1
|
Gao D, Shipman WD, Sun Y, Yang W, Mathew AT, Beraki L, Glahn JZ, Kochen A, Kyriakides TR, Horsley V, Hsia HC. An Injectable Alginate Hydrogel Modified by Collagen and Fibronectin for Better Cellular Environment. ACS APPLIED BIO MATERIALS 2025; 8:1675-1683. [PMID: 39886738 DOI: 10.1021/acsabm.4c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Encapsulating fibroblasts in alginate hydrogels is a promising strategy to promote wound healing. However, improving the cell function within the alginate matrix remains a challenge. In this study, we engineer an injectable hydrogel through mixing alginate function with collagen and fibronectin, creating a better microenvironment for enhancing fibroblast function and cytokine secretion. We systematically analyze microstructure, mechanical properties, and fibroblast behavior of the developed hydrogel and compare it to alginate control. Our results demonstrate that inclusion collagen and fibronectin lead to the formation of fibrils on macroporous structures with pore sizes ranging from 100 to 500 μm. Compared to collagen hydrogel, the composite hydrogel shows approximately 12-fold increase in storage modulus. After encapsulating fibroblasts into the modified hydrogels, we observed increased fibroblast spreading, proliferation, and cytokine secretion when compared to neat alginate hydrogel. In addition, VEGF secretion of encapsulated fibroblasts is upregulated, indicating its pro-angiogenic potential. These findings suggest that the alginate/collagen/fibronectin hydrogel-encapsulated fibroblasts might serve as a promising therapeutic approach for wound healing.
Collapse
Affiliation(s)
- Daqian Gao
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, 310 Cedar Street, New Haven, Connecticut 06510, United States
- VA Connecticut Healthcare, 950 Campbell Ave, West Haven, Connecticut 06516, United States
| | - William D Shipman
- Department of Dermatology, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Yaping Sun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Angelin Tresa Mathew
- Department of Molecular, Cellular, Developmental Biology, Yale University, 260 Whitney Ave, New Haven, Connecticut 06511, United States
| | - Leleda Beraki
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| | - Joshua Zev Glahn
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, 310 Cedar Street, New Haven, Connecticut 06510, United States
| | - Alejandro Kochen
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, 310 Cedar Street, New Haven, Connecticut 06510, United States
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
- Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, 10 Amistad Street, New Haven, Connecticut 06510, United States
| | - Valerie Horsley
- Department of Dermatology, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Department of Molecular, Cellular, Developmental Biology, Yale University, 260 Whitney Ave, New Haven, Connecticut 06511, United States
| | - Henry C Hsia
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, 310 Cedar Street, New Haven, Connecticut 06510, United States
- VA Connecticut Healthcare, 950 Campbell Ave, West Haven, Connecticut 06516, United States
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| |
Collapse
|
2
|
Sisakht MM, Gholizadeh F, Shahravi Z, Doust-Vaghe YK, Nilforoushzadeh MA, Amirkhani MA. Sodium Alginate/Poly (Acrylicacid) Hydrogel Composite, Potential Carrier for Fibroblast Growth Factor1 (FGF1) Delivery. Chem Biodivers 2025; 22:e202401738. [PMID: 39340197 DOI: 10.1002/cbdv.202401738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
Fibroblast growth factor1 is a powerful signaling molecule that plays a critical role in injury repair of diverse tissue by stimulating cell growth and angiogenesis. FGF1 has significant role in the cell fate and regulating inflammation with short half-life and poor in vivo stability. The encapsulation of the growth factor in the hydrogel led to peptide protect from the degradation and/or immune recognition and enable controlled drug delivery over a longer period of time. The aim of this study is to develop and evaluate a hydrogel carrier with adjustable release rate while maintaining bioactivity of FGF1. Here we describe an optimal ratio of sodium alginate and polyacrylic acid without additional cross linker containing optimum amount of FGF1 with the potential of sustained release to be used as a therapeutic agent. The carrier was characterized by FTIR, contact angle and swelling ratio. The activity of FGF1 after release from the hydrogel was confirmed by ELISA and Western blot. Further assessment of genes related to inflammation were evaluated by RTPCR. This hydrogel is able to deliver growth factors by restricting the essential proteins within the matrix to prevent rapid proteolysis and explosive release and is therefore widely applicable.
Collapse
Affiliation(s)
- Mahsa Mollapour Sisakht
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholizadeh
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahravi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Kiani Doust-Vaghe
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Skin Repair Research Center, Sarvsan-e Pars Health Development company, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Wu S, Zhou Y, Wei J, Da Z, Chen W, Shu X, Luo T, Duan Y, Yang R, Ding C, Liu G. Alginate/GelMA microparticles via oil-free interface shearing for untethered magnetic microbots. Biomater Sci 2024; 12:5562-5572. [PMID: 39292506 DOI: 10.1039/d4bm00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Microrobots hold broad application prospects in the field of precision medicine, such as intravenous drug injection, tumor resection, opening blood vessels and imaging during abdominal surgery. However, the rapid and controllable preparation of biocompatible hydrogel microparticles still poses challenges. This study proposes the one-step direct acquisition of biocompatible sodium alginate and gelatin methacrylate (GelMA) hydrogel microparticles using an oil-free aqueous solution, ensuring production with a controllable generation frequency. An adaptive interface shearing platform is established to fabricate alginate/GelMA microparticles using a mixture of the hydrogel, photoinitiator, and Fe3O4 nanoparticles (NPs). By adjusting the static magnetic field intensity (Bs), vibration frequency, and flow rate (Q) of the dispersed phase, the size and morphology of the hydrogel microparticles can be controlled. These hydrogel microparticle robots exhibit magnetic responsiveness, demonstrating precise rotating and rolling movements under the influence of an externally rotating magnetic field (RMF). Moreover, hydrogel microparticle robots with a specific critical frequency (Cf) can be customized by adjusting the Bs and the concentration of Fe3O4 NPs. The directional in situ untethered motion of the hydrogel microparticle robots can be successfully realized and accurately controlled in the climbing over obstacles and in vitro experiments of animals, respectively. This versatile and fully biodegradable microrobot has the potential to precisely control movement to bone tissue and the natural cavity of the human body, as well as drug delivery.
Collapse
Affiliation(s)
- Shiyu Wu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Yang Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Juan Wei
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Zicheng Da
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Wenquan Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Xiaoxia Shu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Yuping Duan
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Guangli Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Udduttula A, Jakubovics N, Khan I, Pontiroli L, Rankin KS, Gentile P, Ferreira AM. Layer-by-Layer Coatings of Collagen-Hyaluronic acid Loaded with an Antibacterial Manuka Honey Bioactive Compound to Fight Metallic Implant Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58119-58135. [PMID: 38055248 PMCID: PMC10739588 DOI: 10.1021/acsami.3c11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Implant-associated severe infections can result in catastrophic implant failures; thus, advanced antibacterial coatings are needed to combat infections. This study focuses on harnessing nature-inspired self-assembly of extracellular matrix (ECM)-like coatings on Ti alloy with a combination of jellyfish-derived collagen (J-COLL) and hyaluronic acid (HA) using our customized automated hybrid layer-by-layer apparatus. To improve the anti-infection efficacy of coatings, we have incorporated a natural antibacterial agent methylglyoxal (MGO, a Manuka honey compound) in optimized multilayer coatings. The obtainment of MGO-loaded multilayer coatings was successfully assessed by profilometry, contact angle, attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. In vitro degradation confirmed the controlled release activity of MGO with a range of concentrations from 0.90 to 2.38 mM up to 21 days. A bacterial cell culture study using Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) confirmed that the MGO incorporated within layers 7 and 9 had a favorable effect on preventing bacterial growth and colonization on their surfaces. An in vitro cytocompatibility study confirmed that MGO agents included in the layers did not affect or reduce the cellular functionalities of L929 fibroblasts. In addition, MGO-loaded layers with Immortalized Mesenchymal Stem Cells (Y201 TERT-hMSCs) were found to favor the growth and differentiation of Y201 cells and promote calcium nodule formation. Overall, these surface coatings are promising candidates for delivering antimicrobial activity with bone-inducing functions for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Anjaneyulu Udduttula
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
- Centre
of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, TN 632014, India
| | - Nicholas Jakubovics
- School
of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle
Upon Tyne NE1 7RU, U.K.
| | - Imran Khan
- Biomet
UK Healthcare Ltd, Stella Building, Windmill Hill Business Park, Swindon SN5 6NX, U.K.
| | - Lucia Pontiroli
- Biomet
UK Healthcare Ltd, Stella Building, Windmill Hill Business Park, Swindon SN5 6NX, U.K.
| | - Kenneth S. Rankin
- Translational
and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K.
| | - Piergiorgio Gentile
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Ana M. Ferreira
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| |
Collapse
|
6
|
Hammad M, Veyssiere A, Leclercq S, Patron V, Baugé C, Boumédiene K. Hypoxia Differentially Affects Chondrogenic Differentiation of Progenitor Cells from Different Origins. Int J Stem Cells 2023; 16:304-314. [PMID: 37105555 PMCID: PMC10465331 DOI: 10.15283/ijsc21242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one's life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior. Methods and Results In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions. Conclusions We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.
Collapse
Affiliation(s)
- Mira Hammad
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| | - Alexis Veyssiere
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
- Service de chirurgie Maxillo-faciale, CHU de Caen, Caen, France
| | - Sylvain Leclercq
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Clinique Saint Martin, Service de Chirurgie Orthopédique, Caen, France
| | - Vincent Patron
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Service ORL et chirurgie cervico-faciale, CHU de Caen, Caen, France
| | - Catherine Baugé
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| | - Karim Boumédiene
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| |
Collapse
|
7
|
Vaca-González JJ, Culma JJS, Nova LMH, Garzón-Alvarado DA. Anatomy, molecular structures, and hyaluronic acid - Gelatin injectable hydrogels as a therapeutic alternative for hyaline cartilage recovery: A review. J Biomed Mater Res B Appl Biomater 2023. [PMID: 37178328 DOI: 10.1002/jbm.b.35261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Cartilage damage caused by trauma or osteoarthritis is a common joint disease that can increase the social and economic burden in society. Due to its avascular characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Hydrogels have been developed into one of the most suitable biomaterials for the regeneration of cartilage because of its characteristics such as high-water absorption, biodegradation, porosity, and biocompatibility similar to natural extracellular matrix. Therefore, the present review article presents a conceptual framework that summarizes the anatomical, molecular structure and biochemical properties of hyaline cartilage located in long bones: articular cartilage and growth plate. Moreover, the importance of preparation and application of hyaluronic acid - gelatin hydrogels for cartilage tissue engineering are included. Hydrogels possess benefits of stimulating the production of Agc1, Col2α1-IIa, and SOX9, molecules important for the synthesis and composition of the extracellular matrix of cartilage. Accordingly, they are believed to be promising biomaterials of therapeutic alternatives to treat cartilage damage.
Collapse
Affiliation(s)
- Juan Jairo Vaca-González
- Escuela de Pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede de La Paz, Cesar, Colombia
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan José Saiz Culma
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Diego Alexander Garzón-Alvarado
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
8
|
Zheng G, Xue C, Cao F, Hu M, Li M, Xie H, Yu W, Zhao D. Effect of the uronic acid composition of alginate in alginate/collagen hybrid hydrogel on chondrocyte behavior. Front Bioeng Biotechnol 2023; 11:1118975. [PMID: 36959903 PMCID: PMC10027720 DOI: 10.3389/fbioe.2023.1118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Chundong Xue
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Fang Cao
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Minghui Hu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Maoyuan Li
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Hui Xie
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiting Yu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| |
Collapse
|
9
|
Kaniewska K, Karbarz M. Electrochemical devices based on conducting surfaces modified with smart hydrogels: Outlook and perspective. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Klaudia Kaniewska
- Faculty of Chemistry, Biological and Chemical Research Center University of Warsaw Warsaw Poland
| | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center University of Warsaw Warsaw Poland
| |
Collapse
|
10
|
Hlushko R, Ankner JF, Sukhishvili S. Dynamics and Self-Healing of Layer-by-Layer Hydrogen-Bonded Films of Linear Synthetic Polyphenols. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Raman Hlushko
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - John F. Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Svetlana Sukhishvili
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Deng Z, Jin J, Wang S, Qi F, Chen X, Liu C, Li Y, Ma Y, Lyu F, Zheng Q. Narrative review of the choices of stem cell sources and hydrogels for cartilage tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1598. [PMID: 33437797 PMCID: PMC7791208 DOI: 10.21037/atm-20-2342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stem cell-based therapy is a promising treatment for cartilage defects due to the pluripotency, abundant sources and low immunogenicity of stem cells. Hydrogels are a promising class of biomaterials for cartilage engineering and are characterized by bioactivity, degradability and elasticity as well as provide water content and mechanical support. The combination of stem cells and hydrogels opens new possibilities for cartilage tissue engineering. However, the selection of suitable types of stem cells and hydrogels is difficult. Currently, various types of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and peripheral blood mononuclear cells (PBMSCs), and various types of hydrogels, including natural polymers, chemically modified natural polymers and synthetic polymers, have been explored based on their potential for cartilage tissue engineering. These materials are used independently or in combination; however, there is no clear understanding of their merits and disadvantages with regard to their suitability for cartilage repair. In this article, we aim to review recent progress in the use of stem cell-hydrogel hybrid constructs for cartilage tissue engineering. We focus on the effects of stem cell types and hydrogel types on efficient chondrogenesis from cellular, preclinical and clinical perspectives. We compare and analyze the advantages and disadvantages of these cells and hydrogels with the hope of increasing discussion of their suitability for cartilage repair and present our perspective on their use for the improvement of physical and biological properties for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuepan Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,South China University of Technology-the University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
12
|
Ngadimin KD, Stokes A, Gentile P, Ferreira AM. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater Sci 2021; 9:4246-4259. [DOI: 10.1039/d0bm01852j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cartilage-like hydrogels based on materials like gelatin, chondroitin sulfate, hyaluronic acid and polyethylene glycol are reviewed and contrasted, revealing existing limitations and challenges on biomimetic hydrogels for cartilage regeneration.
Collapse
Affiliation(s)
- Kresanti D. Ngadimin
- Faculty of Medical Sciences
- Newcastle University
- Newcastle upon Tyne
- UK
- Faculty of Medicine
| | - Alexander Stokes
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Piergiorgio Gentile
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Ana M. Ferreira
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| |
Collapse
|
13
|
Colloids-at-surfaces: Physicochemical approaches for facilitating cell adhesion on hybrid hydrogels. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Zhang P, Han F, Chen T, Wu Z, Chen S. "Swiss roll"-like bioactive hybrid scaffolds for promoting bone tissue ingrowth and tendon-bone healing after anterior cruciate ligament reconstruction. Biomater Sci 2020; 8:871-883. [PMID: 31820744 DOI: 10.1039/c9bm01703h] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The choice of grafts for anterior cruciate ligament (ACL) reconstruction is a critical issue in sports medicine. Previous studies have revealed that scaffolds prepared from a single material could not achieve complete integration between the graft and autogenous bone tunnel. To solve this problem, we hypothesize that combining degradable scaffolds with nondegradable scaffolds can produce a novel hybrid ligament with the advantages of both types of scaffolds. In this study, a bone morphogenetic protein 7 (BMP-7)-loaded polycaprolactone (PCL) nanofibrous membrane was first manufactured as the degradable part of the hybrid ligament by using layer-by-layer (LbL) self-assembly. Then, we fabricated a multifunctional novel hybrid ligament by rolling up this nanofibrous membrane and polyethylene terephthalate (PET) mesh fabric (nondegradable part) into a "swiss roll" structure. The in vitro experimental results showed that this hybrid ligament could significantly improve the biocompatibility of pure PET ligament and further promote cell mineralization. The in vivo experimental results showed that this unique structure significantly promoted the integration of hybrid ligaments and bone tunnels, thereby achieving real "ligamentization" after ACL reconstruction surgery. These results suggest that this novel hybrid biomimetic artificial ligament scaffold provides a new direction for graft selection for ACL reconstruction.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| | - Fei Han
- Institute for Translational Medicine, Institute for Biomedical Engineering and Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, PR China
| | - Tianwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| | - Ziying Wu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
15
|
Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering. Biomaterials 2020; 230:119628. [DOI: 10.1016/j.biomaterials.2019.119628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
|
16
|
Lian J, Xu H, Duan S, Ding X, Hu Y, Zhao N, Ding X, Xu FJ. Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules 2019; 21:732-742. [DOI: 10.1021/acs.biomac.9b01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiamin Lian
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Haifeng Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
17
|
Madrigal JL, Shams S, Stilhano RS, Silva EA. Characterizing the encapsulation and release of lentivectors and adeno-associated vectors from degradable alginate hydrogels. Biomater Sci 2019; 7:645-656. [PMID: 30534722 DOI: 10.1039/c8bm01218k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene therapy using viral vectors has been licensed for clinical use both in the European Union and the United States. Lentivectors (LV) and adeno-associated vectors (AAV) are two promising and FDA approved gene-therapy viral vectors. Many future applications of these vectors will benefit from targeting specific regions of interest within the body. Therefore, building on the early success of these vectors may depend on finding effective delivery systems to localize therapeutic administration. Degradable alginate hydrogels have been tested as appealing delivery vehicles for the controlled delivery of vector payloads. In this study, we compare the ability of two different degradable alginate hydrogel formulations to efficiently deliver LV and AAV. We propose that release rates of viral vectors are dependent on the physical properties of both the hydrogels and vectors. Here, we demonstrate that the initial strength and degradation rate of alginate hydrogels provides levers of control for tuning LV release but do not provide control in the release of AAV. While both alginate formulations used showed sustained release of both LV and AAV, LV release was shown to be dependent on alginate hydrogel degradation, while AAV release was largely governed by diffusive mechanisms. Altogether, this study demonstrates alginate's use as a possible delivery platform for LV and, for the first time, AAV - highlighting the potential of injectable degradable alginate hydrogels to be used as a versatile delivery tool in gene therapy applications.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|
18
|
Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1562924] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
19
|
|
20
|
Goding J, Vallejo-Giraldo C, Syed O, Green R. Considerations for hydrogel applications to neural bioelectronics. J Mater Chem B 2019; 7:1625-1636. [DOI: 10.1039/c8tb02763c] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels have garnered interest as materials in bioelectronics due to the capacity to tailor their properties. Appropriate selection and design of hydrogel systems for this application requires an understanding of the physical, chemical and biological properties as well as their structure–property relationships.
Collapse
Affiliation(s)
- Josef Goding
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | | | - Omaer Syed
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | - Rylie Green
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| |
Collapse
|
21
|
Zhang Y, Chen M, Tian J, Gu P, Cao H, Fan X, Zhang W. In situ bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Biomater Sci 2019; 7:3266-3276. [DOI: 10.1039/c9bm00561g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biodegradable hybrid double-network hydrogel for stem cell-enhanced bone regeneration.
Collapse
Affiliation(s)
- Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
22
|
Yu F, Li M, Yuan Z, Rao F, Fang X, Jiang B, Wen Y, Zhang P. Mechanism research on a bioactive resveratrol- PLA-gelatin porous nano-scaffold in promoting the repair of cartilage defect. Int J Nanomedicine 2018; 13:7845-7858. [PMID: 30538463 PMCID: PMC6255055 DOI: 10.2147/ijn.s181855] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Articular cartilage defects are difficult to treat, but drug-loaded tissue engineering scaffolds provide a possible treatment option for these types of injuries. PURPOSE In this study, we designed a bioactive resveratrol-PLA-gelatin porous nano-scaffold using electrospinning, freeze drying, and uniform dispersion techniques to repair articular cartilage defects, and then investigated the possible mechanism behind the successful repair. METHODS We established an articular cartilage defect rat model with a 2 mm diameter wound in the middle of the knee joint femoral condyle non-weight-bearing area, with a depth reaching the full thickness of the subchondral bone. Postmodel specimens and micro computed tomography (CT) were used to observe any macroscopic morphological changes in the articular cartilage and subchondral bone, whereas multiple staining methods were used to observe all microcosmic morphological changes. Gross scores and Mankin scores were used to evaluate the repair condition. Immunohistochemical staining was employed to detect protein expression. RESULTS When the repair included the resveratrol-PLA-gelatin porous nano-scaffold, the repaired cartilage and subchondral bone were in better condition. The expression levels of SIRT1, type II collagen, and PI3K/AKT signaling pathway-related proteins (AKT, VEGF, PTEN, Caspase 9, and MMP13) changed significantly. The expression levels of SIRT1,AKT and type II collagen proteins increased significantly, while the expression levels of VEGF, PTEN, Caspase9 and MMP13 proteins decreased significantly compared with the repair included blank porous PLA-gelatin nano-scaffold and without scaffold. CONCLUSION We designed a bioactive resveratrol-PLA-gelatin porous nano-scaffold with better performance, which promoted the repair of cartilage injury as a whole, and explained its possible mechanism in accelerating cartilage repair via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Fei Yu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China,
| | - Ming Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China,
| | - Zhipeng Yuan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China,
| | - Feng Rao
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China,
| | - Xingxing Fang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China,
| | - Baoguo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China,
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China,
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China,
| |
Collapse
|
23
|
Cheng X, Li K, Xu S, Li P, Yan Y, Wang G, Berman Z, Guo R, Liang J, Traore S, Yang X. Applying chlorogenic acid in an alginate scaffold of chondrocytes can improve the repair of damaged articular cartilage. PLoS One 2018; 13:e0195326. [PMID: 29621359 PMCID: PMC5886530 DOI: 10.1371/journal.pone.0195326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Damaged cartilage has very low regenerative potential which has led to the search for novel tissue-engineering approaches to help treat cartilage defects. While various approaches have been reported, there is no perfect treatment currently. In this study we evaluated the effects of a plant extract, chlorogenic acid (CGA), as part of chondrocyte transplantation on a model of knee joint injury in chicks. First, primary cultured chondrocytes used to evaluate the effects of CGA on chondrogenesis. Then using an articular cartilage injury model of chick knee we assessed the functional recovery after transplantation of the complexes containing chondrocytes and CGA in an alginate scaffold. Histological analysis, PCR, and western blot were further used to understand the underlying mechanisms. We showed that 60 μM CGA in alginate exhibited notable effects on stimulating chondrogenesis in vitro. Secondly, it was shown that the application of these complexes accelerated the recovery of injury-induced dysfunction by gait analysis when followed for 21 days. Histochemical analysis demonstrated that there was less abnormal vasculature formation, more chondrocyte proliferation and cartilage matrix synthesis in the presence of the complexes containing CGA. We discovered CGA treated transplantation up-regulated the expressions of Sox9 and Col2a1 which were responsible for the stimulation of chondrogenesis. Furthermore, the application of these complexes could suppress the abnormal angiogenesis and fibrosis at the injury site. Lastly, the elevated levels of inflammatory cytokines IL-1β, TNF-α, p-p65, and MMPs expression were decreased in the presence of CGA. This may be caused through adjusting cellular redox homeostasis associated with Nrf2. This study suggests that combining chondrocytes and CGA on an alginate scaffold can improve the recovery of damaged articular cartilage.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Ke Li
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Shengsong Xu
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Peizhi Li
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Yu Yan
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Guang Wang
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Zachary Berman
- Department of Radiology, University of California San Diego, San Diego, California, United States of America
| | - Rui Guo
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Jianxin Liang
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Sira Traore
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Xuesong Yang
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
24
|
Selin V, Ankner JF, Sukhishvili SA. Ionically Paired Layer-by-Layer Hydrogels: Water and Polyelectrolyte Uptake Controlled by Deposition Time. Gels 2018; 4:E7. [PMID: 30674783 PMCID: PMC6321383 DOI: 10.3390/gels4010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/18/2023] Open
Abstract
Despite intense recent interest in weakly bound nonlinear ("exponential") multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL) films composed of poly(methacrylic acid) (PMAA) and quaternized poly-2-(dimethylamino)ethyl methacrylate (QPC) on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure-by neutron reflectometry (NR), and degree of PMAA ionization-by Fourier-transform infrared spectroscopy (FTIR). The results suggest that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness) and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.
Collapse
Affiliation(s)
- Victor Selin
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - John F Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|