1
|
Fang L, Zhang Y, Cheng L, Zheng H, Wang Y, Qin L, Cai Y, Cheng L, Zhou W, Liu F, Wang S. Silica nanoparticles containing nano-silver and chlorhexidine to suppress Porphyromonas gingivalis biofilm and modulate multispecies biofilms toward healthy tendency. J Oral Microbiol 2024; 16:2361403. [PMID: 38847000 PMCID: PMC11155433 DOI: 10.1080/20002297.2024.2361403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Objectives This research first investigated the effect of mesoporous silica nanoparticles (nMS) carrying chlorhexidine and silver (nMS-nAg-Chx) on periodontitis-related biofilms. This study aimed to investigate (1) the antibacterial activity on Porphyromonas gingivalis (P. gingivalis) biofilm; (2) the suppressing effect on virulence of P. gingivalis biofilm; (3) the regulating effect on periodontitis-related multispecies biofilm. Methods Silver nanoparticles (nAg) and chlorhexidine (Chx) were co-loaded into nMS to form nMS-nAg-Chx. Inhibitory zone test and minimum inhibitory concentration (MIC) against P. gingivalis were tested. Growth curves, crystal violet (CV) staining, live/dead staining and scanning electron microscopy (SEM) observation were performed. Biofilm virulence was assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Quantitative Real Time-PCR (qPCR) were performed to validate the activity and composition changes of multispecies biofilm (P. gingivalis, Streptococcus gordonii and Streptococcus sanguinis). Results nMS-nAg-Chx inhibited P. gingivalis biofilm dose-dependently (p<0.05), with MIC of 18.75 µg/mL. There were fewer live bacteria, less biomass and less virulence in nMS-nAg-Chx groups (p<0.05). nMS-nAg-Chx inhibited and modified periodontitis-related biofilms. The proportion of pathogenic bacteria decreased from 16.08 to 1.07% and that of helpful bacteria increased from 82.65 to 94.31% in 25 μg/mL nMS-nAg-Chx group for 72 h. Conclusions nMS-nAg-Chx inhibited P. gingivalis growth, decreased biofilm virulence and modulated periodontitis-related multispecies biofilms toward healthy tendency. pH-sensitive nMS-nAg-Chx inhibit the pathogens and regulate oral microecology, showing great potential in periodontitis adjunctive therapy.
Collapse
Affiliation(s)
- Lixin Fang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yishuang Zhang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Long Cheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiyi Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lu Qin
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingchun Cai
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Wen Zhou
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, Fuzhou, China
| | - Fei Liu
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suping Wang
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
3
|
Afkhami F, Forghan P, Gutmann JL, Kishen A. Silver Nanoparticles and Their Therapeutic Applications in Endodontics: A Narrative Review. Pharmaceutics 2023; 15:715. [PMID: 36986576 PMCID: PMC10052550 DOI: 10.3390/pharmaceutics15030715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The efficient elimination of microorganisms and their byproducts from infected root canals is compromised by the limitations in conventional root canal disinfection strategies and antimicrobials. Silver nanoparticles (AgNPs) are advantageous for root canal disinfection, mainly due to their wide-spectrum anti-microbial activity. Compared to other commonly used nanoparticulate antibacterials, AgNPs have acceptable antibacterial properties and relatively low cytotoxicity. Owing to their nano-scale, AgNPs penetrate deeper into the complexities of the root canal systems and dentinal tubules, as well as enhancing the antibacterial properties of endodontic irrigants and sealers. AgNPs gradually increase the dentin hardness in endodontically treated teeth and promote antibacterial properties when used as a carrier for intracanal medication. The unique properties of AgNPs make them an ideal additive for different endodontic biomaterials. However, the possible side effects of AgNPs, such as cytotoxicity and tooth discoloration potential, merits further research.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran 1439955991, Iran
| | - Parisa Forghan
- School of Dentistry, Tehran University of Medical Sciences, Tehran 1894787545, Iran
| | - James L. Gutmann
- Department of Endodontics, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
4
|
Fu F, Wang W, Gu Y, Huang Z, Huang Y, Pan X, Wu C. Lyotropic Liquid Crystal Precursor as an Innovative Herpes Simplex Virus Vector for Melanoma Therapy. ASEC 2022 2022:45. [DOI: 10.3390/asec2022-13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Affiliation(s)
- Fangqin Fu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Medical and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yukun Gu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Shanghai Ghost Consulting Co., Ltd., Shanghai 200241, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Gligorijević N, Mihajlov-Krstev T, Kostić M, Nikolić L, Stanković N, Nikolić V, Dinić A, Igić M, Bernstein N. Antimicrobial Properties of Silver-Modified Denture Base Resins. NANOMATERIALS 2022; 12:nano12142453. [PMID: 35889677 PMCID: PMC9317501 DOI: 10.3390/nano12142453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023]
Abstract
The surface quality of denture base resins allows for easy colonization by microorganisms including Candida albicans and Staphylococcus aureus, which cause major diseases of the oral cavity such as denture stomatitis. The widespread use of silver nanoparticles (AgNPs) in various fields of medicine has led to research of their possible application in dentistry, mostly in the prevention of bacterial adhesion, proliferation, and biofilm formation. The aim of the study was to synthesize cold and heat-curing denture base resins modified with AgNPs and AgCl, and evaluate the potential of the modified resins to reduce the growth of C. albicans and S.aureus. The produced material was characterized by Fourier transform infrared spectroscopy (FTIR). The antimicrobial potential of the modified material was demonstrated by the disc-diffusion method, microdilution method, and a modified microdilution method (i.e., disk-diffusion method in broth with viable counting). Spectroscopy confirmed the incorporation of biocidal materials into the structure of the denture base resins. The AgCl and AgNPs modified resins showed an antimicrobial effect. The significance of the study is in the potential therapeutic effects of the modified materials for prevention and threating staphylococci and candida in elderly patients, who are in most cases denture wearers and have a greater susceptibility to develop opportunistic infections. Modified denture base resins can significantly reduce the presence of infection at the point of contact between the denture and the mucous membrane of the prosthetic restoration. Biological tests of modified denture base resins will follow.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Department of Prosthodontics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.K.); (M.I.)
- Correspondence: ; Tel.: +381-65-3366646
| | | | - Milena Kostić
- Department of Prosthodontics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.K.); (M.I.)
| | - Ljubiša Nikolić
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia; (L.N.); (V.N.); (A.D.)
| | | | - Vesna Nikolić
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia; (L.N.); (V.N.); (A.D.)
| | - Ana Dinić
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia; (L.N.); (V.N.); (A.D.)
| | - Marko Igić
- Department of Prosthodontics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.K.); (M.I.)
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Rishon LeZion 7505001, Israel;
| |
Collapse
|
6
|
Ordinola-Zapata R, Noblett C, Perez-Ron A, Ye Z, Vera J. Present status and future directions of intracanal medicaments. Int Endod J 2022; 55 Suppl 3:613-636. [PMID: 35322427 PMCID: PMC9321724 DOI: 10.1111/iej.13731] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
Two fundamental goals of endodontic treatment are to prevent or treat apical periodontitis. From a predictive perspective, several variables can affect the outcome of root canal treatment. Some of these variables depend on intraoperative factors, which include irrigation technique, size of the apical preparation, use of intracanal medicaments or the number of appointments necessary to complete the treatment. However, the outcome may also be affected by host and microbial factors. The intensity of periradicular bone loss or tissue damage, the presence of preoperative pain and associated conditions such as mechanical allodynia and central sensitization, the anatomical complexity of the apical portion of the canal, and the virulence and longevity of the bacterial infection can all have a profound influence on the outcome. Furthermore, numerous medical conditions have been reported to decrease the capability of the immune system to heal the periapical tissues. It is the clinician's responsibility to analyse these variables and incorporate them into the disinfection strategy to maximize the chances of healing. This narrative review will focus on the present status of intracanal medicaments, the clinical indications for their use and future directions for research.
Collapse
Affiliation(s)
- R Ordinola-Zapata
- Division of Endodontics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - C Noblett
- Division of Endodontics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Z Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, China.,Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - J Vera
- Division of Endodontics, School of Dentistry, University of Missouri, Kansas City, MO, USA
| |
Collapse
|
7
|
Kakadia PG, Conway BR. Nanoemulsions for Enhanced Skin Permeation and Controlled Delivery of Chlorohexidine digluconate. J Microencapsul 2022; 39:110-124. [DOI: 10.1080/02652048.2022.2050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pratibha G. Kakadia
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Barbara R. Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
8
|
Fu F, Li X, Zheng T, Xia X, Du M, Huang Z, Huang Y, Pan X, Wu C. Stability Evaluation of Lyotropic Liquid Crystalline Precursor for the Co-delivery of Chlorhexidine and Silver Nanoparticles. AAPS PharmSciTech 2021; 22:237. [PMID: 34545436 DOI: 10.1208/s12249-021-02102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Sealing the therapeutic agents in the root canal is considered to be an essential step in root canal therapy. The lyotropic liquid crystalline precursor (LLCP) incorporated with chlorhexidine (CHX) and silver nanoparticles (Ag-NPs) has been confirmed as a promising candidate for root canal therapy in the previous study. Importantly, the stability of the LLCP system was a significant determinant for its therapeutic effect and further application. The objective of this study was to comprehensively investigate the stability of the LLCP incorporated with CHX and Ag-NPs. The oil-water partition coefficient of CHX and Ag-NPs was measured. The water absorption and the physical stability of drug-loaded LLCP solution were studied. Stability under high temperature, high humidity, and strong light irradiation was also investigated. The results demonstrated that CHX and Ag-NPs could be entrapped in the water channel of LLCP, indicating the low tendency of drugs leakage. The drug-loaded LLCP was a pseudoplastic fluid and it showed an excellent physical stability with a sedimentation rate of 0.981 and a settling time of 26~28 h. The payload of LLCP was confirmed to weaken the water absorption behavior, which facilitated its transformation to cubic liquid crystal. The stress testing under high temperature, high humidity, and strong light irradiation also manifested that the LLCP was stable when stored under moisture-proof condition. In conclusion, the developed LLCP incorporated with CHX and Ag-NPs was highly stable during storage and qualified for further application.
Collapse
Affiliation(s)
- Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China
| | - Xin Li
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Tengyi Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiao Xia
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China
| | - Minqun Du
- Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China.
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 511443, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
10
|
Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms. Odontology 2021; 109:802-811. [PMID: 34047872 DOI: 10.1007/s10266-021-00601-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
The purpose is to evaluate the antibacterial effects of the silver nanoparticles (AgNPs) (Nanografi, METU Teknokent, Ankara, Turkey) mixed with calcium hydroxide (Ca(OH)2) (Ultracal XS, Ultradent, St Louis, US) or chlorhexidine gel (CHX) (Gluco-Chex, Cerkamed, Stalowa Wola, Poland) against a multispecies biofilm, by confocal laser scanning microscopy (CLSM) and culture-based analysis. Dentine blocks were inoculated with Enterococcus faecalis, Streptococcus mutans, Lactobacillus acidophilus and Actinomyces naeslundii for 1 week. Infected dentine blocks were randomly divided into groups according to medication; saline solution (SS), Ca(OH)2, Ca(OH)2 + AgNP, 2%CHX gel and 2%CHX gel + AgNP and time of application: 1 and 7 days (all groups, n = 5). Bacterial samples were collected before and after medication to quantify the bacterial load. Biofilm elimination was quantitatively analyzed by Live/Dead BacLight Bacterial Viability staining and CLSM. The addition of AgNPs to Ca(OH)2 increased the effectiveness of medicament in terms of bacterial reduction in both application times (1 and 7 days) (p < 0.05: ANOVA, Tukey's test) according to culture-based analysis. The CLSM images revealed that mixture of AgNP with CHX killed significantly more bacteria when compared with all other medicaments at 1- and 7-day application times (p < 0.05 and p > 0.05, respectively: Kruskal-Wallis, Dunn post hoc tests). The efficacy of Ca(OH)2 mixed with AgNPs was superior to Ca(OH)2 used alone in both application times (p < 0.05) according to CLSM analysis. The present study put forth the potential use of AgNPs mixed with Ca(OH)2 or CHX on multispecies (Enterococcus faecalis, Streptococcus mutans, Lactobacillus acidophilus and Actinomyces naeslundii) biofilm in 1 and 7day application periods.
Collapse
|
11
|
Zhang X, Wu W. Liquid Crystalline Phases for Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021; 22:81. [PMID: 33619612 DOI: 10.1208/s12249-021-01951-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Liquid crystalline phases (LCPs) are generated upon lipolysis of ingested lipids in the gastrointestinal tract. The breaking off and subsequent evolution of LCPs produce more advanced vesicular and micellar structures which facilitate oral absorption of lipids, as well as co-loaded drug entities. Owing to sustained or controlled drug release, bioadhesiveness, and capability of loading drugs of different properties, LCPs are promising vehicles to implement for enhancement of oral bioavailability. This review aims to provide an overview on the classification, preparation and characterization, in vivo generation and transformation, absorption mechanisms, and encouraging applications of LCPs in enhancement of oral bioavailability. In addition, we comment on the merits of LCPs as oral drug delivery carriers, as well as solutions to industrialization utilizing liquid crystalline precursor and preconcentrate formulations.
Collapse
|
12
|
Zhang X, Xiao Y, Huang Z, Chen J, Cui Y, Niu B, Huang Y, Pan X, Wu C. Smart phase transformation system based on lyotropic liquid crystalline@hard capsules for sustained release of hydrophilic and hydrophobic drugs. Drug Deliv 2020; 27:449-459. [PMID: 32157918 PMCID: PMC7144316 DOI: 10.1080/10717544.2020.1736210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Smart phase transformation systems@hard capsule (SPTS@hard capsule) based on lyotropic liquid crystalline (LLC) were developed for oral sustained release in this study. Doxycycline hydrochloride (DOXY) and meloxicam (MLX) were used as hydrophilic and hydrophobic model drug, respectively. Two systems were added with different additives, that is, gelucire 39/01, PEG 1000 and Tween 80 to adjust their melting point and release profiles. The phase transformation of these systems could be triggered by water as well as temperature. They could spontaneously transform into cubic phase or hexagonal phase when coming across with water, to achieve the 24 h sustained release profile. In addition, the obtained systems could switch between semisolid state and liquid state when temperature changed within room temperature and body temperature, which facilitated the phase transformation in gastrointestinal tract and during their encapsulation into hard capsules. LLC-based SPTS@hard capsule revealed potential for the industrialization of its oral administration on account of its drugs accommodation with different solubility, controllable release profile and simple preparation process.
Collapse
Affiliation(s)
- Xuejuan Zhang
- School of Pharmaceutical Science, Jinan University, Guangzhou, PR China
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, PR China
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Yujun Xiao
- Zhuhai Food and Drug (Medical Equipment) Administration Center for Evaluation and Certification, Zhuhai, PR China
| | - Zhengwei Huang
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, PR China
| | - Jintian Chen
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, PR China
| | - Yingtong Cui
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, PR China
| | - Boyi Niu
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, PR China
| | - Ying Huang
- School of Pharmaceutical Science, Jinan University, Guangzhou, PR China
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, PR China
| | - Xin Pan
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, PR China
| | - Chuanbin Wu
- School of Pharmaceutical Science, Jinan University, Guangzhou, PR China
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
13
|
Santana Neto MC, Costa MLVDA, Fialho PHDS, Lopes GLN, Figueiredo KA, Pinheiro IM, de Lima SG, Nunes RDS, Quelemes PV, Carvalho ALM. Development of Chlorhexidine Digluconate and Lippia sidoides Essential Oil Loaded in Microemulsion for Disinfection of Dental Root Canals: Substantivity Profile and Antimicrobial Activity. AAPS PharmSciTech 2020; 21:302. [PMID: 33146782 DOI: 10.1208/s12249-020-01842-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
The dental intracanal disinfection is crucial to achieve the success of endodontic treatment, avoiding the maintenance of endodontic infections. Chlorhexidine digluconate can act as an irrigating agent for it. However, it can cause tissue irritation in high concentrations. Therefore, combinations with other antimicrobial agents and more efficient therapeutic alternatives are studied, which make it possible to administer drugs more safely and with minimal adverse effects. Thus, the objective of this study was the development of a microemulsion containing chlorhexidine digluconate and essential oil of Lippia sidoides to be used for disinfection of dental root canals and to evaluate its profile of substantivity and antimicrobial activity. The microemulsions were obtained through phase diagrams, using the spontaneous formation method. We completed a physical-chemical characterization and evaluate the stability of the microemulsions, in addition to the substantivity profile in a bovine root dentin model, and in vitro antibacterial effect on Enterococcus faecalis. A method for quantifying chlorhexidine was developed using UV-Vis spectroscopy. The microemulsions showed acid pH, conductivity above 1.3 μScm-1, and dispersion index similar to water. The microemulsions showed antimicrobial inhibition halos similar to the commercial gel conventionally used, but with four times more substantivity to dentinal tissues. Microemulsions were obtained as a therapeutic alternative to formulations available on the market, presenting themselves as a system with great potential for the administration of drugs for disinfection of root canals.
Collapse
|
14
|
Hyaluronic acid-based antibacterial hydrogels constructed by a hybrid crosslinking strategy for pacemaker pocket infection prevention. Carbohydr Polym 2020; 245:116525. [DOI: 10.1016/j.carbpol.2020.116525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
|
15
|
Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020; 101:69-101. [PMID: 31542502 DOI: 10.1016/j.actbio.2019.09.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.
Collapse
|
16
|
Wang B, Huang Y, Huang Z, Wang H, Chen J, Pan X, Wu C. Self-assembling in situ gel based on lyotropic liquid crystals containing VEGF for tissue regeneration. Acta Biomater 2019; 99:84-99. [PMID: 31521813 DOI: 10.1016/j.actbio.2019.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Current tissue-regenerative biomaterials confront two critical issues: the uncontrollable delivery capacity of vascular endothelial growth factor (VEGF) for adequate vascularization and the poor mechanical properties of the system for tissue regeneration. To overcome these two issues, a self-assembling in situ gel based on lyotropic liquid crystals (LLC) was developed. VEGF-LLC was administrated as a precursor solution that would self-assemble into an in situ gel with well-defined internal inverse bicontinuous cubic phases when exposed to physiological fluid at a defect site. The inverse cubic phase with a 3D bicontinuous water channel enabled a 7-day sustained release of VEGF. The release profile of VEGF-LLC was controlled using octyl glucoside (OG) as a hydration-modulating agent, which could enlarge the water channel, yielding a 2-fold increase in water channel size and a 7-fold increase in VEGF release. For the mechanical properties, the elastic modulus was found to decrease from ∼100 kPa to ∼1.2 kPa, which might be more favorable for angiogenesis. Furthermore, the self-recovery ability of the VEGF-LLC gel was confirmed by quick recovery of the inner network in step-strain measurements. In vitro, VEGF-LLC considerably promoted the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) as compared to free VEGF (p < 0.05). Furthermore, angiogenesis was successfully induced in rats after subcutaneous injection of VEGF-LLC. The self-assembling LLC gel showed satisfactory degradability and mild inflammatory response with little impact on the surrounding tissue. The controllable release profile and unique mechanical properties of VEGF-LLC offer a new approach for tissue regeneration. STATEMENT OF SIGNIFICANCE: The potential clinical use of currently available biomaterials in tissue regeneration is limited by their uncontrollable drug delivery capacity and poor mechanical properties. Herein, a self-assembling in situ gel based on lyotropic liquid crystals (LLC) for induced angiogenesis was developed. The results showed that the addition of octyl glucoside (OG) could change the water channel size of LLC, which enabled the LLC system to release VEGF in a sustained manner and to possess a suitable modulus to favor angiogenesis simultaneously. Moreover, the self-recovery capability allowed the gel to match the deformation of surrounding tissues during body motion to maintain its properties and reduce discomfort. In vivo, angiogenesis was induced by VEGF-LLC 14 days after administering subcutaneous injection. These results highlight the potential of LLC as a promising sustained protein drug delivery system for vascular formation and tissue regeneration.
Collapse
Affiliation(s)
- Bei Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; College of Pharmacy, Jinan University, Guangzhou 516032, Guangdong, PR China.
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China; College of Pharmacy, Jinan University, Guangzhou 516032, Guangdong, PR China.
| |
Collapse
|
17
|
Shlezinger M, Friedman M, Houri-Haddad Y, Hazan R, Beyth N. Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo. PLoS One 2019; 14:e0219599. [PMID: 31291645 PMCID: PMC6620107 DOI: 10.1371/journal.pone.0219599] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction Enterococcus faecalis is a key pathogen recovered from root canals when conventional treatment fails. Phage therapy has generated new interest in combating pathogens. A sustained-release formulation using specific phages against E. faecalis may offer an alternative approach. Objectives To evaluate the efficacy of anti-E. faecalis phages formulated in a thermo- sustained-release system against E. faecalis in vitro and in vivo. Methods EFDG1 and EFLK1 phages were formulated with poloxamer P407. Gelation time, phage survival, activity and toxicity were evaluated. Lytic activity was evaluated in vitro against E. faecalis at various growth phases, including anti-biofilm activity. Methods included viable bacterial count (CFU/mL), biofilm biomass determination and electron microscopy (live/dead staining). Further evaluation included infected incisors in an in vivo rat model. Anti-E. faecalis phage-cocktail suspension and sustained-release phage formulation were evaluated by viable bacterial count (CFU/mL), histology, scanning electron microscopy (SEM) and 16S genome sequencing of the microbiota of the root canal. Results Gelation time for clinical use was established. Low toxicity and a high phage survival rate were recorded. Sustained-release phages reduced E. faecalis in logarithmic (4 logs), stationary (3 logs) and biofilm (4 logs) growth phases. Prolonged anti-biofilm activity of 88% and 95% reduction in biomass and viable counts, respectively, was recorded. Reduction of intracanal viable bacterial counts was observed (99% of enterococci) also seen in SEM. Phage treatment increased Proteobacteria and decreased Firmicutes. Histology showed reduced periapical inflammation and improved healing following phage treatment. Conclusion Poloxamer P407 formulated with phages has an effective and long-lasting effect in vitro and in vivo targeting E. faecalis.
Collapse
Affiliation(s)
- Mor Shlezinger
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- Faculty of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Michael Friedman
- Department of Pharmaceutics, The Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ronen Hazan
- Faculty of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Nurit Beyth
- Department of Prosthodontics, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
18
|
Song W, Ge S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules 2019; 24:E1033. [PMID: 30875929 PMCID: PMC6470852 DOI: 10.3390/molecules24061033] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023] Open
Abstract
Oral cavity incessantly encounters a plethora of microorganisms. Plaque biofilm-a major cause of caries, periodontitis and other dental diseases-is a complex community of bacteria or fungi that causes infection by protecting pathogenic microorganisms from external drug agents and escaping the host defense mechanisms. Antimicrobial nanoparticles are promising because of several advantages such as ultra-small sizes, large surface-area-to-mass ratio and special physical and chemical properties. To better summarize explorations of antimicrobial nanoparticles and provide directions for future studies, we present the following critical review. The keywords "nanoparticle," "anti-infective or antibacterial or antimicrobial" and "dentistry" were retrieved from Pubmed, Scopus, Embase and Web of Science databases in the last five years. A total of 172 articles met the requirements were included and discussed in this review. The results show that superior antibacterial properties of nanoparticle biomaterials bring broad prospects in the oral field. This review presents the development, applications and underneath mechanisms of antibacterial nanoparticles in dentistry including restorative dentistry, endodontics, implantology, orthodontics, dental prostheses and periodontal field.
Collapse
Affiliation(s)
- Wenjing Song
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China.
- Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China.
- Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| |
Collapse
|
19
|
Zhou C, Huang Z, Huang Y, Wang B, Yang P, Fan Y, Hou A, Yang B, Zhao Z, Quan G, Pan X, Wu C. In situ gelation of rhEGF-containing liquid crystalline precursor with good cargo stability and system mechanical properties: a novel delivery system for chronic wounds treatment. Biomater Sci 2019; 7:995-1010. [PMID: 30603758 DOI: 10.1039/c8bm01196f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The objective of this study was to develop a novel delivery system for recombinant human epidermal growth factor (rhEGF) for chronic wound treatment. Such a delivery system should be of good cargo stability and system mechanical properties in order to guarantee a satisfactory wound-healing effect. rhEGF-containing lyotropic liquid crystalline precursors (rhEGF-LLCPs) with in situ gelation capability were considered as a promising candidate to achieve this aim. Various properties of the optimal formulations (rhEGF-LLCP1 and rhEGF-LLCP2) were characterized, including apparent viscosity, gelation time, in vitro release and phase behavior. The stability of rhEGF and system mechanical properties (i.e. mechanical rigidity and bioadhesive force) were verified. Interestingly, rhEGF-LLCP2 with a larger internal water channel diameter exhibited faster release rate in vitro and then better bioactivity in Balb/c 3T3 and HaCaT cell models. Moreover, rhEGF-LLCP2 showed distinct promotion effects on wound closure, inflammatory recovery and re-epithelization process in Sprague-Dawley rat models. In conclusion, rhEGF-LLCP emerged as a prospective candidate to preserve the stability and enhance the wound-healing effect of rhEGF, which might serve as a new delivery system for chronic wound therapies.
Collapse
Affiliation(s)
- Chan Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nadiminti PP, Liu Q, Vanjari LK, Dong YD, Boyd BJ, Cahill DM. Novel self-assembling conjugates as vectors for agrochemical delivery. J Nanobiotechnology 2018; 16:94. [PMID: 30463582 PMCID: PMC6247628 DOI: 10.1186/s12951-018-0423-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/11/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Modern agricultural practises rely on surfactant-based spray applications to eliminate weeds in crops. The wide spread and indiscriminate use of surfactants may result in a number of deleterious effects that are not limited to impacts on the crop and surrounding farm eco-system but include effects on human health. To provide a safer alternative to the use of surfactant-based formulations, we have synthesised a novel, self-assembling herbicide conjugate for the delivery of a broad leaf herbicide, picloram. RESULTS The synthesized self-assembling amphiphile-picloram (SAP) conjugate has three extending arms: a lipophilic lauryl chain, a hydrophilic polyethylene glycol chain and the amphiphobic agrochemical active picloram. We propose that the SAP conjugate maintains its colloidal stability by quickly transitioning between micellar and inverse micellar phases in hydrophilic and lipophilic environments respectively. The SAP conjugate provides the advantage of a phase structure that enables enhanced interaction with the hydrophobic epicuticular wax surface of the leaf. We have investigated the herbicidal efficiency of the SAP conjugate compared against that of commercial picloram formulations using the model plant Arabidopsis thaliana and found that when tested at agriculturally relevant doses between 0.58 and 11.70 mM a dose-dependent herbicidal effect with comparable kill rates was evident. CONCLUSION Though self-assembling drug carriers are not new to the pharmaceutical industry their use for the delivery of agrochemicals shows great promise but is largely unexplored. We have shown that SAP may be used as an alternative to current surfactant-based agrochemical formulations and has the potential to shift present practises towards a more sustainable approach.
Collapse
Affiliation(s)
- Pavani P Nadiminti
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3217, Australia.
| | - Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lavanya K Vanjari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3217, Australia
| | - Yao D Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, 3217, Australia
| |
Collapse
|