1
|
Zha XJ, Wen C, Huang X, Ling TX, Li JB, Huang JG. Digital light processing 3D printing of high-fidelity and versatile hydrogels via in situ phase separation. J Mater Chem B 2025; 13:4630-4640. [PMID: 40123462 DOI: 10.1039/d5tb00106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Recently, digital light processing (DLP) 3D printing has garnered significant interest for fabricating high-fidelity hydrogels. However, the intrinsic weak and loose network of hydrogels, coupled with uncontrollable light projection, leads to low printing resolution and restricts their broader applications. Herein, we propose a straightforward DLP 3D printing strategy utilizing in situ phase separation to produce high-fidelity, high-modulus, and biocompatible hydrogels. By selecting acrylamide monomers with poor compatibility within a polyvinyl pyrrolidone (PVP) network during polymerization, we create phase-separated domains within polyacrylamide (PAM) that effectively inhibit ultraviolet (UV) light transmission. This regulation of UV light distribution results in anhydrous inks with exceptional properties: ultra-high resolution (1.5 μm), ultra-high modulus (1043 MPa), and high strength (70.0 MPa). Upon hydration, the modulus and strength of the hydrogels decrease to approximately 4000 times those of the anhydrous gels, exhibiting high mechano-moisture sensitivity suitable for actuator applications. Additionally, the DLP 3D-printed hydrogels, featuring micro-scale structures, demonstrate good biocompatibility and facilitate nutrient transport for cell proliferation. This versatile DLP 3D printing strategy paves the way for the fabrication of high-fidelity and multifunctional hydrogels.
Collapse
Affiliation(s)
- Xiang-Jun Zha
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
- Department of Ultrasound, Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Cheng Wen
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Xinyu Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Ting-Xian Ling
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jian-Bo Li
- Department of Critical Care Medicine, West China Hospital of Sichuan University, 37 Guo Xue Xiang St, Chengdu 610041, Sichuan, China
| | - Ji-Gang Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
2
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Hill MJS, Adams DJ. Multi-layer 3D printed dipeptide-based low molecular weight gels. SOFT MATTER 2022; 18:5960-5965. [PMID: 35916473 DOI: 10.1039/d2sm00663d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We describe the direct 3D printing of dipeptide hydrogels, forming layers from gels prepared from different dipeptides. The dipeptides self-assemble into fibres that lead to very different microstructures letting us differentiate between the gels. We show how the mechanical properties of the overall 3D printed structures are affected by the composition of each of the layers, allowing us to build up structures with different microstructure and stiffness. We also discuss the interface between layers formed from different gelators, showing that the gels remain independent from neighbouring printed material, even when prepared in very close proximity.
Collapse
Affiliation(s)
- Max J S Hill
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
4
|
Barney CW, Valentine MT, Helgeson ME. Strength of fluid-filled soft composites across the elastofracture length. SOFT MATTER 2022; 18:4897-4904. [PMID: 35722727 DOI: 10.1039/d2sm00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Materials that utilize heterogeneous microstructures to control macroscopic mechanical response are ubiquitous in nature. Yet, translating nature's lessons to create synthetic soft solids has remained challenging. This is largely due to the limited synthetic routes available for creating soft composites, particularly with submicron features, as well as uncertainty surrounding the role of such a microstructured secondary phase in determining material behavior. This work leverages recent advances in the development of photocrosslinkable thermogelling nanoemulsions to produce composite hydrogels with a secondary phase assembled at well controlled length scales ranging from tens of nm to tens of μm. Through analysis of the mechanical response of these fluid-filled composite hydrogels, it is found that the size scale of the secondary phase has a profound impact on the strength when at or above the elastofracture length. Moreover, this work shows that mechanical integrity of fluid-filled soft solids can be sensitive to the size scale of the secondary phase.
Collapse
Affiliation(s)
- Christopher W Barney
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
5
|
Tayeb HH, Felimban R, Almaghrabi S, Hasaballah N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 45:100533. [PMID: 34692429 PMCID: PMC8526445 DOI: 10.1016/j.colcom.2021.100533] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 05/08/2023]
Abstract
Viral diseases are emerging as global threats. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), that causes coronavirus disease (COVID-19), has severe global impacts. Safety, dosage, and potency of vaccines recently approved for emergency use against SARS-CoV-2 need further evaluation. There is still no effective treatment against COVID-19; therefore, safe, and effective vaccines or therapeutics against SARS-CoV-2 are urgently needed. Oil-in-water nanoemulsions (O/W NEs) are emerging as sophisticated, protective, and therapeutic platforms. Encapsulation capacity, which offers better drug pharmacokinetics, coupled with the tunable surfaces present NEs as promising tools for pharmaceutical applications. The challenges facing drug discovery, and the advancements of NEs in drug delivery demonstrate the potential of NEs against evolving diseases, like COVID-19. Here we summarize current COVID-19 knowledge and discuss the composition, stability, preparation, characterization, and biological fate of O/W NEs. We also provide insights into NE structural-functional properties that may contribute to therapeutic or preventative solutions against COVID-19.
Collapse
Affiliation(s)
- Hossam H Tayeb
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Raed Felimban
- 3D Bioprinting Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sarah Almaghrabi
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Nojod Hasaballah
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Kondarage AI, Gayani B, Poologasundarampillai G, Nommeots-Nomm A, Lee PD, Lalitharatne TD, Nanayakkara ND, Jones JR, Karunaratne A. Detection and Tracking Volumes of Interest in 3D Printed Tissue Engineering Scaffolds using 4D Imaging Modalities. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1230-1233. [PMID: 34891509 DOI: 10.1109/embc46164.2021.9630587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (AM) platforms allow the production of patient tissue engineering scaffolds with desirable architectures. Although AM platforms offer exceptional control on architecture, post-processing methods such as sintering and freeze-drying often deform the printed scaffold structure. In-situ 4D imaging can be used to analyze changes that occur during post-processing. Visualization and analysis of changes in selected volumes of interests (VOIs) over time are essential to understand the underlining mechanisms of scaffold deformations. Yet, automated detection and tracking of VOIs in the 3D printed scaffold over time using 4D image data is currently an unsolved image processing task. This paper proposes a new image processing technique to segment, detect and track volumes of interest in 3D printed tissue engineering scaffolds. The method is validated using a 4D synchrotron sourced microCT image data captured during the sintering of bioactive glass scaffolds in-situ. The proposed method will contribute to the development of scaffolds with controllable designs and optimum properties for the development of patient-specific scaffolds.
Collapse
|
7
|
Khatouri M, Lemaalem M, Ahfir R, El Khaoui S, Derouiche A, Filali M. Sol/gel transition of oil/water microemulsions controlled by surface grafted triblock copolymer dodecyl-PEO 227-dodecyl: molecular dynamics simulations with experimentally validated interaction potential. RSC Adv 2021; 11:20824-20835. [PMID: 35479396 PMCID: PMC9034022 DOI: 10.1039/d1ra02649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
We studied a large range of identical spherical oil/water microemulsion (O/W-MI) volume fractions. The O/W-MIs are stabilized by cetylpyridinium chloride ionic surfactant (CpCl) and octanol cosurfactant and dispersed in salt water. We grafted different numbers of dodecyl-(polyEthylene oxide)227-dodecyl triblock copolymer that we note (n(D-PEO227-D)), where n varies from 0 to 12. We accomplished the grafting process by replacing a small amount of CpCl and octanol with the appropriate n(D-PEO227-D). The aim is to determine the interaction/structure relationship of the covered microemulsions. Precisely, we are interested in a quantitative investigation of the influence of volume fraction Φ, temperature (T), and n(D-PEO227-D) on the microemulsion sol/gel transition. To this end, we first study the uncoated microemulsion structure depending only on Φ. Second, we determine the coated microemulsions structure as a function of n(D-PEO227-D) for different Φ. Third, we examine the effect of temperature on the uncoated and coated microemulsion. We show that the sol/gel transition is controlled by the three main parameters, Φ, T, and n(D-PEO227-D). Accordingly, the uncoated microemulsion sol/gel transition, at ambient temperature, occurred for Φ ≃ 33.65%. By increasing Φ, the O/W-MIs show a glass state, which occurs, along with the gel state, at Φ ≃ 37% and arises clearly at Φ ≃ 60%. The coated O/W-MI sol/gel transition is found to be linearly dependent on n(D-PEO227-D) and takes place for Φ ≃ 26.5% for n(D-PEO227-D) = 12. Ordinarily, the decrease in temperature leads to gel formation of microemulsions for low Φ. Additionally, in this work, we found that the gelation temperature increases linearly with n(D-PEO227-D). Thus, the parameter n(D-PEO227-D) can control the sol/gel transition of the O/W-MIs at ambient temperature and moderate Φ.
Collapse
Affiliation(s)
- M Khatouri
- Laboratoire de Physique Appliquée, Informatique et Statistique (LPAIS) Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz BP 1796, Atlas Fes Morocco
| | - M Lemaalem
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - R Ahfir
- Laboratoire de Physique Appliquée, Informatique et Statistique (LPAIS) Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz BP 1796, Atlas Fes Morocco
| | - S El Khaoui
- Laboratoire de Physique Appliquée, Informatique et Statistique (LPAIS) Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz BP 1796, Atlas Fes Morocco
| | - A Derouiche
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - M Filali
- Laboratoire de Physique Appliquée, Informatique et Statistique (LPAIS) Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz BP 1796, Atlas Fes Morocco
| |
Collapse
|
8
|
Mancuso E, Shah L, Jindal S, Serenelli C, Tsikriteas ZM, Khanbareh H, Tirella A. Additively manufactured BaTiO 3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112192. [PMID: 34082989 DOI: 10.1016/j.msec.2021.112192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells' adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering. The proposed single-step extrusion-based strategy enabled a faster and solvent-free process, where raw materials in powder forms were mechanically mixed and subsequently fed into the 3D printing system for further processing. PCL, PCL/hydroxyapatite and PCL/BaTiO3 composite scaffolds were successfully produced with high level of consistency and an inner architecture made of seamlessly integrated layers. The inclusion of BaTiO3 ceramic particles (10% wt.) significantly improved the mechanical performance of the scaffolds (54 ± 0.5 MPa) compared to PCL/hydroxyapatite scaffolds (40.4 ± 0.1 MPa); moreover, the presence of BaTiO3 increased the dielectric permittivity over the entire frequency spectrum and tested temperatures. Human osteoblasts Saos-2 were seeded on scaffolds and cellular adhesion, proliferation, differentiation and deposition of bone-like extracellular matrix were evaluated. All tested scaffolds (PCL, PCL/hydroxyapatite and PCL/BaTiO3) supported cell growth and viability, preserving the characteristic cellular osteoblastic phenotype morphology, with PCL/BaTiO3 composite scaffolds exhibiting higher mineralisation (ALP activity) and deposited bone-like extracellular matrix (osteocalcin and collagen I). The single-step multi-material additive manufacturing technology used for the fabrication of electroactive PCL/BaTiO3 composite scaffolds holds great promise for sustainability (reduced material waste and manufacturing costs) and it importantly suggests PCL/BaTiO3 scaffolds as promising candidates for load bearing bone tissue engineering applications to solve unmet clinical needs.
Collapse
Affiliation(s)
- Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom.
| | - Lekha Shah
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health (FMBH), University of Manchester, Oxford Road, M13 9PT Manchester, United Kingdom
| | - Swati Jindal
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom
| | - Cecile Serenelli
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, BT37 0QB Newtownabbey, United Kingdom
| | | | - Hamideh Khanbareh
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health (FMBH), University of Manchester, Oxford Road, M13 9PT Manchester, United Kingdom.
| |
Collapse
|
9
|
Li X, Xu X, Song L, Bi A, Wu C, Ma Y, Du M, Zhu B. High Internal Phase Emulsion for Food-Grade 3D Printing Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45493-45503. [PMID: 32871079 DOI: 10.1021/acsami.0c11434] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional printing (3DP) has attracted significant attention for its use in additive manufacturing techniques because it provides customizability and flexibility for fabricating structures with arbitrary shapes. Certain applications in the food and medicine industries require 3D printable materials that are both biocompatible and biodegradable. Consequently, this study reports 3D printable materials constructed from food-grade high internal phase emulsions (HIPEs). The studied HIPEs (phase ratio 85%) were stabilized by the efficient adsorption behavior of cod proteins (concentration range, 10-50 mg mL-1) at the oil-water interface. The stability of the oil-in-water HIPEs was improved by the formation of a concentration-dependent percentage of adsorbed proteins and cross-linking networks, and homogeneous and self-supporting structures were generated after 7 days of storage at 4 °C. The gel-like shear thinning rheological behavior induced by the cross-linking networks in the studied HIPEs can be tuned to obtain the desired printability and extrudability during 3DP. In the present study, the HIPEs stabilized with 50 mg mL-1 of cod proteins exhibited the highest printing resolution, gel strength, hardness, adhesiveness, and chewiness during 3DP. These food-grade HIPE inks have the potential to diversify the applications of 3DP in foods, cosmetics, drug delivery systems, and packaging materials.
Collapse
Affiliation(s)
- Xiang Li
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Anqi Bi
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yunjiao Ma
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
10
|
Cheng LC, Kuei Vehusheia SL, Doyle PS. Tuning Material Properties of Nanoemulsion Gels by Sequentially Screening Electrostatic Repulsions and Then Thermally Inducing Droplet Bridging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3346-3355. [PMID: 32216359 PMCID: PMC7311086 DOI: 10.1021/acs.langmuir.0c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Nanoemulsions are widely used in applications such as food products, cosmetics, pharmaceuticals, and enhanced oil recovery for which the ability to engineer material properties is desirable. Moreover, nanoemulsions are emergent model colloidal systems because of the ease in synthesizing monodisperse samples, flexibility in formulations, and tunable material properties. In this work, we study a nanoemulsion system previously developed by our group in which gelation occurs through thermally induced polymer bridging of droplets. We show here that the same system can undergo a sol-gel transition at room temperature through the addition of salt, which screens the electrostatic interaction and allows the system to assemble via depletion attraction. We systematically study how the addition of salt followed by a temperature jump can influence the resulting microstructures and rheological properties of the nanoemulsion system. We show that the salt-induced gel at room temperature can dramatically restructure when the temperature is suddenly increased and achieves a different gelled state. Our results offer a route to control the material properties of an attractive colloidal system by carefully tuning the interparticle potentials and sequentially triggering the colloidal self-assembly. The control and understanding of the material properties can be used for designing hierarchically structured hydrogels and complex colloid-based materials for advanced applications.
Collapse
Affiliation(s)
- Li-Chiun Cheng
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Patrick S. Doyle
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Scott PJ, Meenakshisundaram V, Hegde M, Kasprzak CR, Winkler CR, Feller KD, Williams CB, Long TE. 3D Printing Latex: A Route to Complex Geometries of High Molecular Weight Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10918-10928. [PMID: 32028758 DOI: 10.1021/acsami.9b19986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vat photopolymerization (VP) additive manufacturing fabricates intricate geometries with excellent resolution; however, high molecular weight polymers are not amenable to VP due to concomitant high solution and melt viscosities. Thus, a challenging paradox arises between printability and mechanical performance. This report describes concurrent photopolymer and VP system design to navigate this paradox with the unprecedented use of polymeric colloids (latexes) that effectively decouple the dependency of viscosity on molecular weight. Photocrosslinking of a continuous-phase scaffold, which surrounds the latex particles, combined with in situ computer-vision print parameter optimization, which compensates for light scattering, enables high-resolution VP of high molecular weight polymer latexes as particle-embedded green bodies. Thermal post-processing promotes coalescence of the dispersed particles throughout the scaffold, forming a semi-interpenetrating polymer network without loss in part resolution. Printing a styrene-butadiene rubber latex, a previously inaccessible elastomer composition for VP, exemplified this approach and yielded printed elastomers with precise geometry and tensile extensibilities exceeding 500%.
Collapse
Affiliation(s)
- Philip J Scott
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Viswanath Meenakshisundaram
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maruti Hegde
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Christopher R Kasprzak
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher R Winkler
- Nanoscale Characterization and Fabrication Laboratory (NCFL), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Keyton D Feller
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher B Williams
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E Long
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Cheng LC, Hashemnejad SM, Zarket B, Muthukrishnan S, Doyle PS. Thermally and pH-responsive gelation of nanoemulsions stabilized by weak acid surfactants. J Colloid Interface Sci 2020; 563:229-240. [DOI: 10.1016/j.jcis.2019.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
|
13
|
Shao G, Hai R, Sun C. 3D Printing Customized Optical Lens in Minutes. ADVANCED OPTICAL MATERIALS 2020; 8:1901646. [PMID: 39726609 PMCID: PMC11671137 DOI: 10.1002/adom.201901646] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/28/2024]
Abstract
Synergizing grayscale photopolymerization and meniscus coating processes, rapid 3D printing of optical lenses is reported previously using projection microstereolithography (PμSL) process. Despite its 14 000-fold-improved printing speed over the femtosecond 3D printing process, PμSL still consumes significant amount of the fabrication time for precise recoating 5 μm thick fresh resin layers. At the reported speed of 24.54 mm3 h-1, 3D printing of the millimeter-size lenses still takes hours. To further improve the printing speed, the microcontinuous liquid interface production process is implemented to eliminate the time-consuming resin recoating step. However, the micrometer-size pores in the Teflon membrane needed for oxygen transportation are found to completely spoil the surface smoothness. The use of polydimethylsiloxane thin film possessing much refined nanoscopic porosities as the functional substitute of Teflon membrane is reported to significantly reduce the surface roughness to 13.7 nm. 3D printing of 3 mm high aspherical lens in ≈2 min at a 200-fold-improved speed at 4.85 × 103 mm3 h-1 is demonstrated. The 3D printed aspherical lens has the demonstrated imaging resolution of 3.10 μm. This work represents a significant step in tackling the speed-accuracy trade-off of 3D printing process and thus enables rapid fabrication of customized optical components.
Collapse
Affiliation(s)
- Guangbin Shao
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA; School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Rihan Hai
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
14
|
|
15
|
Scott PJ, Kasprzak CR, Feller KD, Meenakshisundaram V, Williams CB, Long TE. Light and latex: advances in the photochemistry of polymer colloids. Polym Chem 2020. [DOI: 10.1039/d0py00349b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles.
Collapse
Affiliation(s)
- Philip J. Scott
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Keyton D. Feller
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Christopher B. Williams
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | - Timothy E. Long
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| |
Collapse
|
16
|
Kass L, Cardenas‐Vasquez ED, Hsiao LC. Composite double network hydrogels with thermoresponsive colloidal nanoemulsions. AIChE J 2019. [DOI: 10.1002/aic.16817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lauren Kass
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh
| | | | - Lilian C. Hsiao
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh
| |
Collapse
|
17
|
Herzberger J, Sirrine JM, Williams CB, Long TE. Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101144] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Cheng LC, Sherman ZM, Swan JW, Doyle PS. Colloidal Gelation through Thermally Triggered Surfactant Displacement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9464-9473. [PMID: 31298032 DOI: 10.1021/acs.langmuir.9b00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colloidal systems that undergo gelation attract much attention in both fundamental studies and practical applications. Rational tuning of interparticle interactions allows researchers to precisely engineer colloidal material properties and microstructures. Here, contrary to the traditional approaches where modulating attractive interactions is the major focus, we present a platform wherein colloidal gelation is controlled by tuning repulsive interactions. By including amphiphilic oligomers in colloidal suspensions, the ionic surfactants on the colloids are replaced by the nonionic oligomer surfactants at elevated temperatures, leading to a decrease in electrostatic repulsion. The mechanism is examined by carefully characterizing the colloids, and subsequently allowing the construction of interparticle potentials to capture the material behaviors. With the thermally triggered surfactant displacement, the dispersion assembles into a macroporous viscoelastic network and the gelling mechanism is robust over a wide range of compositions, colloid sizes, and component chemistries. This stimulus-responsive gelation platform is general and offers new strategies to engineer complex viscoelastic soft materials.
Collapse
Affiliation(s)
- Li-Chiun Cheng
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Zachary M Sherman
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - James W Swan
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Patrick S Doyle
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
19
|
Wang X, Guo X, Ye J, Zheng N, Kohli P, Choi D, Zhang Y, Xie Z, Zhang Q, Luan H, Nan K, Kim BH, Xu Y, Shan X, Bai W, Sun R, Wang Z, Jang H, Zhang F, Ma Y, Xu Z, Feng X, Xie T, Huang Y, Zhang Y, Rogers JA. Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805615. [PMID: 30370605 DOI: 10.1002/adma.201805615] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/02/2018] [Indexed: 05/23/2023]
Abstract
Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro-electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others.
Collapse
Affiliation(s)
- Xueju Wang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Xiaogang Guo
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Jilong Ye
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Punit Kohli
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dongwhi Choi
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, South Korea
| | - Yi Zhang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Zhaoqian Xie
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Qihui Zhang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Haiwen Luan
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kewang Nan
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bong Hoon Kim
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yameng Xu
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xiwei Shan
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wubin Bai
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Rujie Sun
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, BS8 1TR, UK
| | - Zizheng Wang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hokyung Jang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Fan Zhang
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yinji Ma
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xu
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
- The State Key Laboratory for Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xue Feng
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yonggang Huang
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - John A Rogers
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
20
|
Cheng LC, Godfrin PD, Swan JW, Doyle PS. Thermal processing of thermogelling nanoemulsions as a route to tune material properties. SOFT MATTER 2018; 14:5604-5614. [PMID: 29923590 DOI: 10.1039/c8sm00814k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many soft matter systems have properties which depend on their processing history. It is generally accepted that material properties can be finely tuned by carefully directing self-assembly. However, for gelling colloidal systems, it is difficult to characterize such path-dependent effects since the colloidal attraction is often provided by adding another component to the system such as salts or depletants. Therefore, studies of and an understanding of the role of processing on the material properties of attractive colloidal systems are largely lacking. In this work, we systematically studied how processing greatly influences the properties and the microstructures of model attractive colloidal systems. We perform experiments using a thermogelling nanoemulsion as a model system where the isotropic attraction can be precisely tuned via the temperature. The effects of processing conditions on gel formation and properties is tested by performing well-designed sequential temperature jumps. By properly controlling the thermal history, we demonstrate that properties of colloidal gels can be beyond the limit set by direct quenching, which has been a major focus in literature, and that otherwise slow aging of the system associated with a decrease in elasticity can be prevented. Our results provide new experimental evidence of path-dependent rheology and associated microstructures in attractive colloidal systems and provide guidance to future applications in manufacturing complex colloid-based materials.
Collapse
Affiliation(s)
- Li-Chiun Cheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
21
|
Paulsen KS, Deng Y, Chung AJ. DIY 3D Microparticle Generation from Next Generation Optofluidic Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800252. [PMID: 30027056 PMCID: PMC6051230 DOI: 10.1002/advs.201800252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/15/2018] [Indexed: 05/11/2023]
Abstract
Complex-shaped microparticles can enhance applications in drug delivery, tissue engineering, and structural materials, although techniques to fabricate these particles remain limited. A microfluidics-based process called optofluidic fabrication that utilizes inertial flows and ultraviolet polymerization has shown great potential for creating highly 3D-shaped particles in a high-throughput manner, but the particle dimensions are mainly at the millimeter scale. Here, a next generation optofluidic fabrication process is presented that utilizes on-the-fly fabricated multiscale fluidic channels producing customized sub-100 µm 3D-shaped microparticles. This flexible design scheme offers a user-friendly platform for rapid prototyping of new 3D particle shapes, providing greater potential for creating impactful engineered microparticles.
Collapse
Affiliation(s)
- Kevin S. Paulsen
- Department of Mechanical, Aerospace, and Nuclear EngineeringRensselaer Polytechnic Institute (RPI)TroyNY12180USA
- Engineering DirectorateLawrence Livermore National Laboratory (LLNL)LivermoreCA94550USA
| | - Yanxiang Deng
- Department of Mechanical, Aerospace, and Nuclear EngineeringRensselaer Polytechnic Institute (RPI)TroyNY12180USA
| | - Aram J. Chung
- Department of Mechanical, Aerospace, and Nuclear EngineeringRensselaer Polytechnic Institute (RPI)TroyNY12180USA
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
22
|
Abstract
The tumor heterogeneity and interindividual variability is a major problem when treating cancer as every patient responds in a different way to the current drug therapies. 3D printing is a tool that can hamper the issues faced in cancer patients allowing for individualization of treatment by the production of in vitro models with microenvironments mimicking more closely real cancer conditions facilitating complex therapies. Further improvements are required, for example the development of biocompatible bioinks or need for vascularization. The journey from bench to bedside is challenging from the regulatory point of view where the establishment of manufacturing guidelines, quality systems and safety of use and administration of personalized medicines remains unclear. This review will provide an insight into the major applications of 3D printing in cancer both in the development of in vitro cancer models as well as personalized medicines for cancer patients focused on hydrogels and therapeutic implants. [Formula: see text]
Collapse
Affiliation(s)
- Dolores R Serrano
- Department of Pharmaceutics & Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid, Spain
| | - Maria C Terres
- Department of Pharmaceutics & Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Aikaterini Lalatsa
- Institute of Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
23
|
Cho H, Jammalamadaka U, Tappa K. Nanogels for Pharmaceutical and Biomedical Applications and Their Fabrication Using 3D Printing Technologies. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E302. [PMID: 29462901 PMCID: PMC5848999 DOI: 10.3390/ma11020302] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Nanogels are hydrogels formed by connecting nanoscopic micelles dispersed in an aqueous medium, which give an opportunity for incorporating hydrophilic payloads to the exterior of the micellar networks and hydrophobic payloads in the core of the micelles. Biomedical and pharmaceutical applications of nanogels have been explored for tissue regeneration, wound healing, surgical device, implantation, and peroral, rectal, vaginal, ocular, and transdermal drug delivery. Although it is still in the early stages of development, due to the increasing demands of precise nanogel production to be utilized for personalized medicine, biomedical applications, and specialized drug delivery, 3D printing has been explored in the past few years and is believed to be one of the most precise, efficient, inexpensive, customizable, and convenient manufacturing techniques for nanogel production.
Collapse
Affiliation(s)
- Hyunah Cho
- Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Fairleigh Dickinson University, 230 Park Ave, Florham Park, NJ 07932, USA.
| | - Udayabhanu Jammalamadaka
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 216 S Kingshighway Blvd, St. Louis, MO 63110, USA.
| | - Karthik Tappa
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 216 S Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Bassil M, El Haj Moussa G, El Tahchi M. Templating polyacrylamide hydrogel for interconnected microstructure and improved performance. J Appl Polym Sci 2018. [DOI: 10.1002/app.46205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maria Bassil
- LBMI, Department of Physics; Lebanese University - Faculty of Sciences 2, PO Box 90656; Jdeidet Lebanon
| | - Georges El Haj Moussa
- LBMI, Department of Physics; Lebanese University - Faculty of Sciences 2, PO Box 90656; Jdeidet Lebanon
| | - Mario El Tahchi
- LBMI, Department of Physics; Lebanese University - Faculty of Sciences 2, PO Box 90656; Jdeidet Lebanon
- Department of Bioengineering; University of California; Los Angeles, 570 Westwood plaza 90095 CA
| |
Collapse
|
25
|
Nolan MC, Fuentes Caparrós AM, Dietrich B, Barrow M, Cross ER, Bleuel M, King SM, Adams DJ. Optimising low molecular weight hydrogels for automated 3D printing. SOFT MATTER 2017; 13:8426-8432. [PMID: 29083003 DOI: 10.1039/c7sm01694h] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hydrogels prepared from low molecular weight gelators (LMWGs) are formed as a result of hierarchical intermolecular interactions between gelators to form fibres, and then further interactions between the self-assembled fibres via physical entanglements, as well as potential branching points. These interactions can allow hydrogels to recover quickly after a high shear rate has been applied. There are currently limited design rules describing which types of morphology or rheological properties are required for a LMWG hydrogel to be used as an effective, printable gel. By preparing hydrogels with different types of fibrous network structures, we have been able to understand in more detail the morphological type which gives rise to a 3D-printable hydrogel using a range of techniques, including rheology, small angle scattering and microscopy.
Collapse
Affiliation(s)
- Michael C Nolan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cheng LC, Hsiao LC, Doyle PS. Multiple particle tracking study of thermally-gelling nanoemulsions. SOFT MATTER 2017; 13:6606-6619. [PMID: 28914324 DOI: 10.1039/c7sm01191a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We perform multiple particle tracking (MPT) on a thermally-gelling oil-in-water nanoemulsion system. Carboxylated and plain polystyrene probes are used to investigate the role of colloidal probe size and surface chemistry on MPT in the nanoemulsion system. As temperature increases, hydrophobic groups of PEG-based gelators (PEGDA) partition into the oil/water interface and bridge droplets. This intercolloidal attraction generates a wide variety of microstructures consisting of droplet-rich and droplet-poor phases. By tailoring the MPT colloidal probe surface chemistry, we can control the residence of probes in each domain, thus allowing us to independently probe each phase. Our results show stark differences in probe dynamics in each domain. For certain conditions, the mean squared displacement (MSD) can differ by over four orders of magnitude for the same probe size but different surface chemistry. Carboxylated probe surface chemistries result in "slippery" probes while plain polystyrene probes appear to tether to the nanoemulsion gel network. We also observe probe hopping between pores in the gel for carboxylated probes. Our approach demonstrates that probes with different surface chemistries are useful in probing the local regions of a colloidal gel and allows the measurement of local properties within structurally heterogeneous hydrogels.
Collapse
Affiliation(s)
- Li-Chiun Cheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|