1
|
Ji M, Yuan Z, Ma H, Feng X, Ye C, Shi L, Chen X, Han F, Zhao C. Dandelion-shaped strontium-gallium microparticles for the hierarchical stimulation and comprehensive regulation of wound healing. Regen Biomater 2024; 11:rbae121. [PMID: 39544394 PMCID: PMC11561401 DOI: 10.1093/rb/rbae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 11/17/2024] Open
Abstract
The management of full-thickness skin injuries continues to pose significant challenges. Currently, there is a dearth of comprehensive dressings capable of integrating all stages of wound healing to spatiotemporally regulate biological processes following full-thickness skin injuries. In this study, we report the synthesis of a dandelion-shaped mesoporous strontium-gallium microparticle (GE@SrTPP) achieved through dopamine-mediated strontium ion biomineralization and self-assembly, followed by functionalization with gallium metal polyphenol networks. As a multifunctional wound dressing, GE@SrTPP can release bioactive ions in a spatiotemporal manner akin to dandelion seeds. During the early stages of wound healing, GE@SrTPP demonstrates rapid and effective hemostatic performance while also exhibiting antibacterial properties. In the inflammatory phase, GE@SrTPP promotes M2 polarization of macrophages, suppresses the expression of pro-inflammatory factors, and decreases oxidative stress in wounds. Subsequently, during the stages of proliferation and tissue remodeling, GE@SrTPP facilitates angiogenesis through the activation of the Hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway. Analogous to the dispersion and rooting of dandelion seeds, the root-like new blood vessels supply essential nutrients for wound healing. Ultimately, in a rat chronic wound model, GE@SrTPP achieved successful full-thickness wound repair. In summary, these dandelion-shaped GE@SrTPP microparticles demonstrate comprehensive regulatory effects in managing full-thickness wounds, making them highly promising materials for clinical applications.
Collapse
Affiliation(s)
- Minrui Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zaixin Yuan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hongdong Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xian Feng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Ye
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Shi
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Fei Han
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Caichou Zhao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Mehl J, Farahani SK, Brauer E, Klaus‐Bergmann A, Thiele T, Ellinghaus A, Bartels‐Klein E, Koch K, Schmidt‐Bleek K, Petersen A, Gerhardt H, Vogel V, Duda GN. External Mechanical Stability Regulates Hematoma Vascularization in Bone Healing Rather than Endothelial YAP/TAZ Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307050. [PMID: 38273642 PMCID: PMC10987120 DOI: 10.1002/advs.202307050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.
Collapse
Affiliation(s)
- Julia Mehl
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Saeed Khomeijani Farahani
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Erik Brauer
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Alexandra Klaus‐Bergmann
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Tobias Thiele
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Agnes Ellinghaus
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Eireen Bartels‐Klein
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Koch
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Schmidt‐Bleek
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Ansgar Petersen
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Holger Gerhardt
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Viola Vogel
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Georg N. Duda
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
3
|
Martins GM, da Silva Braz JKF, de Macedo MF, de Oliveira Vitoriano J, Alves Júnior C, Santos CS, Feijó FMC, de Oliveira MF, de Moura CEB. Enhancing Titanium Disk Performance through In-Pack Cold Atmospheric Plasma Treatment. ACS Biomater Sci Eng 2024; 10:1765-1773. [PMID: 38357873 DOI: 10.1021/acsbiomaterials.3c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
While titanium dental implants have already been clinically established, ongoing research is continuously being conducted to advance the fields of osseointegration and bacterial resistance, seeking further improvements in these areas. In this study, we introduce an innovative method for treating titanium surfaces within tightly sealed packaging. Specifically, titanium discs, enclosed in surgical-grade packaging, underwent treatment using cold atmospheric plasma (CAP). The surfaces were thoroughly characterized in terms of wettability, crystalline structure, and chemical composition. Hemocompatibility analyses were conducted using blood diluted in sodium citrate (1:9) exposed to titanium discs for 30 min inside a CO2 incubator at 37 °C. Subsequently, various blood parameters were evaluated, including prothrombin time (PT), activated partial thromboplastin time (APTT), and platelet adhesion. Microbiological analyses were also performed using Pseudomonas aeruginosa (ATCC 27853) for 4 h at 37 °C. The treatment with CAP Jet resulted in a reduction in contact angle without causing any changes in the crystalline structure. No statistically significant differences were observed in the blood parameters. The plasma-treated samples exhibited lower PT and APTT values compared to those of the control group. The surfaces treated with CAP Jet showed increased platelet activation, platelet density, and thrombus formation when compared with the untreated samples. Moreover, the treated surfaces demonstrated lower bacterial colony formation compared with other surfaces.
Collapse
Affiliation(s)
- Gabriel Moura Martins
- Department of Health Sciences, Federal University of Rio Grande do Norte (UFRN), Campus Universitário UFRN, Lagoa Nova, 9078-970 Natal, RN, Brazil
| | | | - Michelly Fernandes de Macedo
- Department of Animal Sciences, Federal Rural University of Semi-Arid Region (UFERSA), Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Jussier de Oliveira Vitoriano
- Plasma Laboratory Applied to Agriculture, Health and Environment, UFERSA, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Clodomiro Alves Júnior
- Department of Health Sciences, Federal University of Rio Grande do Norte (UFRN), Campus Universitário UFRN, Lagoa Nova, 9078-970 Natal, RN, Brazil
- Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes, 50 - Vila das Acacias, 12228-900 São José dos Campos, SP, Brazil
- Plasma Laboratory Applied to Agriculture, Health and Environment, UFERSA, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Caio Sérgio Santos
- Laboratory of Veterinary Microbiology, Center of Agrarian Sciences, Federal Rural, UFERSA, 59625-900 Mossoró, Brazil
| | | | - Moacir Franco de Oliveira
- Department of Animal Sciences, Federal Rural University of Semi-Arid Region (UFERSA), Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Carlos Eduardo Bezerra de Moura
- Department of Animal Sciences, Federal Rural University of Semi-Arid Region (UFERSA), Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| |
Collapse
|
4
|
Ibrahim DM, Fomina A, Bouten CVC, Smits AIPM. Functional regeneration at the blood-biomaterial interface. Adv Drug Deliv Rev 2023; 201:115085. [PMID: 37690484 DOI: 10.1016/j.addr.2023.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The use of cardiovascular implants is commonplace in clinical practice. However, reproducing the key bioactive and adaptive properties of native cardiovascular tissues with an artificial replacement is highly challenging. Exciting new treatment strategies are under development to regenerate (parts of) cardiovascular tissues directly in situ using immunomodulatory biomaterials. Direct exposure to the bloodstream and hemodynamic loads is a particular challenge, given the risk of thrombosis and adverse remodeling that it brings. However, the blood is also a source of (immune) cells and proteins that dominantly contribute to functional tissue regeneration. This review explores the potential of the blood as a source for the complete or partial in situ regeneration of cardiovascular tissues, with a particular focus on the endothelium, being the natural blood-tissue barrier. We pinpoint the current scientific challenges to enable rational engineering and testing of blood-contacting implants to leverage the regenerative potential of the blood.
Collapse
Affiliation(s)
- Dina M Ibrahim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Aleksandra Fomina
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Graduate School of Life Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Yang H, Chen T, Hu Y, Niu F, Zheng X, Sun H, Cheng L, Sun L. A microfluidic platform integrating dynamic cell culture and dielectrophoretic manipulation for in situ assessment of endothelial cell mechanics. LAB ON A CHIP 2023; 23:3581-3592. [PMID: 37417786 DOI: 10.1039/d3lc00363a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The function of vascular endothelial cells (ECs) within the complex vascular microenvironment is typically modulated by biochemical cues, cell-cell interactions, and fluid shear stress. These regulatory factors play a crucial role in determining cell mechanical properties, such as elastic and shear moduli, which are important parameters for assessing cell status. However, most studies on the measurement of cell mechanical properties have been conducted in vitro, which is labor-intensive and time-consuming. Notably, many physiological factors are lacking in Petri dish culture compared with in vivo conditions, leading to inaccurate results and poor clinical relevance. Herein, we developed a multi-layer microfluidic chip that integrates dynamic cell culture, manipulation and dielectrophoretic in situ measurement of mechanical properties. Furthermore, we numerically and experimentally simulated the vascular microenvironment to investigate the effects of flow rate and tumor necrosis factor-alpha (TNF-α) on the Young's modulus of human umbilical vein endothelial cells (HUVECs). Results showed that greater fluid shear stress results in increased Young's modulus of HUVECs, suggesting the importance of hemodynamics in modulating the biomechanics of ECs. In contrast, TNF-α, an inflammation inducer, dramatically decreased HUVEC stiffness, demonstrating an adverse impact on the vascular endothelium. Blebbistatin, a cytoskeleton disruptor, significantly reduced the Young's modulus of HUVECs. In summary, the proposed vascular-mimetic dynamic culture and monitoring approach enables the physiological development of ECs in organ-on-a-chip microsystems for accurately and efficiently studying hemodynamics and pharmacological mechanisms underlying cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Yang
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Tao Chen
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Yichong Hu
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Xinyu Zheng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Haizhen Sun
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215000, China
| | - Lining Sun
- Robotics and Microsystems Center, College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215000, China.
| |
Collapse
|
6
|
Tang X, Liu J, Yan R, Peng Q. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: A review. Int J Biol Macromol 2023; 242:124902. [PMID: 37210054 DOI: 10.1016/j.ijbiomac.2023.124902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Eyes are directly exposed to the outer environment and susceptible to infections, leading to various ocular disorders. Local medication is preferred to treat eye diseases due to its convenience and compliance. However, the rapid clearance of the local formulations highly limits the therapeutic efficacy. In the past decades, several carbohydrate bioadhesive polymers (CBPs), such as chitosan and hyaluronic acid, have been used in ophthalmology for sustained ocular drug delivery. These CBP-based delivery systems have improved the treatment of ocular diseases to a large extent but also caused some undesired effects. Herein, we aim to summarize the applications of some typical CBPs (including chitosan, hyaluronic acid, cellulose, cyclodextrin, alginate and pectin) in treating ocular diseases from the general view of ocular physiology, pathophysiology and drug delivery, and to provide a comprehensive understanding of the design of the CBP-based formulations for ocular use. The patents and clinical trials of CBPs for ocular management are also discussed. In addition, a discussion on the concerns of CBPs in clinical use and the possible solutions is presented.
Collapse
Affiliation(s)
- Xuelin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Zhao Y, Bai L, Yao X, Hang R, Xiao Y. Understanding LncRNAs in Biomaterials Development for Osteointegration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Zheng Y, Wu J, Zhu Y, Wu C. Inorganic-based biomaterials for rapid hemostasis and wound healing. Chem Sci 2022; 14:29-53. [PMID: 36605747 PMCID: PMC9769395 DOI: 10.1039/d2sc04962g] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
The challenge for the treatment of severe traumas poses an urgent clinical need for the development of biomaterials to achieve rapid hemostasis and wound healing. In the past few decades, active inorganic components and their derived composites have become potential clinical products owing to their excellent performances in the process of hemorrhage control and tissue repair. In this review, we provide a current overview of the development of inorganic-based biomaterials used for hemostasis and wound healing. We highlight the methods and strategies for the design of inorganic-based biomaterials, including 3D printing, freeze-drying, electrospinning and vacuum filtration. Importantly, inorganic-based biomaterials for rapid hemostasis and wound healing are presented, and we divide them into several categories according to different chemistry and forms and further discuss their properties, therapeutic mechanisms and applications. Finally, the conclusions and future prospects are suggested for the development of novel inorganic-based biomaterials in the field of rapid hemostasis and wound healing.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| |
Collapse
|
9
|
Sun R, Bai L, Yang Y, Ding Y, Zhuang J, Cui J. Nervous System-Driven Osseointegration. Int J Mol Sci 2022; 23:ijms23168893. [PMID: 36012155 PMCID: PMC9408825 DOI: 10.3390/ijms23168893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Implants are essential therapeutic tools for treating bone fractures and joint replacements. Despite the in-depth study of osseointegration for more than fifty years, poor osseointegration caused by aseptic loosening remains one of the leading causes of late implant failures. Osseointegration is a highly sophisticated and spatiotemporal process in vivo involving the immune response, angiogenesis, and osteogenesis. It has been unraveled that the nervous system plays a pivotal role in skeletal health via manipulating neurotrophins, neuropeptides, and nerve cells. Herein, the research related to nervous system-driven osseointegration was systematically analyzed and reviewed, aiming to demonstrate the prominent role of neuromodulation in osseointegration. Additionally, it is indicated that the implant design considering the role of neuromodulation might be a promising way to prevent aseptic loosening.
Collapse
Affiliation(s)
- Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| |
Collapse
|
10
|
Lackington WA, Fleyshman L, Schweizer P, Elbs-Glatz Y, Guimond S, Rottmar M. The response of soft tissue cells to Ti implants is modulated by blood-implant interactions. Mater Today Bio 2022; 15:100303. [PMID: 35655805 PMCID: PMC9151735 DOI: 10.1016/j.mtbio.2022.100303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Titanium-based dental implants have been highly optimized to enhance osseointegration, but little attention has been given to the soft tissue-implant interface, despite being a major contributor to long term implant stability. This is strongly linked to a lack of model systems that enable the reliable evaluation of soft tissue-implant interactions. Current in vitro platforms to assess these interactions are very simplistic, thus suffering from limited biological relevance and sensitivity to varying implant surface properties. The aim of this study was to investigate how blood-implant interactions affect downstream responses of different soft tissue cells to implants in vitro, thus taking into account not only the early events of blood coagulation upon implantation, but also the multicellular nature of soft tissue. For this, three surfaces (smooth and hydrophobic; rough and hydrophobic; rough and hydrophilic with nanostructures), which reflect a wide range of implant surface properties, were used to study blood-material interactions as well as cell-material interactions in the presence and absence of blood. Rough surfaces stimulated denser fibrin network formation compared to smooth surfaces and hydrophilicity accelerated the rate of blood coagulation compared to hydrophobic surfaces. In the absence of blood, smooth surfaces supported enhanced attachment of human gingival fibroblasts and keratinocytes, but limited changes in gene expression and cytokine production were observed between surfaces. In the presence of blood, rough surfaces supported enhanced fibroblast attachment and stimulated a stronger anti-inflammatory response from macrophage-like cells than smooth surfaces, but only smooth surfaces were capable of supporting long-term keratinocyte attachment and formation of a layer of epithelial cells. These findings indicate that surface properties not only govern blood-implant interactions, but that this can in turn also significantly modulate subsequent soft tissue cell-implant interactions.
Collapse
Affiliation(s)
- William A. Lackington
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Lada Fleyshman
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Peter Schweizer
- Mechanics of Materials & Nanostructures Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Yvonne Elbs-Glatz
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Stefanie Guimond
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Markus Rottmar
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
11
|
Wu B, Tang Y, Wang K, Zhou X, Xiang L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO 2 NTAs. Int J Nanomedicine 2022; 17:1865-1879. [PMID: 35518451 PMCID: PMC9064067 DOI: 10.2147/ijn.s362720] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Titanium implants have been widely applied in dentistry and orthopedics due to their biocompatibility and resistance to mechanical fatigue. TiO2 nanotube arrays (TiO2 NTAs) on titanium implant surfaces have exhibited excellent biocompatibility, bioactivity, and adjustability, which can significantly promote osseointegration and participate in its entire path. In this review, to give a comprehensive understanding of the osseointegration process, four stages have been divided according to pivotal biological processes, including protein adsorption, inflammatory cell adhesion/inflammatory response, additional relevant cell adhesion and angiogenesis/osteogenesis. The impact of TiO2 NTAs on osseointegration is clarified in detail from the four stages. The nanotubular layer can manipulate the quantity, the species and the conformation of adsorbed protein. For inflammatory cells adhesion and inflammatory response, TiO2 NTAs improve macrophage adhesion on the surface and induce M2-polarization. TiO2 NTAs also facilitate the repairment-related cells adhesion and filopodia formation for additional relevant cells adhesion. In the angiogenesis and osteogenesis stage, TiO2 NTAs show the ability to induce osteogenic differentiation and the potential for blood vessel formation. In the end, we propose the multi-dimensional regulation of TiO2 NTAs on titanium implants to achieve highly efficient manipulation of osseointegration, which may provide views on the rational design and development of titanium implants.
Collapse
Affiliation(s)
- Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Bai L, Chen P, Zhao Y, Hang R, Yao X, Tang B, Liu C, Xiao Y, Hang R. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials 2021; 278:121162. [PMID: 34628191 DOI: 10.1016/j.biomaterials.2021.121162] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023]
Abstract
Osseointegration is a sophisticated bone and implant healing process comprising of initial hematoma formation, immediate osteoimmunomodulation, angiogenesis, and osteogenesis. To fulfill rapid and satisfying osseointegration, this study developed a biomimetic implant coating that could confer the intraosseous implants a systematical regulation of the participatory processes. Herein, we shaped dissimilar nano-scale (NS) to form highly biomimetic structures of natural extracellular matrix (ECM) of the host bone and bone healing hematoma with micro/nano-scale (MNS) titania fiber-like network on the surface of titanium (Ti) implants. In vitro experiments revealed that the MNS not only facilitated osteogenic and angiogenic differentiation of bone marrow stromal cells (BMSCs) and endothelial cells, respectively, but also suppressed M1 macrophages (MΦs), whereas, stimulated pro-healing M2 phenotype. Notably, BMSCs on MNS surfaces enabled a significant immunomodulatory effect on MΦs resulting in the downregulation of inflammation-related cell signaling pathways. The favorable osteoimmune microenvironment manipulated by MNS further facilitated osteo-/angio-genesis via the crosstalk of multi-signaling pathways. In vivo evaluation mirrored the aforementioned results, and depicted that MNS induced ameliorative osseointegration when compared with the NS as well as the pristine Ti implant. The study demonstrated the modulatory effect of the multifaceted biomimetic structure on spatiotemporal regulation of the participatory processes during osseointegration.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China
| | - Ya Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ruiyue Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Bin Tang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia.
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
13
|
Bai L, Zhao Y, Chen P, Zhang X, Huang X, Du Z, Crawford R, Yao X, Tang B, Hang R, Xiao Y. Targeting Early Healing Phase with Titania Nanotube Arrays on Tunable Diameters to Accelerate Bone Regeneration and Osseointegration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006287. [PMID: 33377275 DOI: 10.1002/smll.202006287] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Blood coagulation and inflammation are the earliest biological responses to implant surfaces. Implant nano-surfaces can significantly impact the osseointegration through the influence on the early phase of bone regeneration. However, the interplay between blood clot property and inflammatory reaction on nanosurfaces is rarely understood. Herein, titania nanotube arrays (TNAs) with different diameters are fabricated on titanium. In vitro evaluation with the whole blood indicates that TNA with a diameter of 15 nm (TNA 15) enables noteworthy platelet activation resulting in distinct clot features compared with that of pure Ti and TNA with a diameter of 120 nm (TNA 120). Further co-culture with macrophages on the clot or in the clot-conditioned medium shows that the clot on TNA 15 downregulates the inflammation and manipulates a favorable osteoimmunomodulatory environment for osteogenesis. In vivo studies further demonstrate that TNA 15 could downregulate the inflammation-related genes while upregulating growth metabolism-related genes in an early healing hematoma. Additionally, TNA 15 promotes de novo bone formation with improved extending of osteocyte dendrites, demonstrating the desired osseointegration. These findings indicate that surface nano-dimensions can significantly influence clot formation and appropriate clot features can manipulate a favorable osteoimmunomodulatory environment for bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Long Bai
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Ya Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China
| | - Xiangyu Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Xiaobo Huang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Bin Tang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, 10112, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, 4059, Australia
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| |
Collapse
|
14
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
15
|
Dovedytis M, Liu ZJ, Bartlett S. Hyaluronic acid and its biomedical applications: A review. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Fibrin as a Multipurpose Physiological Platform for Bone Tissue Engineering and Targeted Delivery of Bioactive Compounds. Pharmaceutics 2019; 11:pharmaceutics11110556. [PMID: 31661853 PMCID: PMC6920828 DOI: 10.3390/pharmaceutics11110556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Although bone graft is still considered as the gold standard method, bone tissue engineering offers promising alternatives designed to mimic the extracellular matrix (ECM) and to guide bone regeneration process. In this attempt, due to their similarity to the ECM and their low toxicity/immunogenicity properties, growing attention is paid to natural polymers. In particular, considering the early critical role of fracture hematoma for bone healing, fibrin, which constitutes blood clot, is a candidate of choice. Indeed, in addition to its physiological roles in bone healing cascade, fibrin biochemical characteristics make it suitable to be used as a multipurpose platform for bioactive agents’ delivery. Thus, taking advantage of these key assets, researchers and clinicians have the opportunity to develop composite systems that might further improve bone tissue reconstruction, and more generally prevent/treat skeletal disorders.
Collapse
|
17
|
Abstract
The chemical composition, surface structure and topography of a biomaterial have an essential influence on the effects of an implant in the human body. In orthopedic and trauma surgery they make a relevant contribution to solve the current and future challenges. Particularly high are the requirements of permanent implants in bone. Besides material aging due to oxidation, implants are subjected to cyclic loading that leads to relevant biomechanical wear and abrasion. To date significant efforts have been made to minimize adverse implant-associated immunoreactions as well as the risk of periprosthetic infections. This review gives an overview of surface modifications of implants designed for clinical application and their effects in vivo. Beside material-specific and biological principles, different surface modifications for distinct clinical applications are presented. Furthermore, current developmental strategies for the targeted clinical application of implant surfaces are outlined.
Collapse
Affiliation(s)
- Marcus Jäger
- Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandst. 55, 45147, Essen, Deutschland.
| |
Collapse
|
18
|
Balaguer T, Fellah BH, Boukhechba F, Traverson M, Mouska X, Ambrosetti D, Dadone B, Michiels JF, Amri EZ, Trojani C, Bouler JM, Gauthier O, Rochet N. Combination of blood and biphasic calcium phosphate microparticles for the reconstruction of large bone defects in dog: A pilot study. J Biomed Mater Res A 2018; 106:1842-1850. [DOI: 10.1002/jbm.a.36384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/03/2018] [Accepted: 02/27/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Thierry Balaguer
- Université Côte d'Azur, CNRS, Inserm, iBV; France
- Centre Hospitalier Universitaire, Pôle de Chirurgie Réparatrice et Ostéo Articulaire; Nice France
| | - Borhane H. Fellah
- CRIP, Centre de Recherche et d'Investigation Précliniques, ONIRIS; Nantes France
| | | | - Marine Traverson
- CRIP, Centre de Recherche et d'Investigation Précliniques, ONIRIS; Nantes France
| | | | - Damien Ambrosetti
- Centre Hospitalier Universitaire, Laboratoire central d'anatomopathologie; Nice France
| | - Bérengère Dadone
- Centre Hospitalier Universitaire, Laboratoire central d'anatomopathologie; Nice France
| | | | | | - Christophe Trojani
- Université Côte d'Azur, CNRS, Inserm, iBV; France
- Centre Hospitalier Universitaire, Pôle de Chirurgie Réparatrice et Ostéo Articulaire; Nice France
| | | | - Olivier Gauthier
- CRIP, Centre de Recherche et d'Investigation Précliniques, ONIRIS; Nantes France
- Université de Nantes, Inserm UMRS 791, LIOAD; Nantes France
| | | |
Collapse
|
19
|
Wei F, Liu G, Guo Y, Crawford R, Chen Z, Xiao Y. Blood prefabricated hydroxyapatite/tricalcium phosphate induces ectopic vascularized bone formation via modulating the osteoimmune environment. Biomater Sci 2018; 6:2156-2171. [DOI: 10.1039/c8bm00287h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood prefabricated hydroxyapatite/tricalcium phosphate induces ectopic vascularized bone formation via modulating the osteoimmune environment.
Collapse
Affiliation(s)
- Fei Wei
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane 4059
- Australia
| | - Guanqi Liu
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
- People's Republic of China
| | - Yuanlong Guo
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
- People's Republic of China
| | - Ross Crawford
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane 4059
- Australia
| | - Zetao Chen
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
- People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane 4059
- Australia
- Guanghua School of Stomatology
| |
Collapse
|