1
|
Su C, Lin D, Huang X, Feng J, Jin A, Wang F, Lv Q, Lei L, Pan W. Developing hydrogels for gene therapy and tissue engineering. J Nanobiotechnology 2024; 22:182. [PMID: 38622684 PMCID: PMC11017488 DOI: 10.1186/s12951-024-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrogels are a class of highly absorbent and easily modified polymer materials suitable for use as slow-release carriers for drugs. Gene therapy is highly specific and can overcome the limitations of traditional tissue engineering techniques and has significant advantages in tissue repair. However, therapeutic genes are often affected by cellular barriers and enzyme sensitivity, and carrier loading of therapeutic genes is essential. Therapeutic gene hydrogels can well overcome these difficulties. Moreover, gene-therapeutic hydrogels have made considerable progress. This review summarizes the recent research on carrier gene hydrogels for the treatment of tissue damage through a summary of the most current research frontiers. We initially introduce the classification of hydrogels and their cross-linking methods, followed by a detailed overview of the types and modifications of therapeutic genes, a detailed discussion on the loading of therapeutic genes in hydrogels and their characterization features, a summary of the design of hydrogels for therapeutic gene release, and an overview of their applications in tissue engineering. Finally, we provide comments and look forward to the shortcomings and future directions of hydrogels for gene therapy. We hope that this article will provide researchers in related fields with more comprehensive and systematic strategies for tissue engineering repair and further promote the development of the field of hydrogels for gene therapy.
Collapse
Affiliation(s)
- Chunyu Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Dini Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Wenjie Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
2
|
Liu Y, Yuan Z, Liu S, Zhong X, Wang Y, Xie R, Song W, Ren L. Bioactive Phenylboronic Acid-Functionalized Hyaluronic Acid Hydrogels Induce Chondro-Aggregates and Promote Chondrocyte Phenotype. Macromol Biosci 2023; 23:e2300153. [PMID: 37400079 DOI: 10.1002/mabi.202300153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Hydrogels are extensively investigated as biomimetic extracellular matrix (ECM) scaffolds in tissue engineering. The physiological properties of ECM affect cellular behaviors, which is an inspiration for cell-based therapies. Photocurable hyaluronic acid (HA) hydrogel (AHAMA-PBA) modified with 3-aminophenylboronic acid, sodium periodate, and methacrylic anhydride simultaneously is constructed in this study. Chondrocytes are then cultured on the surface of the hydrogels to evaluate the effect of the physicochemical properties of the hydrogels on modulating cellular behaviors. Cell viability assays demonstrate that the hydrogel is non-toxic to chondrocytes. The existence of phenylboronic acid (PBA) moieties enhances the interaction of chondrocytes and hydrogel, promoting cell adhesion and aggregation through filopodia. RT-PCR indicates that the gene expression levels of type II collagen, Aggrecan, and Sox9 are significantly up-regulated in chondrocytes cultured on hydrogels. Moreover, the mechanical properties of the hydrogels have a significant effect on the cell phenotype, with soft gels (≈2 kPa) promoting chondrocytes to exhibit a hyaline phenotype. Overall, PBA-functionalized HA hydrogel with low stiffness exhibits the best effect on promoting the chondrocyte phenotype, which is a promising biomaterial for cartilage regeneration.
Collapse
Affiliation(s)
- Ying Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiupeng Zhong
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yanyan Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Renjian Xie
- School of Medical Information Engineering, Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of the Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjing Song
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D Bioprinting in Otolaryngology: A Review. Adv Healthc Mater 2023; 12:e2203268. [PMID: 36921327 PMCID: PMC10502192 DOI: 10.1002/adhm.202203268] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The evolution of tissue engineering and 3D bioprinting has allowed for increased opportunities to generate musculoskeletal tissue grafts that can enhance functional and aesthetic outcomes in otolaryngology-head and neck surgery. Despite literature reporting successes in the fabrication of cartilage and bone scaffolds for applications in the head and neck, the full potential of this technology has yet to be realized. Otolaryngology as a field has always been at the forefront of new advancements and technology and is well poised to spearhead clinical application of these engineered tissues. In this review, current 3D bioprinting methods are described and an overview of potential cell types, bioinks, and bioactive factors available for musculoskeletal engineering using this technology is presented. The otologic, nasal, tracheal, and craniofacial bone applications of 3D bioprinting with a focus on engineered graft implantation in animal models to highlight the status of functional outcomes in vivo; a necessary step to future clinical translation are reviewed. Continued multidisciplinary efforts between material chemistry, biological sciences, and otolaryngologists will play a key role in the translation of engineered, 3D bioprinted constructs for head and neck surgery.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Nadia McMillan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Sohit P. Kanotra
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
4
|
Seo JS, Tumursukh NE, Choi JH, Song Y, Jeon G, Kim NE, Kim SJ, Kim N, Song JE, Khang G. Modified gellan gum-based hydrogel with enhanced mechanical properties for application as a cell carrier for cornea endothelial cells. Int J Biol Macromol 2023; 236:123878. [PMID: 36894057 DOI: 10.1016/j.ijbiomac.2023.123878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Recently, the number of people suffering from visual loss due to eye diseases is increasing rapidly around the world. However, due to the severe donor shortage and the immune response, corneal replacement is needed. Gellan gum (GG) is biocompatible and widely used for cell delivery or drug delivery, but its strength is not suitable for the corneal substitute. In this study, a GM hydrogel was prepared by blending methacrylated gellan gum with GG (GM) to give suitable mechanical properties to the corneal tissue. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a crosslinking initiator, was added to the GM hydrogel. After the photo-crosslinking treatment, it was named GM/LAP hydrogel. GM and GM/LAP hydrogels were analyzed for physicochemical properties, mechanical characterization, and transparency tests to confirm their applicability as carriers for corneal endothelial cells (CEnCs). Also, in vitro studies were performed with cell viability tests, cell proliferation tests, cell morphology, cell-matrix remodeling analysis, and gene expression evaluation. The compressive strength of the GM/LAP hydrogel was improved compared to the GM hydrogel. The GM/LAP hydrogel showed excellent cell viability, proliferation, and cornea-specific gene expression than the GM hydrogel. Crosslinking-improved GM/LAP hydrogel can be applied as a promising cell carrier in corneal tissue engineering.
Collapse
Affiliation(s)
- Jin Sol Seo
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Nomin-Erdene Tumursukh
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Youngeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Na Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Seung Jae Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Nahyeon Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No.4 - 6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur 60115, Indonesia.
| |
Collapse
|
5
|
Zeini D, Glover JC, Knudsen KD, Nyström B. Influence of Lysine and TRITC Conjugation on the Size and Structure of Dextran Nanoconjugates with Potential for Biomolecule Delivery to Neurons. ACS APPLIED BIO MATERIALS 2021; 4:6832-6842. [DOI: 10.1021/acsabm.1c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Darya Zeini
- Department of Chemistry, University of Oslo, Blindern, P.O.
Box 1033, Oslo N-0315, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.
Box 1103, Oslo N-0317, Norway
| | - Joel C. Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.
Box 1103, Oslo N-0317, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo N-0317, Norway
| | | | - Bo Nyström
- Department of Chemistry, University of Oslo, Blindern, P.O.
Box 1033, Oslo N-0315, Norway
| |
Collapse
|
6
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
McMillan A, Nguyen MK, Huynh CT, Sarett SM, Ge P, Chetverikova M, Nguyen K, Grosh D, Duvall CL, Alsberg E. Hydrogel microspheres for spatiotemporally controlled delivery of RNA and silencing gene expression within scaffold-free tissue engineered constructs. Acta Biomater 2021; 124:315-326. [PMID: 33465507 DOI: 10.1016/j.actbio.2021.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Delivery systems for controlled release of RNA interference (RNAi) molecules, including small interfering (siRNA) and microRNA (miRNA), have the potential to direct stem cell differentiation for regenerative musculoskeletal applications. To date, localized RNA delivery platforms in this area have focused predominantly on bulk scaffold-based approaches, which can interfere with cell-cell interactions important for recapitulating some native musculoskeletal developmental and healing processes in tissue regeneration strategies. In contrast, scaffold-free, high density human mesenchymal stem cell (hMSC) aggregates may provide an avenue for creating a more biomimetic microenvironment. Here, photocrosslinkable dextran microspheres (MS) encapsulating siRNA-micelles were prepared via an aqueous emulsion method and incorporated within hMSC aggregates for localized and sustained delivery of bioactive siRNA. siRNA-micelles released from MS in a sustained fashion over the course of 28 days, and the released siRNA retained its ability to transfect cells for gene silencing. Incorporation of fluorescently labeled siRNA (siGLO)-laden MS within hMSC aggregates exhibited tunable siGLO delivery and uptake by stem cells. Incorporation of MS loaded with siRNA targeting green fluorescent protein (siGFP) within GFP-hMSC aggregates provided sustained presentation of siGFP within the constructs and prolonged GFP silencing for up to 15 days. This platform system enables sustained gene silencing within stem cell aggregates and thus shows great potential in tissue regeneration applications. STATEMENT OF SIGNIFICANCE: This work presents a new strategy to deliver RNA-nanocomplexes from photocrosslinked dextran microspheres for tunable presentation of bioactive RNA. These microspheres were embedded within scaffold-free, human mesenchymal stem cell (hMSC) aggregates for sustained gene silencing within three-dimensional cell constructs while maintaining cell viability. Unlike exogenous delivery of RNA within culture medium that suffers from diffusion limitations and potential need for repeated transfections, this strategy provides local and sustained RNA presentation from the microspheres to cells in the constructs. This system has the potential to inhibit translation of hMSC differentiation antagonists and drive hMSC differentiation toward desired specific lineages, and is an important step in the engineering of high-density stem cell systems with incorporated instructive genetic cues for application in tissue regeneration.
Collapse
|
8
|
Andrée L, Yang F, Brock R, Leeuwenburgh SCG. Designing biomaterials for the delivery of RNA therapeutics to stimulate bone healing. Mater Today Bio 2021; 10:100105. [PMID: 33912824 PMCID: PMC8063862 DOI: 10.1016/j.mtbio.2021.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ribonucleic acids (small interfering RNA, microRNA, and messenger RNA) have been emerging as a promising new class of therapeutics for bone regeneration. So far, however, research has mostly focused on stability and complexation of these oligonucleotides for systemic delivery. By comparison, delivery of RNA nanocomplexes from biomaterial carriers can facilitate a spatiotemporally controlled local delivery of osteogenic oligonucleotides. This review provides an overview of the state-of-the-art in the design of biomaterials which allow for temporal and spatial control over RNA delivery. We correlate this concept of spatiotemporally controlled RNA delivery to the most relevant events that govern bone regeneration to evaluate to which extent tuning of release kinetics is required. In addition, inspired by the physiological principles of bone regeneration, potential new RNA targets are presented. Finally, considerations for clinical translation and upscaled production are summarized to stimulate the design of clinically relevant RNA-releasing biomaterials.
Collapse
Affiliation(s)
- L Andrée
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - F Yang
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - R Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 28, Nijmegen, 6525 GA, the Netherlands
| | - S C G Leeuwenburgh
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| |
Collapse
|
9
|
Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213432] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C. Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications. Front Chem 2020; 8:19. [PMID: 32083052 PMCID: PMC7005785 DOI: 10.3389/fchem.2020.00019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Self-assembled temperature-induced injectable hydrogels fabricated via self-assembly of polymer smart-blocks have been widely investigated as drug delivery systems and platforms for tissue regeneration. Polymer smart-blocks that can be self-assembly play an important role in fabrication of hydrogels because they can self-assemble to induce the gelation of their copolymer in aqueous solution. The self-assembly occurs in response to an external stimulus change, such as temperature, pH, glucose, ionic strength, light, magnetic field, electric field, or their combination, which results in property transformations like hydrophobicity, ionization, and conformational change. The self-assembly smart-block based copolymers exist as a solution in aqueous media at certain conditions that are suitable for mixing with bioactive molecules and/or cells. However, this solution turns into a hydrogel due to the self-assembly of the smart-blocks under exposure to an external stimulus change in vitro or injection into the living body for a controllable release of loaded bioactive molecules or serving as a biomaterial scaffold for tissue regeneration. This work reports current scenery in the development of these self-assembly smart-blocks for fabrication of temperature-induced injectable physically cross-linked hydrogels and their potential application as drug delivery systems and platforms for tissue engineering.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Le Hoang Sinh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Dai Phu Huynh
- Faculty of Materials Technology and Polymer Research Center, Ho Chi Minh City University of Technology, VNU HCM, Ho Chi Minh City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Cong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
12
|
Khan AH, Cook JK, Wortmann WJ, Kersker ND, Rao A, Pojman JA, Melvin AT. Synthesis and characterization of thiol‐acrylate hydrogels using a base‐catalyzed Michael addition for 3D cell culture applications. J Biomed Mater Res B Appl Biomater 2020; 108:2294-2307. [DOI: 10.1002/jbm.b.34565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Anowar H. Khan
- Department of ChemistryLouisiana State University Baton Rouge Louisiana
| | - Jeffery K. Cook
- Department of Chemical & Biomolecular EngineeringUniversity of California Berkeley California
| | - Wayne J. Wortmann
- Cain Department of Chemical EngineeringLouisiana State University Baton Rouge Louisiana
| | - Nathan D. Kersker
- Department of ChemistryLouisiana State University Baton Rouge Louisiana
| | - Asha Rao
- Cain Department of Chemical EngineeringLouisiana State University Baton Rouge Louisiana
| | - John A. Pojman
- Department of ChemistryLouisiana State University Baton Rouge Louisiana
| | - Adam T. Melvin
- Cain Department of Chemical EngineeringLouisiana State University Baton Rouge Louisiana
| |
Collapse
|
13
|
Nguyen MK, Huynh CT, Gilewski A, Wilner SE, Maier KE, Kwon N, Levy M, Alsberg E. Covalently tethering siRNA to hydrogels for localized, controlled release and gene silencing. SCIENCE ADVANCES 2019; 5:eaax0801. [PMID: 31489374 PMCID: PMC6713499 DOI: 10.1126/sciadv.aax0801] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/19/2019] [Indexed: 05/19/2023]
Abstract
Small interfering RNA (siRNA) has found many applications in tissue regeneration and disease therapeutics. Effective and localized siRNA delivery remains challenging, reducing its therapeutic potential. Here, we report a strategy to control and prolong siRNA release by directly tethering transfection-capable siRNA to photocrosslinked dextran hydrogels. siRNA release is governed via the hydrolytic degradation of ester and/or disulfide linkages between the siRNA and hydrogels, which is independent of hydrogel degradation rate. The released siRNA is shown to be bioactive by inhibiting protein expression in green fluorescent protein-expressing HeLa cells without the need of a transfection agent. This strategy provides an excellent platform for controlling nucleic acid delivery through covalent bonds with a biomaterial and regulating cellular gene expression, which has promising potential in many biomedical applications.
Collapse
Affiliation(s)
- Minh Khanh Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Cong Truc Huynh
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Alex Gilewski
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Samantha E. Wilner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keith E. Maier
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nicholas Kwon
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mathew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Vitrisa Therapeutics Inc., 701 W Main St. Suite 200, Durham, NC 27701, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Peng D, Gao H, Huang P, Shi X, Zhou J, Zhang J, Dong A, Tang H, Wang W, Deng L. Host-guest supramolecular hydrogel based on nanoparticles: co-delivery of DOX and siBcl-2 for synergistic cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:877-893. [DOI: 10.1080/09205063.2019.1612602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dan Peng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huijie Gao
- Tianjin Life Science Research Center and School of basic medical sciences, Tianjin Medical University, Tianjin, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoguang Shi
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and School of basic medical sciences, Tianjin Medical University, Tianjin, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Qu X, Hu Y, Wang H, Song H, Young M, Xu F, Liu Y, Cheng G. Biomimetic Dextran–Peptide Vectors for Efficient and Safe siRNA Delivery. ACS APPLIED BIO MATERIALS 2019; 2:1456-1463. [DOI: 10.1021/acsabm.8b00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinjian Qu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yang Hu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huifeng Wang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Haiqing Song
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Megan Young
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Fujian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
16
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
17
|
Huynh CT, Liu F, Cheng Y, Coughlin KA, Alsberg E. Thiol-Epoxy "Click" Chemistry to Engineer Cytocompatible PEG-Based Hydrogel for siRNA-Mediated Osteogenesis of hMSCs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25936-25942. [PMID: 29986132 PMCID: PMC6930143 DOI: 10.1021/acsami.8b07167] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Thiol-epoxy "click" chemistry is employed for the first time to engineer a new cytocompatible PEG-based hydrogel system in aqueous media with the ability to encapsulate human mesenchymal stem cells (hMSCs) and control their fate for tissue regeneration. Cells were easily encapsulated into the hydrogels and exhibited high cell viability over 4 weeks of culture regardless of the presence of siRNA, complexed with polyethylenimine (PEI) in the form of siRNA/PEI nanocomplexes, indicating the biocompatibility of the developed hydrogel. Loading pro-osteogenic siNoggin in the hydrogel significantly enhanced the osteogenesis of encapsulated hMSCs, demonstrating the potential application of this system in tissue engineering.
Collapse
Affiliation(s)
- Cong Truc Huynh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Fangze Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yuxuan Cheng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Katherine A. Coughlin
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
18
|
Nguyen MK, Jeon O, Dang PN, Huynh CT, Varghai D, Riazi H, McMillan A, Herberg S, Alsberg E. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomater 2018; 75:105-114. [PMID: 29885529 PMCID: PMC6119505 DOI: 10.1016/j.actbio.2018.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) may be an effective and valuable tool for promoting the growth of functional tissue, as short interfering RNA (siRNA) and microRNA (miRNA) can block the expression of genes that have negative effects on tissue regeneration. Our group has recently reported that the localized and sustained presentation of siRNA against noggin (siNoggin) and miRNA-20a from in situ forming poly(ethylene glycol) (PEG) hydrogels enhanced osteogenic differentiation of encapsulated human bone marrow-derived mesenchymal stem cells (hMSCs). Here, the capacity of the hydrogel system to accelerate bone formation in a rat calvarial bone defect model is presented. After 12 weeks post-implantation, the hydrogels containing encapsulated hMSCs and miRNA-20a resulted in more bone formation in the defects than the hydrogels containing hMSCs without siRNA or with negative control siRNA. This localized and sustained RNA interfering molecule delivery system may provide an excellent platform for healing bony defects and other tissues. STATEMENT OF SIGNIFICANCE Delivery of RNAi molecules may be a valuable strategy to guide cell behavior for tissue engineering applications, but to date there have been no reports of a biomaterial system capable of both encapsulation of cells and controlled delivery of incorporated RNA. Here, we present PEG hydrogels that form in situ via Michael type reaction, and that permit encapsulation of hMSCs and the concomitant controlled delivery of siNoggin and/or miRNA-20a. These RNAs were chosen to suppress noggin, a BMP-2 antagonist, and/or PPAR-γ, a negative regulator of BMP-2-mediated osteogenesis, and therefore promote osteogenic differentiation of hMSCs and subsequent bone repair in critical-sized rat calvarial defects. Simultaneous delivery of hMSCs and miRNA-20a enhanced repair of these defects compared to hydrogels containing hMSCs without siRNA or with negative control siRNA. This in situ forming PEG hydrogel system offers an exciting platform for healing critical-sized bone defects by localized, controlled delivery of RNAi molecules to encapsulated hMSCs and surrounding cells.
Collapse
Affiliation(s)
- Minh K Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Phuong N Dang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Cong T Huynh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Davood Varghai
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Hooman Riazi
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Alexandra McMillan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
19
|
Thomas D, O'Brien T, Pandit A. Toward Customized Extracellular Niche Engineering: Progress in Cell-Entrapment Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703948. [PMID: 29194781 DOI: 10.1002/adma.201703948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The primary aim in tissue engineering is to repair, replace, and regenerate dysfunctional tissues to restore homeostasis. Cell delivery for repair and regeneration is gaining impetus with our understanding of constructing tissue-like environments. However, the perpetual challenge is to identify innovative materials or re-engineer natural materials to model cell-specific tissue-like 3D modules, which can seamlessly integrate and restore functions of the target organ. To devise an optimal functional microenvironment, it is essential to define how simple is complex enough to trigger tissue regeneration or restore cellular function. Here, the purposeful transition of cell immobilization from a cytoprotection point of view to that of a cell-instructive approach is examined, with advances in the understanding of cell-material interactions in a 3D context, and with a view to further application of the knowledge for the development of newer and complex hierarchical tissue assemblies for better examination of cell behavior and offering customized cell-based therapies for tissue engineering.
Collapse
Affiliation(s)
- Dilip Thomas
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
20
|
Truong VX, Li F, Forsythe JS. Photolabile Hydrogels Responsive to Broad Spectrum Visible Light for Selective Cell Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32441-32445. [PMID: 28892355 DOI: 10.1021/acsami.7b11517] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We introduce an efficient method for the preparation of photolabile polymer linkers to be used in the fabrication of bioorthogonal and photodegradable hydrogels. The versatility of this synthesis strategy allows for incorporation of a series of chromophores responsive to addressable wavelengths of UV and broad spectrum visible light. Consequently, selective release of different cell types from composite hydrogels by user-defined timing can be achieved by irradiating the materials with different wavelengths of light.
Collapse
Affiliation(s)
- Vinh X Truong
- Department of Materials Science & Engineering, Monash Institute of Medical Engineering, Monash University , Clayton, 3800 Victoria, Australia
| | - Fanyi Li
- Department of Materials Science & Engineering, Monash Institute of Medical Engineering, Monash University , Clayton, 3800 Victoria, Australia
- CSIRO Manufacturing , Bayview Avenue, Clayton, 3168 Victoria, Australia
| | - John S Forsythe
- Department of Materials Science & Engineering, Monash Institute of Medical Engineering, Monash University , Clayton, 3800 Victoria, Australia
| |
Collapse
|
21
|
Huynh CT, Zheng Z, Nguyen MK, McMillan A, Yesilbag Tonga G, Rotello VM, Alsberg E. Cytocompatible Catalyst-Free Photodegradable Hydrogels for Light-Mediated RNA Release To Induce hMSC Osteogenesis. ACS Biomater Sci Eng 2017; 3:2011-2023. [DOI: 10.1021/acsbiomaterials.6b00796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Gulen Yesilbag Tonga
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | | |
Collapse
|