DOI: 10.1093/intbio/zyz011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/17/2023]
Abstract
Cancer metastasis is a physical process in which tumor cells break away from the primary tumor, enter, and then exit the blood or lymph vessels, and establish secondary tumors in distant organs. Current clinical studies report a higher risk of cancer metastasis for diabetics than non-diabetics. However, due to complex overlapping risk factors between diabetes and cancer, the mechanism underlying this correlation is largely unknown. Elevated lifetime blood sugar levels in diabetics are known to increase glycation of collagen, causing stiffening of the ECM and connective tissue. In this study, we explored the roles of glycation of 3D collagen matrices in tumor cell invasion and migration. Using time-lapse images, we quantitatively compared the motility behavior of malignant breast tumor cells (MDA-MB-231) and co-culture spheroids (1:1 ratio of MDA-MB-231 cells with normal epithelial MCF-10A cells) embedded in glycated and non-glycated collagen matrices of various concentrations. Experimental results demonstrated that glycation increased tumor invasion within collagen matrices. More specifically, the average speed of MDA-MB-231 cells was higher in glycated collagen gels than in non-glycated collagen gels for all three gel concentrations tested. Cell spreading characterized by its diffusion coefficient or the effective spheroid radii at various time points was significantly greater in glycated collagen than in non-glycated collagen at a concentration of 3.5 mg/mL. This enhancement was moderate and less evident at lower collagen concentrations of 1.0 and 2.0 mg/mL. These results suggest a possible biomechanical link that relates to the high blood sugar level in diabetic patients and the cancer metastatic outcome.
Collapse
Affiliation(s)
- Young Joon Suh
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Matthew S. Hall
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - So Youn Moon
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey E. Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Durand-Herrera D, Campos F, Jaimes-Parra BD, Sánchez-López JD, Fernández-Valadés R, Alaminos M, Campos A, Carriel V. Wharton's jelly-derived mesenchymal cells as a new source for the generation of microtissues for tissue engineering applications. Histochem Cell Biol 2018; 150:379-393. [PMID: 29931444 DOI: 10.1007/s00418-018-1685-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/25/2022]
Abstract
Microtissues (MT) are currently considered as a promising alternative for the fabrication of natural, 3D biomimetic functional units for the construction of bio-artificial substitutes by tissue engineering (TE). The aim of this study was to evaluate the possibility of generating mesenchymal cell-based MT using human umbilical cord Wharton's jelly stromal cells (WJSC-MT). MT were generated using agarose microchips and evaluated ex vivo during 28 days. Fibroblasts MT (FIB-MT) were used as control. Morphometry, cell viability and metabolism, MT-formation process and ECM synthesis were assessed by phase-contrast microscopy, functional biochemical assays, and histological analyses. Morphometry revealed a time-course compaction process in both MT, but WJSC-MT resulted to be larger than FIB-MT in all days analyzed. Cell viability and functionality evaluation demonstrated that both MT were composed by viable and metabolically active cells, especially the WJSC during 4-21 days ex vivo. Histology showed that WJSC acquired a peripheral pattern and synthesized an extracellular matrix-rich core over the time, what differed from the homogeneous pattern observed in FIB-MT. This study demonstrates the possibility of using WJSC to create MT containing viable and functional cells and abundant extracellular matrix. We hypothesize that WJSC-MT could be a promising alternative in TE protocols. However, future cell differentiation and in vivo studies are still needed to demonstrate the potential usefulness of WJSC-MT in regenerative medicine.
Collapse
Affiliation(s)
- D Durand-Herrera
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Doctoral Programme in Biomedicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - B D Jaimes-Parra
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
| | - J D Sánchez-López
- Division of Maxillofacial Surgery, University Hospital Complex of Granada, Granada, Spain
| | - R Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Pediatric Surgery, University Hospital Complex of Granada, Granada, Spain
| | - M Alaminos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - A Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - V Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
22
|
Song L, Tsai AC, Yuan X, Bejoy J, Sart S, Ma T, Li Y. Neural Differentiation of Spheroids Derived from Human Induced Pluripotent Stem Cells-Mesenchymal Stem Cells Coculture. Tissue Eng Part A 2018; 24:915-929. [PMID: 29160172 DOI: 10.1089/ten.tea.2017.0403] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Organoids, the condensed three-dimensional (3D) tissues emerged at the early stage of organogenesis, are a promising approach to regenerate functional and vascularized organ mimics. While incorporation of heterotypic cell types, such as human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cells (hiPSCs)-derived neural progenitors aid neural organ development, the interactions of secreted factors during neurogenesis have not been well understood. The objective of this study is to investigate the impact of the composition and structure of 3D hybrid spheroids of hiPSCs and hMSCs on dorsal cortical differentiation and the secretion of extracellular matrices and trophic factors in vitro. The hybrid spheroids were formed at different hiPSC:hMSC ratios (100:0, 75:25, 50:50, 25:75, 0:100) using direct mixing or pre-hiPSC aggregation method, which generated dynamic spheroid structure. The cellular organization, proliferation, neural marker expression, and the secretion of extracellular matrix proteins and the cytokines were characterized. The incorporation of MSCs upregulated Nestin and β-tubulin III expression (the dorsal cortical identity was shown by Pax6 and TBR1 expression), matrix remodeling proteins, and the secretion of transforming growth factor-β1 and prostaglandin E2. This study indicates that the appropriate composition and structure of hiPSC-MSC spheroids promote neural differentiation and trophic factor and matrix secretion due to the heterotypic cell-cell interactions.
Collapse
Affiliation(s)
- Liqing Song
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Ang-Chen Tsai
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Xuegang Yuan
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Julie Bejoy
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Sébastien Sart
- 2 Hydrodynamics Laboratory (LadHyX) , Department of Mechanics, Ecole Polytechnique, CNRS-UMR7646, Palaiseau, France
| | - Teng Ma
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| | - Yan Li
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University; Tallahassee , Florida
| |
Collapse
|
23
|
Mulligan JA, Bordeleau F, Reinhart-King CA, Adie SG. Traction Force Microscopy for Noninvasive Imaging of Cell Forces. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:319-349. [PMID: 30368759 DOI: 10.1007/978-3-319-95294-9_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The forces exerted by cells on their surroundings play an integral role in both physiological processes and disease progression. Traction force microscopy is a noninvasive technique that enables the in vitro imaging and quantification of cell forces. Utilizing expertise from a variety of disciplines, recent developments in traction force microscopy are enhancing the study of cell forces in physiologically relevant model systems, and hold promise for further advancing knowledge in mechanobiology. In this chapter, we discuss the methods, capabilities, and limitations of modern approaches for traction force microscopy, and highlight ongoing efforts and challenges underlying future innovations.
Collapse
Affiliation(s)
- Jeffrey A Mulligan
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - François Bordeleau
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Qc, Canada
- Départment of Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec, Qc, Canada
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Steven G Adie
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
24
|
Mayett D, Bitten N, Das M, Schwarz JM. Chase-and-run dynamics in cell motility and the molecular rupture of interacting active elastic dimers. Phys Rev E 2017; 96:032407. [PMID: 29346935 DOI: 10.1103/physreve.96.032407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 06/07/2023]
Abstract
Cell migration in morphogenesis and cancer metastasis typically involves interplay between different cell types. We construct and study a minimal, one-dimensional model composed of two different motile cells with each cell represented as an active elastic dimer. The interaction between the two cells via cadherins is modeled as a spring that can rupture beyond a threshold force as it undergoes dynamic loading from the interacting motile cells. We obtain a phase diagram consisting of chase-and-run dynamics and clumping dynamics as a function of the stiffness of the interaction spring and the threshold force and, therefore, posit that active rupture, or rupture via active forces, is a mechanosensitive means to regulate dynamics between cells. Since the parameters in the model differentiate between N- and E-cadherins, we make predictions for the interactions between a placodelike cell and a neural crestlike cell in a microchannel as well as discuss how our results inform chase-and-run dynamics found in a group of placode cells interacting with a group of neural crest cells. In particular, an argument was made in the latter case that the feedback between cadherins and cell-substrate interaction via integrins was necessary to obtain the chase-and-run behavior. Based on our two-cell results, we argue that this feedback accentuates, but is not necessary for, the chase-and-run behavior.
Collapse
Affiliation(s)
- David Mayett
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Nicholas Bitten
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - J M Schwarz
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
25
|
Fan Q, Liu R, Jiao Y, Tian C, Farrell JD, Diao W, Wang X, Zhang F, Yuan W, Han H, Chen J, Yang Y, Zhang X, Ye F, Li M, Ouyang Z, Liu L. A novel 3-D bio-microfluidic system mimicking in vivo heterogeneous tumour microstructures reveals complex tumour-stroma interactions. LAB ON A CHIP 2017; 17:2852-2860. [PMID: 28726916 DOI: 10.1039/c7lc00191f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A 3-D microfluidic system consisting of microchamber arrays embedded in a collagen hydrogel with tuneable biochemical gradients that mimics the tumour microenvironment of mammary glands was constructed for the investigation on the interactions between invasive breast cancer cells and stromal cells. The hollow microchambers in collagen provide a very similar 3-D environment to that in vivo that regulates collective cellular dynamics and behaviour, while the microfluidic channels surrounding the collagen microchamber arrays allow one to impose complex concentration gradients of specific biological molecules or drugs. We found that breast epithelial cells (MCF-10A) seeded in the microchambers formed lumen-like structures similar to those in epithelial layers. When MCF-10A cells were co-cultured with invasive breast cancer cells (MDA-MB-231), the formation of lumen-like structures in the microchambers was inhibited, indicating the capability of cancer cells to disrupt the structures formed by surrounding cells for further invasion and metastasis. Subsequent mechanism studies showed that down regulation of E-cad expression due to MMPs produced by the cancer cells plays a dominant role in determining the cellular behaviour. Our microfluidic system offers a robust platform for high throughput studies that aim to understand combinatorial effects of multiple biochemical and microenvironmental factors.
Collapse
Affiliation(s)
- Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide. Sci Rep 2017; 7:42378. [PMID: 28186188 PMCID: PMC5301227 DOI: 10.1038/srep42378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022] Open
Abstract
While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab.
Collapse
|
27
|
Brunel B, Beaune G, Nagarajan U, Dufour S, Brochard-Wyart F, Winnik FM. Nanostickers for cells: a model study using cell-nanoparticle hybrid aggregates. SOFT MATTER 2016; 12:7902-7907. [PMID: 27714338 DOI: 10.1039/c6sm01450j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present direct evidence that nanoparticles (NPs) can stick together cells that are inherently non-adhesive. Using cadherin-depleted S180 murine cells lines, which exhibit very low cell-cell adhesion, we show that NPs can assemble dispersed single cells into large cohesive aggregates. The dynamics of aggregation, which is controlled by diffusion and collision, can be described as a second-order kinetic law characterized by a rate of collision that depends on the size, concentration, and surface chemistry of the NPs. We model the cell-cell adhesion induced by the "nanostickers" using a three-state dynamical model, where the NPs are free, adsorbed on the cell membrane or internalized by the cells. We define a "sticking efficiency parameter" to compare NPs and look for the most efficient type of NP. We find that 20 nm carboxylated polystyrene NPs are more efficient nanostickers than 20 nm silica NPs which were reported to induce fast wound healing and to glue soft tissues. Nanostickers, by increasing the cohesion of tissues and tumors, may have important applications for tissue engineering and cancer treatment.
Collapse
Affiliation(s)
- Benjamin Brunel
- WPI International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Grégory Beaune
- WPI International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Usharani Nagarajan
- WPI International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Sylvie Dufour
- Inserm, U955, Equipe 6, Créteil, 94000, France and Université Paris Est, Faculté de Médecine, Créteil 94000, France
| | - Françoise Brochard-Wyart
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France and Sorbonne Université, UPMC Univ Paris 06, 75005, Paris, France
| | - Françoise M Winnik
- WPI International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Chemistry and Faculty of Pharmacy, University of Montreal, CP 6128 Succursale Centre Ville, Montreal, QC H3C3J7, Canada and Department of Chemistry and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|