1
|
Cao H, Yi M, Wei H, Zhang S. Construction of Folate-Conjugated and pH-Responsive Cell Membrane Mimetic Mixed Micelles for Desirable DOX Release and Enhanced Tumor-Cellular Target. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9546-9555. [PMID: 35880856 DOI: 10.1021/acs.langmuir.2c00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart multifunctional polymeric micelles are in urgent demand for future cancer diagnosis and therapy. In this paper, doxorubicin (DOX)-loaded folic acid (FA)-targeting and pH-responsive cell membrane mimetic mixed micelles of P(DMAEMA-co-MaPCL) (PCD) and FA-P(MPC-co-MaPCL) (PMCF) (mass ratio 5/5) were prepared by a dialysis method. The micelle size, morphology, X-ray powder diffraction (XRD), pH responsiveness, in vitro DOX release, cytotoxicity, and cellular uptake were studied in detail. The results indicated that DOX could be efficiently loaded into mixed micelles (PDMCF micelles), and the DOX-loaded mixed micelles (DOX@PDMCF micelles) exhibited a size of 150 nm and pH-responsive DOX release in an extended period. Furthermore, the DOX@PDMCF micelles could efficiently suppress the proliferation of tumor cells, HeLa and MCF-7 cells. Our data suggest that the DOX@PDMCF micelles have the potential to be applied in tumor therapy, especially for treating various folate receptor overexpressed tumors.
Collapse
Affiliation(s)
- Haimei Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Meijun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Henan Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
2
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
3
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
4
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
5
|
Wen W, Guo C, Guo J. Acid-Responsive Adamantane-Cored Amphiphilic Block Polymers as Platforms for Drug Delivery. NANOMATERIALS 2021; 11:nano11010188. [PMID: 33451051 PMCID: PMC7828523 DOI: 10.3390/nano11010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
Four-arm star-shaped (denoted as ‘S’) polymer adamantane-[poly(lactic-co-glycolic acid)-b-poly(N,N’-diethylaminoethyl methacrylate) poly(ethylene glycol) monomethyl ether]4 (S-PLGA-D-P) and its linear (denoted as ‘L’) counterpart (L-PLGA-D-P) were synthesized, then their self-assembled micelles were further developed to be platforms for anticancer drug delivery. Two types of polymeric micelles exhibited strong pH-responsiveness and good drug loading capacity (21.6% for S-PLGA-D-P and 22.9% for L-PLGA-D-P). Using doxorubicin (DOX) as the model drug, their DOX-loaded micelles displayed well controlled drug release behavior (18.5–19.0% of DOX release at pH 7.4 and 77.6–78.8% of DOX release at pH 5.0 within 80 h), good cytocompatibility against NIH-3T3 cells and effective anticancer efficacy against MCF-7 cells. However, the star-shaped polymeric micelles exhibited preferable stability, which was confirmed by the lower critical micelle concentration (CMC 0.0034 mg/mL) and decrease rate of particle sizes after 7 days incubation (3.5%), compared with the linear polymeric micelle L-PLGA-D-P (CMC 0.0070 mg/mL, decrease rate of particle sizes was 9.6%). Overall, these developed polymeric micelles have promising application as drug delivery system in cancer therapy.
Collapse
Affiliation(s)
- Weiqiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
| | - Chong Guo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Jianwei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence:
| |
Collapse
|
6
|
Shen J, Chen J, Ma J, Fan L, Zhang X, Yue T, Yan Y, Zhang Y. Enhanced lysosome escape mediated by 1,2-dicarboxylic-cyclohexene anhydride-modified poly-l-lysine dendrimer as a gene delivery system. Asian J Pharm Sci 2020; 15:759-776. [PMID: 33363631 PMCID: PMC7750821 DOI: 10.1016/j.ajps.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022] Open
Abstract
Antisense oligodeoxynucleotide (ASODN) can directly interfere a series of biological events of the target RNA derived from tumor cells through Watson-Crick base pairing, in turn, plays antitumor therapeutic roles. In the study, a novel HIF-1α ASODN-loaded nanocomposite was formulated to efficiently deliver gene to the target RNA. The physicochemical properties of nanocomposite were characterized using TEM, FTIR, DLS and zeta potentials. The mean diameter of resulting GEL-DGL-FA-ASODN-DCA nanocomposite was about 170-192 nm, and according to the agarose gel retardation assay, the loading amount of ASODN accounted for 166.7 mg/g. The results of cellular uptake showed that the nanocomposite could specifically target to HepG2 and Hela cells. The cytotoxicity assay demonstrated that the toxicity of vectors was greatly reduced by using DCA to reversibly block the cationic DGL. The subcellular distribution images clearly displayed the lysosomal escape ability of the DCA-modified nanocomposite. In vitro exploration of molecular mechanism indicated that the nanocomposite could inhibit mRNA expression and HIF-1α protein translation at different levels. In vivo optical images and quantitative assay testified that the formulation accumulated preferentially in the tumor tissue. In vivo antitumor efficacy research confirmed that this nanocomposite had significant antitumor activity and the tumor inhibitory rate was 77.99%. These results manifested that the GEL-DGL-FA-ASODN-DCA nanocomposite was promising in gene therapeutics for antitumor by interacting directly with target RNA.
Collapse
Affiliation(s)
- Jianmin Shen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Jing Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Jingbo Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Linlan Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli Zhang
- Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Ting Yue
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Yaping Yan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuhang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Jitender Bariwal
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Virender Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University MS 38677 USA
| | - Ram I. Mahato
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
8
|
Guo Z, Liu X, Chen Z, Hu J, Yang L. New liquid crystal polycarbonate micelles for intracellular delivery of anticancer drugs. Colloids Surf B Biointerfaces 2019; 178:395-403. [PMID: 30903978 DOI: 10.1016/j.colsurfb.2019.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
To construct pH/temperature dual sensitive micelles as novel drug delivery carriers, the synthesis of two diblock copolymers mPEG113-PMCC9-(PMCC-DBO)27 and mPEG43-PMCC25-(PMCC-DHO)15 based on mPEG and polycarbonate modified by acid and liquid crystal groups is described. In aqueous solution, mPEG113-PMCC9-(PMCC-DBO)27 and mPEG43-PMCC25-(PMCC-DHO)15 could self-assemble to form nanospheres and vesicles at very low critical micelle concentration, respectively. Both nanospheres and vesicles were less than 100 nm in diameter and demonstrated high loading capacity of doxorubicin (DOX) through ionic interaction between the free carboxyl groups in PMCC segments and the amine groups in DOX. In vitro release studies indicated that the two copolymer micelles were capable of pH/temperature-triggered release of doxorubicin and without a significant initial burst release. Furthermore, MTT assays showed that the blank copolymer micelles were nontoxic, while the drug-loaded micelles exhibited potent cytotoxic activity towards HeLa cells. These pH/temperature responsive copolymer micelles provided a new strategy for constructing stimuli-responsive drug delivery carriers in chemotherapy.
Collapse
Affiliation(s)
- Zhihao Guo
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Xiaofeng Liu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China.
| | - Liqun Yang
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang 110031, China.
| |
Collapse
|
9
|
Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin LS, Zhang F, Wang J, Chen X. Hierarchical Tumor Microenvironment-Responsive Nanomedicine for Programmed Delivery of Chemotherapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803926. [PMID: 30168612 PMCID: PMC6462425 DOI: 10.1002/adma.201803926] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/01/2018] [Indexed: 05/08/2023]
Abstract
Nanomedicines have been demonstrated to have passive or active tumor targeting behaviors, which are promising for cancer chemotherapy. However, most nanomedicines still suffer from a suboptimal targeting effect and drug leakage, resulting in unsatisfactory treatment outcome. Herein, a hierarchical responsive nanomedicine (HRNM) is developed for programmed delivery of chemotherapeutics. The HRNMs are prepared via the self-assembly of cyclic Arg-Gly-Asp (RGD) peptide conjugated triblock copolymer, poly(2-(hexamethyleneimino)ethyl methacrylate)-poly(oligo-(ethylene glycol) monomethyl ether methacrylate)-poly[reduction-responsive camptothecin] (PC7A-POEG-PssCPT). In blood circulation, the RGD peptides are shielded by the POEG coating; therefore, the nanosized HRNMs can achieve effective tumor accumulation through passive targeting. Once the HRNMs reach a tumor site, due to the hydrophobic-tohydrophilic conversion of PC7A chains induced by the acidic tumor microenvironment, the RGD peptides will be exposed for enhanced tumor retention and cellular internalization. Moreover, in response to the glutathione inside cells, active CPT drugs will be released rapidly for chemotherapy. The in vitro and in vivo results confirm effective tumor targeting, potent antitumor effect, and reduced systemic toxicity of the HRNMs. This HRNM is promising for enhanced chemotherapeutic delivery.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li-Sen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Mixed polycarbonate prodrug nanoparticles with reduction/pH dual-responsive and charge conversional properties. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Dai Y, Zhang X, Xia F. Click Chemistry in Functional Aliphatic Polycarbonates. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700357] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/01/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Dai
- Faculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 P. R. China
| | - Xiaojin Zhang
- Faculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 P. R. China
| | - Fan Xia
- Faculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 P. R. China
- School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
12
|
Shen H, Xia Y, Qin Z, Wu J, Zhang L, Lu Y, Xia X, Xu W. Photoresponsive biodegradable poly(carbonate)s with pendent o
-nitrobenzyl ester. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huihui Shen
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Yingchun Xia
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Zhouliang Qin
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Juan Wu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Li Zhang
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Yanbing Lu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Xinnian Xia
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| | - Weijian Xu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering, Hunan University; Changsha 410082 China
| |
Collapse
|
13
|
Park NH, Voo ZX, Yang YY, Hedrick JL. Convergent Approach to Boronic Acid Functionalized Polycarbonates: Accessing New Dynamic Material Platforms. ACS Macro Lett 2017; 6:252-256. [PMID: 35650922 DOI: 10.1021/acsmacrolett.6b00875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polycarbonates are routinely utilized for diverse medicinal applications and are highly efficacious scaffolds for drug delivery and antimicrobial treatments. In order to provide for robust, dynamic platforms for biomedical applications, we have developed new routes for the incorporation of boronic acids into the polycarbonate backbone. These routes take advantage of straightforward postsynthesis modification of established polycarbonate backbones, enabling the preparation of a diverse array of boronic acid functionalized polycarbonates from readily accessible polycarbonates. In particular, this approach circumvents the need for de novo monomer synthesis, functional group incompatibilities, and deprotection steps that often limit other methods. This strategy has been demonstrated using a broad array of unprotected boronic acids to produce both neutral and cationic boronic acid functionalized polycarbonates.
Collapse
Affiliation(s)
- Nathaniel H. Park
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Zhi Xiang Voo
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way,
The Nanos, Singapore 138669
| | - Yi Yan Yang
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way,
The Nanos, Singapore 138669
| | - James L. Hedrick
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
14
|
Li N, Li Z, Li R, Tian J, Sun G, Li L, Wu D, Ding S, Zhou C. A novel biomimetic scaffold with hUCMSCs for lumbar fusion. J Mater Chem B 2017; 5:5996-6007. [DOI: 10.1039/c6tb02640k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Discectomy and lumbar fusion are common clinical approaches to treating intervertebral disc (IVD) degeneration with the aid of autologous bone and/or biomaterials.
Collapse
Affiliation(s)
- Na Li
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
- College of Life Science and Technology
| | - Zhiwen Li
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| | - Riwang Li
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| | - Jinhuan Tian
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
- Engineering Research Center of Artificial Organs and Materials
| | - Guodong Sun
- Overseas Chinese Hospital Orthopaedic Research Center
- Guangzhou
- China
| | - Lihua Li
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
- Engineering Research Center of Artificial Organs and Materials
| | - Di Wu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
| | - Shan Ding
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
- Engineering Research Center of Artificial Organs and Materials
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou
- China
- Engineering Research Center of Artificial Organs and Materials
| |
Collapse
|