1
|
Li M, Wang C, Tang Z, Zhang S, Li G, Ju H. Enhanced electrochemiluminescence of mixed-ligand metal-organic framework with suppressed non-radiative transitions for "signal-off" biosensing of β-galactosidase. Biosens Bioelectron 2025; 282:117470. [PMID: 40262444 DOI: 10.1016/j.bios.2025.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Organic molecular emitters usually suffer from the aggregation-caused quenching (ACQ) effect, which significantly decreases their electrochemiluminescence (ECL) efficiency. This work designed a straightforward strategy to alleviate the ACQ effect and thus improve the ECL efficiency by employing a donor-acceptor (D-A) type ligand containing benzothiadiazole group and another ligand with identical connectivity to assemble a mixed-ligand zirconium-based metal organic framework (m-Zr-MOF). Upon the formation of a reticular structure and the distance increase between two ligands, the m-Zr-MOF exhibited alleviating ACQ effect due to the suppressed non-radiative transitions, which was confirmed by the improvements of both quantum yield and fluorescence lifetime. At the molar ratio of 3:1 for two ligands the obtained m-Zr-MOFs displayed the optimal ECL performance, and thus an ECL imaging method was developed for "signal-off" detection of β-galactosidase (β-Gal) by combining its enzymatic property to catalyze the hydrolysis of p-nitrophenyl β-D-galactopyranoside, which generated p-nitrophenol to quench the ECL emission through resonance energy transfer. The proposed method showed a detectable range of 5.0 to 2 × 104 mU/L with a detection limit of 1.92 mU/L, much lower than those of reported fluorescence and electrochemical methods. The designed m-Zr-MOF introduced an innovative concept for the development of mixed-ligand MOFs and their application in ECL imaging.
Collapse
Affiliation(s)
- Mengjiao Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Zhiwei Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Si Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Guijun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Chang Y, Wang J, Guo H, Yao W, Xie H, Li L, Liu X. Temperature-dependent luminescent copper nanoclusters with noncovalent interactions for determination of β-galactosidase activity. Mikrochim Acta 2024; 191:768. [PMID: 39607597 DOI: 10.1007/s00604-024-06844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The synthesis of a novel bidentate ligand-protected copper nanocluster via a solid-state strategy is reported. Single-crystal X-ray diffraction analysis result reveals that the copper nanocluster features an octahedral core (Cu6) coordinated by six ligands. Noncovalent interactions (C-H…π and π…π) exist between the copper nanoclusters. The copper nanocluster displays luminescence even at 250 °C. The luminescence intensity is linearly correlated with temperature changes. The copper nanocluster can assemble into luminescent nanosheets whose emission is quenched by 4-nitrophenol. Spectroscopic analysis and theoretical calculations results demonstrate that the inner filter effect and electron transfer cause the above quenching effect. A probe based on luminescent nanosheets was constructed for β-galactosidase activity determination. The linearity range is 3.3-91.8 U·L-1, and the limit of detection is 0.45 U·L-1. This probe was also evaluated for determination of the β-galactosidase activity in human serum via spiking experiments. The recoveries ranged from 96.2% to 101.8%.
Collapse
Affiliation(s)
- Yanping Chang
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China
| | - Jingyi Wang
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China
| | - Hongwei Guo
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China
| | - Wanqing Yao
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Wen'er West Road 712, Hangzhou, 310003, Zhejiang, P. R. China
| | - Long Li
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China.
| | - Xianhu Liu
- Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou, 514015, Guangdong, P. R. China.
| |
Collapse
|
3
|
Li Y, Li S, Huang Z, Zhang D, Jia Q. Research progress of fluorescent composites based on cyclodextrins: Preparation strategies, fluorescence properties and applications in sensing and bioimaging. Anal Chim Acta 2024; 1316:342878. [PMID: 38969399 DOI: 10.1016/j.aca.2024.342878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
Fluorescence analysis has been regarded as one of the commonly used analytical methods because of its advantages of simple operation, fast response, low cost and high sensitivity. So far, various fluorescent probes, with noble metal nanoclusters, quantum dots, organic dyes and metal organic frameworks as representatives, have been widely reported. However, single fluorescent probe often suffers from some deficiencies, such as low quantum yield, poor chemical stability, low water solubility and toxicity. To overcome these disadvantages, the introduction of cyclodextrins into fluorescent probes has become a fascinating approach. This review (with 218 references) systematically covers the research progress of fluorescent composites based on cyclodextrins in recent years. Preparation strategies, fluorescence properties, response mechanisms and applications in sensing (ions, organic pollutants, bio-related molecules, temperature, pH) and bioimaging of fluorescent composites based on cyclodextrins are summarized in detail. Finally, the current challenges and future perspectives of these composites in relative research fields are discussed.
Collapse
Affiliation(s)
- Yiqi Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songrui Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Anjali Devi JS, Madanan Anju S, Lekha GM, Aparna RS, George S. Luminescent carbon dots versus quantum dots and gold nanoclusters as sensors. NANOSCALE HORIZONS 2024. [PMID: 39037443 DOI: 10.1039/d4nh00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Ultra-small nanoparticles, including quantum dots, gold nanoclusters (AuNCs) and carbon dots (CDs), have emerged as a promising class of fluorescent material because of their molecular-like properties and widespread applications in sensing and imaging. However, the fluorescence properties of ultra-small gold nanoparticles (i.e., AuNCs) and CDs are more complicated and well distinguished from conventional quantum dots or organic dye molecules. At this frontier, we highlight recent developments in the fundamental understanding of the fluorescence emission mechanism of these ultra-small nanoparticles. Moreover, this review carefully analyses the underlying principles of ultra-small nanoparticle sensors. We expect that this information on ultra-small nanoparticles will fuel research aimed at achieving precise control over their fluorescence properties and the broadening of their applications.
Collapse
Affiliation(s)
- J S Anjali Devi
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam 686560, Kerala, India
- Department of Chemistry, Kannur University, Swami Anandatheertha Campus, Payyanur, Edat P. O. Kannur 670327, Kerala, India
| | - S Madanan Anju
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - G M Lekha
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - R S Aparna
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
5
|
Iradukunda Y, Kang JY, Zhao XB, Fu XK, Nsanzamahoro S, Ha W, Shi YP. Triple Sensing Modes for Triggered β-Galactosidase Activity Assays Based on Kaempferol-Deduced Silicon Nanoparticles and Biological Imaging of MCF-7 Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:3154-3163. [PMID: 38695332 DOI: 10.1021/acsabm.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
β-Galactosidase (β-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor β-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine β-Gala activity effectively. Via the sensing performance, the catalytic activity of β-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-β-d-galactopyranoside (KOβDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing β-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of β-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Stanislas Nsanzamahoro
- School of Chemistry and Chemical Engineering, Shandong University, Jinan City, Shandong 250100, PR China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| |
Collapse
|
6
|
Li L, Jia F, Li Y, Peng Y. Design strategies and biological applications of β-galactosidase fluorescent sensor in ovarian cancer research and beyond. RSC Adv 2024; 14:3010-3023. [PMID: 38239445 PMCID: PMC10795002 DOI: 10.1039/d3ra07968f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Beta-galactosidase (β-galactosidase), a lysosomal hydrolytic enzyme, plays a critical role in the catalytic hydrolysis of glycosidic bonds, leading to the conversion of lactose into galactose. This hydrolytic enzyme is used as a biomarker in various applications, including enzyme-linked immunosorbent assays (ELISAs), gene expression studies, tuberculosis classification, and in situ hybridization. β-Galactosidase abnormalities are linked to various diseases, such as ganglioside deposition, primary ovarian cancer, and cell senescence. Thus, effective detection of β-galactosidase activity may aid disease diagnoses and treatment. Activatable optical probes with high sensitivity, specificity, and spatiotemporal resolution imaging capabilities have become powerful tools for visualization and real time tracking in vivo in the past decade. This manuscript reviews the sensing mechanism, molecular design strategies, and advances of fluorescence probes in the biological application of β-galactosidase, particularly in the field of ovarian cancer research. Current challenges in tracking β-galactosidase and future directions are also discussed.
Collapse
Affiliation(s)
- Liangliang Li
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Feifei Jia
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Yunxiu Li
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Yan Peng
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| |
Collapse
|
7
|
Bao H, Liu Y, Li H, Qi W, Sun K. Luminescence of carbon quantum dots and their application in biochemistry. Heliyon 2023; 9:e20317. [PMID: 37790961 PMCID: PMC10543222 DOI: 10.1016/j.heliyon.2023.e20317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Similar to fullerenes, carbon nanotubes and graphene, carbon dots (CDs) are causing a lot of research work in their own right. CDs are a type of surface-passivated quantum dot that contain carbon atoms. Their distinctive characteristics, such as luminescent emission that varies with size and wavelength, resistance to photobleaching, easy biological binding, lack of toxicity, and economical production without the need for intricate synthetic processes, have led to a noteworthy surge in attention within the research community. Different techniques can be utilized to create these CDs, spanning from basic candle burning to laser ablation. This review article delves into the principles of fluorescence technology, providing insights into how different synthesis methods of quantum dots impact their luminescent properties. Additionally, it highlights the latest applications of quantum dots in catalysis and biomedical fields, with special emphasis on the current status of luminescent properties in biology and chemistry. Towards the end, the article discusses the limitations of quantum dots in current practical applications, pointing out that CDs hold promising potential for future applications.
Collapse
Affiliation(s)
- Haili Bao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - He Li
- Beijing University of Chemical Technology, Beijing, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Keyan Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
8
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
9
|
Jiang X, Li Y, Liu H, Zhang Q, Li D, Zhu W, He Y, Zhang G, Zhao Y. Carbon dots doped with nitrogen as an ultrasensitive fluorescent probe for thrombin activity monitoring and inhibitor screening. Talanta 2023; 259:124532. [PMID: 37054621 DOI: 10.1016/j.talanta.2023.124532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
A simple and sensitive fluorometric assay based on nitrogen-doped carbon dots (N-CDs) was developed for the determination of thrombin (TB) activity in human serum samples and living cells. The novel N-CDs were prepared by a facile one-pot hydrothermal method using 1,2-ethylenediamine and levodopa as precursors. Such N-CDs exhibited green fluorescence with excitation/emission peaks at 390/520 nm and a high fluorescence quantum yield of approximately 39.2%. H-D-Phenylalanyl-L-pipecolyl-Larginine-p-nitroaniline-dihydrochloride (S-2238) was hydrolyzed by TB to produce p-nitroaniline which was capable of quenching the fluorescence of N-CDs due to an inner filter effect. This assay was used to detect TB activity with a low detection limit of 11.3 fM. The proposed sensing method was then expanded to the TB inhibitor screening and exhibited excellent applicability. As a typical TB inhibitor, argatroban was determined in a concentration as low as 1.43 nM. The method has also been successfully employed for the determination of TB activity in living HeLa cells. This work showed significant potential for TB activity assay in clinical and biomedicine applications.
Collapse
Affiliation(s)
- Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Qin Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Dandan Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wanglisha Zhu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yanping He
- People's Hospital of Xinjin District, Chengdu Clinical Laboratory, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
10
|
Barnes DD, Kuznetsova V, Visheratina A, Purcell-Milton F, Baranov MA, Lynch DM, Martin H, Gun'ko YK, Scanlan EM. Glycosylated quantum dots as fluorometric nanoprobes for trehalase. Org Biomol Chem 2023; 21:2905-2909. [PMID: 36942668 DOI: 10.1039/d3ob00368j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Trehalase is an important enzyme in the metabolic cascades of many organisms, catalysing the hydrolysis of the disaccharide trehalose. Herein we describe the first examples of fluorometric nanoprobes for detection of trehalase, based on trehalose-functionalised quantum dots (QDs). QDs cross-linked with trehalose form aggregates, which are released upon enzymatic cleavage of the trehalose glycosidic bond proportionally to the enzyme concentration, offering a unique and efficient approach for specific sensing of this biologically important enzyme.
Collapse
Affiliation(s)
- Danielle D Barnes
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | - Vera Kuznetsova
- School of Chemistry and CRANN, Trinity College, Pearse St, Dublin 2, Ireland
| | | | - Finn Purcell-Milton
- School of Chemistry and CRANN, Trinity College, Pearse St, Dublin 2, Ireland
| | | | - Dylan M Lynch
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | - Harlei Martin
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | - Yurii K Gun'ko
- School of Chemistry and CRANN, Trinity College, Pearse St, Dublin 2, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| |
Collapse
|
11
|
Li LS, Zhang YX, Gong W, Li J. Novel β-cyclodextrin doped carbon dots for host-guest recognition-assisted sensing of isoniazid and cell imaging. RSC Adv 2022; 12:30104-30112. [PMID: 36329931 PMCID: PMC9585529 DOI: 10.1039/d2ra05089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
In the present study, novel β-cyclodextrin doped carbon dots (CCDs) were prepared via a simple one-pot hydrothermal method at a mild temperature (140 °C), using mixtures of β-cyclodextrin and citric acid as precursors. By characterizing the chemical properties of CCDs prepared at 140 °C and 180 °C, the importance of low-temperature reaction for preservation of the specific structure of β-CD was elucidated. The CCDs showed excellent optical properties and were stable to changes in pH, ionic strength and light irradiation. Since the fluorescence of the CCDs could be selectively quenched by isoniazid (INZ) through specific host-guest recognition effects, a convenient isoniazid fluorescence sensor was developed. Under the optimal conditions, the sensor exhibited a relatively low detection limit of 0.140 μg mL-1 and a wide detection range from 0.2 μg mL-1 to 50 μg mL-1 for INZ detection. Furthermore, the sensor was employed successfully for the determination of INZ in urine samples with satisfactory recovery (91.1-109.5%), displaying potential in clinical applications. Finally, low cytotoxicity of the prepared CCDs was confirmed using the CCK-8 method, followed by application in HepG2 cell imaging.
Collapse
Affiliation(s)
- Lu-Shuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University Haikou 570228 China
| | - Ying-Xia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University Haikou 570228 China
| | - Wei Gong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts & Science Xiangyang 441021 China
| | - Jing Li
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts & Science Xiangyang 441021 China
| |
Collapse
|
12
|
Wang J, Du Y, Du J. Green-emission nitrogen-doped carbon quantum dots from alkaline N-methyl-2-pyrrolidinone for determination of β-galactosidase and its inhibitors. Mikrochim Acta 2022; 189:282. [PMID: 35840722 DOI: 10.1007/s00604-022-05378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
Abstract
A new fluorescence method was established for sensitive detection of β-galactosidase (β-gal) activity in spiked human serum and screening of inhibitor. Nitrogen-doped carbon quantum dots (N-CQDs) were prepared by solvothermal polymerization of N-methyl-2-pyrrolidinone in an alkaline condition. The colloidal N-CQDs exhibit good water solubility, stability, and emit bright green fluorescence with a maximum emission peak at 528 nm upon excitation at 420 nm. β-gal specifically catalyzes the decomposition of its substrate P-nitrophenyl-β-D-galactopyranoside into 4-nitrophenol, whose absorption spectrum overlaps well with the excitation spectrum of the N-CQDs. As a result, the fluorescence of the N-CQDs is remarkably quenched by 4-nitrophenol via an inner filter effect. The sensing platform presents a linear response range for β-gal activity from 0.05 to 3.0 U·L-1 with a low limit of detection of 0.023 U·L-1. An acceptable precision is obtained with a relative standard deviation (RSD) of 3.1% for 1.0 U·L-1 β-gal (n = 11). The method was applied to determine β-gal in spiked human serums with recoveries in the range 96.3-104.7%. The method was employed to evaluate inhibitor screening with D-galactal and chloroquine diphosphate as models.
Collapse
Affiliation(s)
- Jiawei Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yi Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
13
|
Morsli S, Doherty GJ, Muñoz-Espín D. Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mech Ageing Dev 2022; 202:111618. [PMID: 34990647 DOI: 10.1016/j.mad.2021.111618] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023]
Abstract
Pharmacologically active compounds that manipulate cellular senescence (senotherapies) have recently shown great promise in multiple pre-clinical disease models, and some of them are now being tested in clinical trials. Despite promising proof-of-principle evidence, there are known on- and off-target toxicities associated with these compounds, and therefore more refined and novel strategies to improve their efficacy and specificity for senescent cells are being developed. Preferential release of drugs and macromolecular formulations within senescent cells has been predominantly achieved by exploiting one of the most widely used biomarkers of senescence, the increase in lysosomal senescence-associated β-galactosidase (SA-β-gal) activity, a common feature of most reported senescent cell types. Galacto-conjugation is a versatile therapeutic and detection strategy to facilitate preferential targeting of senescent cells by using a variety of existing formulations, including modular systems, nanocarriers, activatable prodrugs, probes, and small molecules. We discuss the benefits and drawbacks of these specific senescence targeting tools and how the strategy of galacto-conjugation might be utilised to design more specific and sophisticated next-generation senotherapeutics, as well as theranostic agents. Finally, we discuss some innovative strategies and possible future directions for the field.
Collapse
Affiliation(s)
- Samir Morsli
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Gary J Doherty
- Department of Oncology, Box 193, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| |
Collapse
|
14
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
15
|
Chen BB, Huang CZ. Preparation of carbon dots and their sensing applications. SENSING AND BIOSENSING WITH OPTICALLY ACTIVE NANOMATERIALS 2022:9-40. [DOI: 10.1016/b978-0-323-90244-1.00005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Cai R, Xiao L, Liu M, Du F, Wang Z. Recent Advances in Functional Carbon Quantum Dots for Antitumour. Int J Nanomedicine 2021; 16:7195-7229. [PMID: 34720582 PMCID: PMC8550800 DOI: 10.2147/ijn.s334012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Carbon quantum dots (CQDs) are an emerging class of quasi-zero-dimensional photoluminescent nanomaterials with particle sizes less than 10 nm. Owing to their favourable water dispersion, strong chemical inertia, stable optical performance, and good biocompatibility, CQDs have become prominent in biomedical fields. CQDs can be fabricated by “top-down” and “bottom-up” methods, both of which involve oxidation, carbonization, pyrolysis and polymerization. The functions of CQDs include biological imaging, biosensing, drug delivery, gene carrying, antimicrobial performance, photothermal ablation and so on, which enable them to be utilized in antitumour applications. The purpose of this review is to summarize the research progress of CQDs in antitumour applications from preparation and characterization to application prospects. Furthermore, the challenges and opportunities of CQDs are discussed along with future perspectives for precise individual therapy of tumours.
Collapse
Affiliation(s)
- Rong Cai
- Central Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215600, People's Republic of China
| | - Long Xiao
- Central Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215600, People's Republic of China
| | - Meixiu Liu
- Central Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215600, People's Republic of China
| | - Fengyi Du
- School of Medicine, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhirong Wang
- Central Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215600, People's Republic of China
| |
Collapse
|
17
|
Yang J, Du H, Chai Z, Ling Z, Li BQ, Mei X. Targeted Nanoscale 3D Thermal Imaging of Tumor Cell Surface with Functionalized Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102807. [PMID: 34390313 DOI: 10.1002/smll.202102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Measuring the changes in tumor cell surface temperature can provide insights into cellular metabolism and pathological features, which is significant for targeted chemotherapy and hyperthermic therapy. However, conventional micro-nano scale methods are invasive and can only measure the temperature of cells across a single plane, which excludes specific organelles. In this study, fluorescence quantum dots (QDs) are functionalized with the membrane transport protein transferrin (Tf) as a thermo-sensor specific for tumor cell membrane. The covalent conjugation is optimized to maintain the relative fluorescence intensity of the Tf-QDs to >90%. In addition, the Tf-QDs undergo changes in the fluorescence spectra as a function of temperature, underscoring its thermo-sensor function. Double helix point spread function imaging optical path is designed to locate the probe at nanoscale, and 3D thermal imaging technology is proposed to measure the local temperature distribution and direction of heat flux on the tumor cell surface. This novel targeted nanoscale 3D thermometry method can be a highly promising tool for measuring the local and global temperature distribution across intracellular organelles.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hanliang Du
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenhao Chai
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zheng Ling
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ben Q Li
- Department of Mechanical Engineering, College of Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48128, USA
| | - Xuesong Mei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
18
|
Sharma SK, Poudel Sharma S, Leblanc RM. Methods of detection of β-galactosidase enzyme in living cells. Enzyme Microb Technol 2021; 150:109885. [PMID: 34489038 DOI: 10.1016/j.enzmictec.2021.109885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
The application of β-galactosidase enzyme ranges from industrial use as probiotics to medically important application such as cancer detection. The irregular activities of β-galactosidase enzyme are directly related to the development of cancers. Identifying the location and expression levels of enzymes in cancer cells have considerable importance in early-stage cancer diagnosis and monitoring the efficacy of therapies. Most importantly, the knowledge of the efficient method of detection of β-galactosidase enzyme will help in the early-stage treatment of the disease. In this review paper, we provide an overview of recent advances in the detection methods of β-galactosidase enzyme in the living cells, including the detection strategies, and approaches in human beings, plants, and microorganisms such as bacteria. Further, we emphasized on the challenges and opportunities in this rapidly developing field of development of different biomarkers and fluorescent probes based on β-galactosidase enzyme. We found that previously used chromo-fluorogenic methods have been mostly replaced by the new molecular probes, although they have certain drawbacks. Upon comparing the different methods, it was found that near-infrared fluorescent probes are dominating the other detection methods.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States; Thomas More University, 333 Thomas More Pkwy, Crestview Hills, KY 41017
| | - Sijan Poudel Sharma
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States.
| |
Collapse
|
19
|
Cheng M, Yao C, Su Y, Liu J, Xu L, Hou S. Synthesis of membrane-type graphene oxide immobilized manganese dioxide adsorbent and its adsorption behavior for lithium ion. CHEMOSPHERE 2021; 279:130487. [PMID: 33865165 DOI: 10.1016/j.chemosphere.2021.130487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Recently, there has been an urgent need to develop new materials and technologies for extracting lithium ions. Herein, the membrane-type adsorbent of manganese dioxide (MnO2) is prepared by a vacuum filtration method using graphene oxide (GO) as a binder and amino-β-cyclodextrin (amino-β-CD) as an adjuvant. The results of thermogravimetric analysis show that MnO2 is successfully immobilized on GO layers with a content of about 24 wt%, which enabled rapid adsorb lithium ions from the ionic solution. In addition, the permeation experiment shows the membrane has specific selectivity for lithium ion transport and adsorption, which is manifested in the selectivity ratios of K+/Li+, Na+/Li+ and K+/Na+ to 2.5, 3.2 and 0.8, respectively. Adsorption experiments show that GO-β-CD/MnO2 membrane has a high adsorption capacity for lithium ions (37.5 mg g-1). The adsorption kinetic curve indicates that the lithium adsorption process is controlled by the chemical adsorption mechanism. In the enrichment experiment, the concentration of lithium ions from seawater can be enriched to 1.2 mg L-1 after 100 cycles. The results suggest that the developed GO-β-CD/MnO2 membrane could effectively extract lithium ions from seawater.
Collapse
Affiliation(s)
- Mengmeng Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Chenxue Yao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yan Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Jinglei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Lijian Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Shifeng Hou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China; National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
20
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Gao S, Zhao L, Fan Z, Kodibagkar VD, Liu L, Wang H, Xu H, Tu M, Hu B, Cao C, Zhang Z, Yu JX. In Situ Generated Novel 1H MRI Reporter for β-Galactosidase Activity Detection and Visualization in Living Tumor Cells. Front Chem 2021; 9:709581. [PMID: 34336792 PMCID: PMC8321238 DOI: 10.3389/fchem.2021.709581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
For wide applications of the lacZ gene in cellular/molecular biology, small animal investigations, and clinical assessments, the improvement of noninvasive imaging approaches to precisely assay gene expression has garnered much attention. In this study, we investigate a novel molecular platform in which alizarin 2-O-β-d-galactopyranoside AZ-1 acts as a lacZ gene/β-gal responsive 1H-MRI probe to induce significant 1H-MRI contrast changes in relaxation times T 1 and T 2 in situ as a concerted effect for the discovery of β-gal activity with the exposure of Fe3+. We also demonstrate the capability of this strategy for detecting β-gal activity with lacZ-transfected human MCF7 breast and PC3 prostate cancer cells by reaction-enhanced 1H-MRI T 1 and T 2 relaxation mapping.
Collapse
Affiliation(s)
- Shuo Gao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Lei Zhao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhiqiang Fan
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Vikram D. Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Hanqin Wang
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Hong Xu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Mingli Tu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Bifu Hu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Chuanbin Cao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhenjian Zhang
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Jian-Xin Yu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
22
|
Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213686] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Chromo-fluorogenic probes for β-galactosidase detection. Anal Bioanal Chem 2021; 413:2361-2388. [PMID: 33606064 DOI: 10.1007/s00216-020-03111-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
β-Galactosidase (β-Gal) is a widely used enzyme as a reporter gene in the field of molecular biology which hydrolyzes the β-galactosides into monosaccharides. β-Gal is an essential enzyme in humans and its deficiency or its overexpression results in several rare diseases. Cellular senescence is probably one of the most relevant physiological disorders that involve β-Gal enzyme. In this review, we assess the progress made to date in the design of molecular-based probes for the detection of β-Gal both in vitro and in vivo. Most of the reported molecular probes for the detection of β-Gal consist of a galactopyranoside residue attached to a signalling unit through glycosidic bonds. The β-Gal-induced hydrolysis of the glycosidic bonds released the signalling unit with remarkable changes in color and/or emission. Additional examples based on other approaches are also described. The wide applicability of these probes for the rapid and in situ detection of de-regulation β-Gal-related diseases has boosted the research in this fertile field.
Collapse
|
24
|
Yi Y, Zeng W, Zhu G. β-Cyclodextrin functionalized molybdenum disulfide quantum dots as nanoprobe for sensitive fluorescent detection of parathion-methyl. Talanta 2021; 222:121703. [DOI: 10.1016/j.talanta.2020.121703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
|
25
|
Huang X, Lan M, Wang J, Guo L, Lin Z, Sun N, Wu C, Qiu B. A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of β-galactosidase based on the effects of AIE and host-guest recognition. Biosens Bioelectron 2020; 169:112655. [DOI: 10.1016/j.bios.2020.112655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
|
26
|
|
27
|
Wang X, Chen W, Yang H, Zhang X, Deng M, Zhou X, Huang K, Chen P, Ying B. Multimode detection of β-glycosidase and pathogenic bacteria via cation exchange assisted signal amplification. Mikrochim Acta 2020; 187:453. [PMID: 32681310 DOI: 10.1007/s00604-020-04442-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/08/2020] [Indexed: 02/05/2023]
Abstract
A rapid strategy for the β-glycosidase (β-Gal) and Escherichia coli (E. coli) sensing is presented, which is based on selective recognition reactions of QDs using visualization/fluorescence (FL)/atomic fluorescence spectrometry (AFS)/inductively coupled plasma mass spectrometry (ICP-MS) multimode assay. CdTe QDs can selectively recognize Ag+ and Ag NPs with a cation exchange reaction (CER) where Ag+ triggers the release of Cd2+ and quenches the fluorescence signal of QDs. Taking advantage of the fact that β-Gal can hydrolyze 4-Aminophenyl β-D-galactopyranoside (PAPG) to produce p-aminophenol (PAP), which has the ability to reduce Ag+ to form Ag NPs. The β-Gal can be easily detected by visualization or FL in a turn-on manner. Furthermore, combining with the selective separation of Cd2+ by filter membrane, AFS and ICP-MS with higher sensitivity were used for the determination of the enzyme. Under optimized conditions, the system limits of detections (LODs) were 0.01 U/L, 0.03 mU/L, and 0.02 mU/L using FL, AFS, and ICP-MS as the detector, respectively. The relative standard deviations (RSDs, n = 7) for 0.1 U/L β-Gal were 2.2, 2.0, and 1.3% using FL/AFS/ICP-MS as the detector, respectively. And 0.1 U/L of β-Gal can be discriminated from the blank solution with the naked eye. In addition, given that the β-Gal can serve as an indicator of E. coli, we have successfully applied this strategy for the detection of E. coli with a LOD of 25 CFU/mL. Application of the method was demonstrated by analyzing human urine samples and milk samples for ultra-trace detection of E. coli. Graphical abstract The CVG-AFS/ICP-MS/visual/FL multimode β-Gal and E.coli detection via CER.
Collapse
Affiliation(s)
- Xiu Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Wanli Chen
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, China
| | - Haiyan Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Xialin Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark
| | - Min Deng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Xingyue Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
De Los Reyes-Berbel E, Ortiz-Gomez I, Ortega-Muñoz M, Salinas-Castillo A, Capitan-Vallvey LF, Hernandez-Mateo F, Lopez-Jaramillo FJ, Santoyo-Gonzalez F. Carbon dots-inspired fluorescent cyclodextrins: competitive supramolecular "off-on" (bio)sensors. NANOSCALE 2020; 12:9178-9185. [PMID: 32297891 DOI: 10.1039/d0nr01004a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chromophore-appended cyclodextrins combine the supramolecular loading capabilities of cyclodextrins (CDs) with the optical properties of the affixed chromophores. Among fluorescent materials, carbon dots (CNDs) are attractive and the feasibility of CND-appended CDs as sensors has been demonstrated by different authors. However, CNDs are intrinsically heterogeneous materials and their ulterior functionalization yields hybrid composites that are not well defined in terms of structure and composition. Inspired by the fluorescence properties of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA), the most paradigmatic of the molecular fluorophores detected in CNDs, herein we report two highly efficient synthetic chemical strategies for the preparation of IPCA-appended CDs that behave as CND-based CD "turn off-on" biosensors suitable for the analysis of cholesterol and β-galactosidase activity. We have deconstructed the CND-CD systems to demonstrate that (i) the role of CNDs is limited to acting as a support for the molecular fluorophores produced during their synthesis and (ii) the molecular fluorophores suffice for the determination of the enzymatic activity based on the quenching by p-nitrophenol as a sacrificial quencher.
Collapse
Affiliation(s)
- Eduardo De Los Reyes-Berbel
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, Campus Fuentenueva sn, University of Granada, 18071-Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Khan ZM, Saifi S, Shumaila, Aslam Z, Khan SA, Zulfequar M. A facile one step hydrothermal synthesis of carbon quantum dots for label -free fluorescence sensing approach to detect picric acid in aqueous solution. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112201] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Kumar A, Kumari A, Asu S, Laha D, Kumar Sahu S. Synthesis of CDs from β‐Cyclodextrin for Smart Utilization in Visual Detection of Cholesterol and Cellular Imaging. ChemistrySelect 2019. [DOI: 10.1002/slct.201903680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Amit Kumar
- Department of ChemistryIndian Institute of Technology (ISM), Dhanbad - 826004 Jharkhand India
| | | | - Shwetank Asu
- Department of ChemistryIndian Institute of Technology (ISM), Dhanbad - 826004 Jharkhand India
| | - Dipranjan Laha
- Department of Life Science and BiotechnologyJadavpur University, 188, Raja S C Mallick Road Kolkata 700032 India
| | - Sumanta Kumar Sahu
- Department of ChemistryIndian Institute of Technology (ISM), Dhanbad - 826004 Jharkhand India
| |
Collapse
|
31
|
Fluorescent carbon dots functionalization. Adv Colloid Interface Sci 2019; 270:165-190. [PMID: 31265929 DOI: 10.1016/j.cis.2019.06.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs), as a new type of luminescent zero-dimensional carbon nanomaterial, have been applied in a variety of fields. Currently, functionalization of CDs is an extremely useful method for effectively tuning their intrinsic structure and surface state. Heteroatom doping and surface modification are two functionalization strategies for improving the photophysical performance and broadening the range of applications for fluorescent CDs. Heteroatom doping in CDs can be used to tune their intrinsic properties, which has received significant research interests because of its simplicity. Surface modification can be applied for varying active sites and the functional groups on the CDs surface, which can endow fluorescent CDs with the unique properties resulting from functional ligand. In this review, we summarize the structural and physicochemical properties of functional CDs. We focused our review on the latest developments in functionalization strategies for CDs and discuss the detailed characteristics of different functionalization methods. Ultimately, we hope to inform researchers on the latest progress in functionalization of CDs and provide perspectives on future developments for functionalization of CDs and their potential applications.
Collapse
|
32
|
Li D, Liang L, Tang Y, Fu L, Xiao S, Yuan Q. Direct and single-step sensing of primary ovarian cancers related glycosidases. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Yang J, Ling Z, Li BQ, Li R, Mei X. Nanoscale 3D temperature gradient measurement based on fluorescence spectral characteristics of the CdTe quantum dot probe. OPTICS EXPRESS 2019; 27:6770-6791. [PMID: 30876256 DOI: 10.1364/oe.27.006770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The existing quantum dot temperature measurement techniques can only measure the planar temperature in the cell but fails in 3D temperature investigation. We present a novel method of measuring the 3D temperature field on nano scale, combining fluorescence spectral characteristics of the CdTe quantum dot probe with optical spatial positioning. Based on dual-helix point spread function, a 3D temperature optical measurement system with a resolution of 0.625 °C is established, providing a new perspective of 3D temperature measurement inside the cell. We thus offer an original research tool for further revealing the evolution process of secretions in cell metabolism.
Collapse
|
34
|
Jayanthi M, Megarajan S, Subramaniyan SB, Kamlekar RK, Veerappan A. A convenient green method to synthesize luminescent carbon dots from edible carrot and its application in bioimaging and preparation of nanocatalyst. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Janus Ł, Piątkowski M, Radwan-Pragłowska J, Bogdał D, Matysek D. Chitosan-Based Carbon Quantum Dots for Biomedical Applications: Synthesis and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E274. [PMID: 30781452 PMCID: PMC6409624 DOI: 10.3390/nano9020274] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022]
Abstract
Rapid development in medicine and pharmacy has created a need for novel biomaterials with advanced properties such as photoluminescence, biocompability and long-term stability. The following research deals with the preparation of novel types of N-doped chitosan-based carbon quantum dots. Nanomaterials were obtained with simultaneous nitrogen-doping using biocompatible amino acids according to Green Chemistry principles. For the carbon quantum dots synthesis chitosan was used as a raw material known for its biocompability. The nanomaterials obtained in the form of lyophilic colloids were characterized by spectroscopic and spectrofluorimetric methods. Their quantum yields were determined. Additionally the cytotoxicity of the prepared bionanomaterials was evaluated by XTT (2,3-Bis-(2-methoxy-4-nitro5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt) method. Our results confirmed the formation of biocompatible quantum dots with carbon cores exhibiting luminescence in visible range. Performed studies showed that modification with lysine (11.5%) and glutamic acid (7.4%) had a high impact on quantum yield, whereas functionalization with amino acids rich in S and N atoms did not significantly increase in fluorescence properties. XTT assays as well as morphological studies on human dermal fibroblasts confirmed the lack of cytotoxicity of the prepared bionanomaterials. The study shows chitosan-based quantum dots to be promising for biomedical applications such as cell labelling, diagnostics or controlled drug delivery and release systems.
Collapse
Affiliation(s)
- Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow 31-155, Poland.
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow 31-155, Poland.
| | - Julia Radwan-Pragłowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow 31-155, Poland.
| | - Dariusz Bogdał
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow 31-155, Poland.
| | - Dalibor Matysek
- Department of Geological Engineering, Faculty of Mining and Geology, Technical University of Ostrava, Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use, Ostrava 70800, Czechia.
| |
Collapse
|
36
|
Ye Y, Liu H, Li Y, Zhuang Q, Liu P, Gu J. One-pot doping platinum porphyrin recognition centers in Zr-based MOFs for ratiometric luminescent monitoring of nitric oxide in living cells. Talanta 2019; 200:472-479. [PMID: 31036211 DOI: 10.1016/j.talanta.2019.01.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 01/13/2023]
Abstract
A new kind of nanoscale MOFs probe for nitric oxide (NO) sensing has been successfully constructed by a one-pot strategy, in which the chemically stable UiO-66 crystal structure was achieved using platinum meso-tetra(4-carboxyphenyl)porphyrin (Pt-TCPP), 1,1,2,2-Tetra(4-carboxylphenyl)ethylene (H4TCPE) and 1,4-dicarboxybenzene (BDC) as co-linkers (Pt-TCPP/H4TCPE@UiO-66). Pt-TCPP was verified to serve as a signal reporter in NO sensing fields for the first time while H4TCPE worked as a luminescence reference to build a ratiometric sensor. The integration of luminescent dyes in nanoscale MOFs effectively avoided their aggregation-caused quenching effect and poor aqueous dispersibility to rationalize NO detection in the aqueous phase. The obtained Pt-TCPP/H4TCPE@UiO-66 nanoparticles (NPs) exhibited an excellent sensing property toward NO with an ultrahigh linear correlation of the Stern-Volmer equation and a rapid response time as short as 2 min. Moreover, the elaborated sensor could work under a wide pH window (7.4, 5.6 and 0) and the limit of detection (LOD) reached as low as 0.1420 µg mL-1. The specificity of the obtained Pt-TCPP/H4TCPE@UiO-66 NPs toward NO sensing was scarcely affected by other possibly coexistent species in biological system. The in vitro monitoring for NO in living cells was also testified with these Pt-TCPP/H4TCPE@UiO-66 NPs.
Collapse
Affiliation(s)
- Yunxi Ye
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongmei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai 200032, China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qixin Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai 200032, China.
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
37
|
Zhang Y, Gao Z, Yang X, Yang G, Chang J, Jiang K. Highly fluorescent carbon dots as an efficient nanoprobe for detection of clomifene citrate. RSC Adv 2019; 9:6084-6093. [PMID: 35517272 PMCID: PMC9060956 DOI: 10.1039/c9ra00360f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Highly fluorescent carbon dots (CDs) were synthesized through facile hydrothermal carbonization and ethylenediamine passivation of an easily available prawn shell precursor. The as-prepared CDs exhibit high water solubility, wavelength-tunable fluorescence with quantum yield up to 68.9%, high photostability and resistance against biomolecules, thus enabling the application as viable fluorescent nanoprobes for detection of guest quenchers. The fluorescence of the CDs can be effectively quenched by clomifene citrate (CC, a common drug for infertility) through static quenching, and therefore can serve as a simple and efficient fluorescent nanoprobe for determination of CC with wide linear range (0.25–10 μg mL−1) and low detection limit (0.2 μg mL−1). The CDs also showed low cytotoxicity, which enables the safe and accurate fluorescent detection of spiked CC in human serum, demonstrating their potential as a credible fluorescent CC nanoprobe in clinical examination. Highly fluorescent carbon dots (CDs) were synthesized through facile hydrothermal carbonization and ethylenediamine passivation of an easily available prawn shell precursor.![]()
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- P. R. China
- School of Laboratory Medicine
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- P. R. China
| | - Xue Yang
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
- P. R. China
| | - Genqing Yang
- The Third Affiliated Hospital of Xinxiang Medical University
- Xinxiang 453000
- P. R. China
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- P. R. China
| | - Kai Jiang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- P. R. China
- School of Environment
| |
Collapse
|
38
|
Li Z, Ren M, Wang L, Dai L, Lin W. Development of a two-photon fluorescent probe for the selective detection of β-galactosidase in living cells and tissues. J Mater Chem B 2019. [DOI: 10.1039/c9tb00175a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have developed a two-photon fluorescent β-gal probe (G-GAL), which was demonstrated to be an efficient two-photon biosensor for β-gal in living cells and tissues.
Collapse
Affiliation(s)
- Zihong Li
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Li Wang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Lixuan Dai
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| |
Collapse
|
39
|
Abstract
Significant advances of typical nanomaterials in the luminescent detection of water and humidity are presented.
Collapse
Affiliation(s)
- Yongming Guo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials
- School of Environmental Science and Engineering
- Nanjing University of Information Science & Technology
| | - Wei Zhao
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province
- Engineering Technology Research Center of Henan Province for Solar Catalysis
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
| |
Collapse
|
40
|
Molaei MJ. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2018; 196:456-478. [PMID: 30683392 DOI: 10.1016/j.talanta.2018.12.042] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Carbon quantum dots (CQDs) are a member of carbon nanostructures family which have received increasing attention for their photoluminescence (PL), physical and chemical stability and low toxicity. The classical semiconductor quantum dots (QDs) are semiconductor particles that are able to emit fluorescence by excitation. The CQDs is mainly referred to photoluminescent carbon nanoparticles less than 10 nm, with surface modification or functionalization. Contrary to other carbon nanostructures, CQDs can be synthesized and functionalized fast and easily. The fluorescence origin of the CQDs is a controversial issue which depends on carbon source, experimental conditions, and functional groups. However, PL emissions originated from conjugated π-domains and surface defects have been proposed for the PL emission mechanisms of the CQDs. These nanostructures have been used as nontoxic alternatives to the classical heavy metals containing semiconductor QDs in some applications such as in-vivo and in-vitro bio-imaging, drug delivery, photosensors, chemiluminescence (CL), and etc. This paper will introduce CQDs, their structure, and PL characteristics. Recent advances of the application of CQDs in biotechnology, sensors, and CL is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran.
| |
Collapse
|
41
|
Lu W, Jiao Y, Gao Y, Qiao J, Mozneb M, Shuang S, Dong C, Li CZ. Bright Yellow Fluorescent Carbon Dots as a Multifunctional Sensing Platform for the Label-Free Detection of Fluoroquinolones and Histidine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42915-42924. [PMID: 30412373 DOI: 10.1021/acsami.8b16710] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to their diverse properties, fluorescent carbon dots (CDs) have attracted more attention and present enormous potential in development of sensors, bioimaging, drug delivery, microfluidics, photodynamic therapy, light emitting diode, and so forth. Herein, a multifunctional sensing platform based on bright yellow fluorescent CDs (Y-CDs) was designed for the label-free detection of fluoroquinolones (FQs) and histidine (His). The Y-CDs with superior optical and biological merits including high chemical stability, good biocompatibility, and low cytotoxicity were simply synthesized via one-step hydrothermal treatment of o-phenylenediamine ( o-PD) and 4-aminobutyric acid (GABA). The Y-CDs can be utilized to directly monitor the amount of FQs based on fluorescence static quenching owing to the specific interaction between FQs and Y-CDs. Then, the fluorescence of this system can be effectively recovered upon addition of His. The multifunctional sensing platform exhibited high sensitivity and selectivity toward three kinds of FQs and His with low detection limits of 17-67 and 35 nM, respectively. Benefiting from these outstanding characters, the Y-CDs were successfully employed for trace detection of FQs in real samples such as antibiotic tablets and milk products. Furthermore, the probe was also extended to cellular imaging. All of the above prove that this multifunctional sensing platform presents great prospect in multiple applications such as biosensing, biomedicine, disease diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| | - Yuan Jiao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Yifang Gao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Jie Qiao
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
- School of Basic Medical Sciences , Shanxi Medical University , Taiyuan 030001 , China
| | - Maedeh Mozneb
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, and Department of Biomedical Engineering , Florida International University , Miami 33174 , United States
| |
Collapse
|
42
|
Basu N, Mandal D. Fluorescence response from the surface states of nitrogen-doped carbon nanodots: evidence of a heterogeneous population of molecular-sized fluorophores. Photochem Photobiol Sci 2018; 18:54-63. [PMID: 30289134 DOI: 10.1039/c8pp00077h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorescent Nitrogen-doped Carbon Nanodots (NCDs) of ∼4 nm diameter were prepared by acid-driven microwave irradiation of DMF solvent. Spectroscopic studies of the NCDs demonstrated that excitation of the carbon core did not contribute any fluorescence emission. Instead, the emission originated exclusively from the surface states. The fluorescence featured a prominent red edge excitation shift (REES), while changing the excitation wavelength over ∼0.5 eV indicated the emergence of different emitter species in the temporal evolution of fluorescence. These results combined to indicate a large degree of heterogeneity in the population of these surface-localized emitters, so that working with different excitation energies produced different sets of excited surface fluorophores that evolved independently of each other. Fluorescence anisotropy dynamics in the NCDs was attributable to the reorientational motion of the surface fluorophores which was decoupled from the rotational diffusion of the carbon core of the NCD. The anisotropy decay rates revealed that the fluorophores had size comparable to typical organic fluorophores, irrespective of excitation energy.
Collapse
Affiliation(s)
- Nabaruna Basu
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| | - Debabrata Mandal
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|
43
|
Chen Z, Wang S, Yang X. Phosphorus-doped carbon dots for sensing both Au (III) and l-methionine. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Devi S, Gupta RK, Paul AK, Kumar V, Sachdev A, Gopinath P, Tyagi S. Ethylenediamine mediated luminescence enhancement of pollutant derivatized carbon quantum dots for intracellular trinitrotoluene detection: soot to shine. RSC Adv 2018; 8:32684-32694. [PMID: 35547677 PMCID: PMC9086249 DOI: 10.1039/c8ra06460a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
Vehicle-generated toxic pollutants are composed of gaseous smoke and particulate byproducts accumulated as a black substance at its exhaust. This particulate matter (soot) is utilized for the green synthesis of highly stable, non-toxic, environment friendly, carbon quantum dots (CQD). The CQDs are synthesized via the simple hydrothermal route in the absence (C1) and presence (C2) of oxidants. The as-synthesized CQDs are amine functionalized using ethylenediamine. The amine functionalized CQDs (C1N and C2N) are explored for trinitrotoluene detection. From transmission electron microscopy, the average size of C1 and C2 was found to be about 4.2 nm and 5.6 nm respectively. The incorporation of amine groups lead to an increase in quantum yields from 5.63% to 12.7% for C1 and from 3.25% to 8.48% for C2 QDs. A limit of detection (LOD) of 13 ppb was displayed by C1N while the LODs of 11 ppb and 4.97 ppb were delivered by C2N at λ ex 370 nm and λ ex 420 nm respectively. The Stern-Volmer constant for C1N is 2.02 × 106 M-1 while for C2N at λ ex 370 nm and λ ex 420 nm is 0.38 × 106 M-1 and 0.48 × 106 M-1 respectively. Furthermore, C1N presents high selectivity for TNT compared to C2N. Owing to their higher luminescence, C1N particles are successfully demonstrated for their applicability in intracellular TNT detection.
Collapse
Affiliation(s)
- S Devi
- Analytical Techniques Division, CSIR-CSIO Chandigarh 160030 India + 91-172-2657267 +91-172-2642545 (O)
| | - Raju K Gupta
- Indian Institute of Technology Kanpur Uttar Pradesh India
| | - A K Paul
- DeshBhagat University Fatehgarh Sahib Punjab India
| | - Vinay Kumar
- Indian Institute of Technology Roorkee Roorkee Uttarakhand India
| | - Abhay Sachdev
- Analytical Techniques Division, CSIR-CSIO Chandigarh 160030 India + 91-172-2657267 +91-172-2642545 (O)
| | - P Gopinath
- Indian Institute of Technology Roorkee Roorkee Uttarakhand India
| | - S Tyagi
- Analytical Techniques Division, CSIR-CSIO Chandigarh 160030 India + 91-172-2657267 +91-172-2642545 (O)
| |
Collapse
|
45
|
Gomez IJ, Arnaiz B, Cacioppo M, Arcudi F, Prato M. Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. J Mater Chem B 2018; 6:5540-5548. [PMID: 32254964 DOI: 10.1039/c8tb01796d] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon nanodots (CNDs) hold great potential in imaging and drug delivery applications. In this study, nitrogen-doped CNDs (NCNDs) were coupled to the anticancer agent paclitaxel (PTX) through a labile ester bond. NCNDs showed excellent cell viability and endowed the NCND-PTX conjugate with good water solubility. The hybrid integrates the optical properties of the nanodots with the anticancer function of the drug into a single unit. Cytotoxicity was evaluated in breast, cervix, lung, and prostate cancer cell lines by the MTT assay while the cellular uptake was monitored using confocal microscopy. NCND-PTX induced apoptosis in cancer cells exhibiting slightly better anticancer activity compared to the drug alone. Moreover, the course of the NCND-PTX interaction with cancer cells was monitored using an xCELLigence system. The NCND-based conjugate represents a promising platform for bioimaging and drug delivery.
Collapse
Affiliation(s)
- I Jennifer Gomez
- Carbon Bionanotechnology Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | | | | | | | | |
Collapse
|
46
|
Li H, Yan X, Qiao S, Lu G, Su X. Yellow-Emissive Carbon Dot-Based Optical Sensing Platforms: Cell Imaging and Analytical Applications for Biocatalytic Reactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7737-7744. [PMID: 29441784 DOI: 10.1021/acsami.7b17619] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Carbon dots (CDs) have attracted increasing interest in bioimaging and sensing recently. Herein, we present a simple synthetic strategy to prepare yellow-emissive CDs (λem = 535 nm) by one-pot hydrothermal treatment of p-phenylenediamine and aspartic acid. The as-prepared CDs possess outstanding optical features, excellent biocompatibility, and low cytotoxicity, especially for fluorescence (FL) cellular imaging. Interestingly, by combining the quenching and recognition ability of silver nanoparticles (AgNPs) with the optical capacity of CDs, a label-free strategy for specifically monitoring H2O2-generated biocatalytic processes was proposed, such as glucose oxidase-induced conversion of glucose, cholesterol oxidase-catalyzed oxidization of cholesterol, and bienzyme of acetylcholinesterase and choline oxidase-mediated reaction of acetylcholine. In this process, AgNPs act as a "nanoquencher" to decrease the FL intensity of CDs via surface plasmon-enhanced energy-transfer mechanism. The enzymatic oxidation product (H2O2) subsequently etches the AgNPs to silver ions, thus recovering the FL of CDs, which enabled this proposed nanosensor to sensitively detect H2O2-generated biocatalytic processes. The above results pave the way to implement CDs as FL labels for biosensors and biological imaging.
Collapse
Affiliation(s)
| | | | - Shanpeng Qiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | | | | |
Collapse
|
47
|
Mazrad ZAI, Lee K, Chae A, In I, Lee H, Park SY. Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. J Mater Chem B 2018; 6:1149-1178. [PMID: 32254177 DOI: 10.1039/c7tb03323k] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the past decade, fluorescent carbon nanoparticles (FNPs) prepared from natural resources and biomaterials have been attractive due to their various properties, such as unique optical properties, great biocompatibility, water dispersion, and facile surface functionalization. Depending on the properties of the carbon sources and the subsequent carbonization processes, internal/external stimuli responsive carbon nanoparticles have been generated that are useful for theranostic and sensing applications. In this review, we highlight the recent developments in the use of FNPs in nanomedicine in great detail, particularly for FNPs responding to internal stimuli, including redox, pH, and enzymes, and external stimuli, including temperature, light, and magnetic fields, for drug delivery and sensing applications. Furthermore, we hope to provide insight that could stimulate further research aiming for unparalleled useful applications. As a result, there are many possibilities that can be explored from this smart material.
Collapse
Affiliation(s)
- Zihnil Adha Islamy Mazrad
- Department of Chemical & Biological Engineering and Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
48
|
Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde. Biosens Bioelectron 2018; 100:201-207. [DOI: 10.1016/j.bios.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/24/2022]
|
49
|
Lin ZY, Kuo YC, Chang CJ, Lin YS, Chiu TC, Hu CC. Highly sensitive sensing of hydroquinone and catechol based on β-cyclodextrin-modified carbon dots. RSC Adv 2018; 8:19381-19388. [PMID: 35540991 PMCID: PMC9080653 DOI: 10.1039/c8ra02813c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022] Open
Abstract
In the proposed study, an efficient method for a carbon dot@β-cyclodextrin (C-dot@β-CD)-based fluorescent probe was developed for the analyses of catechol (CC) and hydroquinone (HQ) at trace levels in water samples. The properties of C-dot@β-CD nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The sensing behaviors of C-dot@β-CD toward CC and HQ were investigated by fluorescence spectroscopy. Based on the host–guest chemistry between C-dot@β-CD and phenolic compounds, which can quench C-dot@β-CD fluorescence, the prepared C-dot@β-CD nanocomposites could be used for the sensitive and selective detection of CC or HQ across a wide linear range (0.1 to 10 μM) with detection limits of 47.9 and 20.2 nM, respectively. These results showed that the synthesized C-dot@β-CD nanocomposite exhibited strong fluorescence and high degree of water solubility and thus, it is suitable for use as a nanoprobe for detecting CC or HQ in real water samples. In the proposed study, an efficient method for a carbon dot@β-cyclodextrin (C-dot@β-CD)-based fluorescent probe was developed for the analyses of catechol (CC) and hydroquinone (HQ) at trace levels in water samples.![]()
Collapse
Affiliation(s)
- Zhong-Yi Lin
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
| | - Yuan-Chieh Kuo
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
| | - Chih-Jui Chang
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 97004
- Taiwan
| | - Yu-Syuan Lin
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
| | - Tai-Chia Chiu
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
- Agriculture Products Inspection Center
| | - Cho-Chun Hu
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
- Agriculture Products Inspection Center
| |
Collapse
|
50
|
Zhou H, Tang J, Lv L, Sun N, Zhang J, Chen B, Mao J, Zhang W, Zhang J, Zhou J. Intracellular endogenous glutathione detection and imaging by a simple and sensitive spectroscopic off–on probe. Analyst 2018; 143:2390-2396. [DOI: 10.1039/c8an00102b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new colorimetric and fluorescent off–on probe is constructed, synthesized and applied to indicate fluctuations in intracellular GSH levels selectively and sensitively under the stimulation of chemicals and drugs.
Collapse
|