1
|
Zhang Y, Ma S, Chang W, Yu W, Zhang L. Nanozymes targeting mitochondrial repair in disease treatment. J Biotechnol 2024; 394:57-72. [PMID: 39159753 DOI: 10.1016/j.jbiotec.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Mitochondria are crucial sites for biological oxidation and substance metabolism and plays a vital role in maintaining intracellular homeostasis. When mitochondria undergo oxidative damage or dysfunction, they can harm the organism, leading to various reactive oxygen species (ROS)-related diseases. Therefore, therapies targeting mitochondria are a strategy for treating multiple diseases. Many nanozymes can mimic antioxidant enzymes, which enables them to eliminate ROS to mitigate mitochondrial dysfunction. The therapeutic approaches and drugs targeting the mitochondrial electron transport chain (ETC) have emerged as effective treatments for oxidative stress-related diseases resulting from mitochondrial respiratory chain disorders. Therefore, nanozymes that can regulate homeostasis in the mitochondrial ETC have emerged as effective therapeutic agents for treating oxidative stress-related diseases. In addition, benefit from the controllability and modifiability of nanozymes, their modification with TPP, SS-31 peptide, and mitochondrial permeability membrane peptide to eliminate ROS and repair mitochondrial function. The nanozymes that specifically target mitochondria are powerful tools for the treatment of ROS-associated disorders. We discussed the design strategies pertaining to mitochondrion-targeted nanozymes to treat various diseases to develop more efficacious nanozyme tools for the treatment of ROS-related diseases in the future.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Shuxian Ma
- Obstetric Ultrasound Department, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China.
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Hajmohammadi Z, Bagher Z, Taghizadeh-Hesary F, Khodadadi M, Masror N, Asghari A, Valipour B, Seifalian A. Nanodelivery of antioxidant Agents: A promising strategy for preventing sensorineural hearing loss. Eur J Pharm Biopharm 2024; 202:114393. [PMID: 38992481 DOI: 10.1016/j.ejpb.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Sensorineural hearing loss (SNHL), often stemming from reactive oxygen species (ROS) generation due to various factors such as ototoxic drugs, acoustic trauma, and aging, remains a significant health concern. Oxidative stress-induced damage to the sensory cells of the inner ear, particularly the non-regenerating hair cells, is a critical pathologic mechanism leading to SNHL. Despite the proven efficacy of antioxidants in mitigating oxidative stress, their clinical application for otoprotection is hindered by the limitations of conventional drug delivery methods. This review highlights the challenges associated with systemic and intratympanic administration of antioxidants, including the blood-labyrinthine barrier, restricted permeability of the round window membrane, and inadequate blood flow to the inner ear. To overcome these hurdles, the application of nanoparticles as a delivery platform for antioxidants emerges as a promising solution. Nanocarriers facilitate indirect drug delivery to the cochlea through the round and oval window membrane, optimising drug absorption while reducing dosage, Eustachian tube clearance, and associated side effects. Furthermore, the development of nanoparticles carrying antioxidants tailored to the intracochlear environment holds immense potential. This literature research aimed to critically examine the root causes of SNHL and ROS overproduction in the inner ear, offering insights into the application of nanoparticle-based drug delivery systems for safeguarding sensorineural hair cells. By focusing on the intricate interplay between oxidative stress and hearing loss, this research aims to contribute to the advancement of innovative therapeutic strategies for the prevention of SNHL.
Collapse
Affiliation(s)
- Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.; Department of Tissue Engineering & Regenerative Medicin, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobe Khodadadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre (MERC), Tehran, Iran
| | - Niki Masror
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Centre, The Five Senses Health Institute, School of Medicine, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran.; Department of Anatomical Sciences, Faculty of Medicine,Tabriz University of Medical Sciences, Tabriz, Iran..
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre, LBIC, University of London, United Kingdom.
| |
Collapse
|
3
|
Wang L, Zhang R, Jiang L, Gao S, Wu J, Jiao Y. Biomaterials as a new option for treating sensorineural hearing loss. Biomater Sci 2024; 12:4006-4023. [PMID: 38979939 DOI: 10.1039/d4bm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensorineural hearing loss (SNHL) usually involves damage to complex auditory pathways such as inner ear cells and auditory nerves. The highly intricate and nuanced characteristics of these cells render their repair and regeneration extremely challenging, making it difficult to restore hearing to normal levels once it has been compromised. The effectiveness of traditional drugs is so minimal that they provide little help with the treatment. Fortunately, extensive experiments have demonstrated that combining biomaterials with conventional techniques significantly enhances drug effectiveness. This article reviews the research progress of biomaterials in protecting hair cells and the auditory nerve, repairing genes related to hearing, and developing artificial cochlear materials. By organizing the knowledge presented in this article, perhaps new insights can be provided for the clinical management of SNHL.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Ruhe Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Linlan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Shuyi Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Jun Wu
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuenong Jiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| |
Collapse
|
4
|
Cirqueira F, Figueirêdo LPD, Malafaia G, Rocha TL. Zebrafish neuromast sensory system: Is it an emerging target to assess environmental pollution impacts? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123400. [PMID: 38272167 DOI: 10.1016/j.envpol.2024.123400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Environmental pollution poses risks to ecosystems. Among these risks, one finds neurotoxicity and damage to the lateral line structures of fish, such as the neuromast and its hair cells. Zebrafish (Danio rerio) is recommended as model species to be used in ecotoxicological studies and environmental biomonitoring programs aimed at assessing several biomarkers, such as ototoxicity. However, little is known about the history of and knowledge gaps on zebrafish ototoxicity. Thus, the aim of the current study is to review data available in the scientific literature about using zebrafish as animal model to assess neuromast toxicity. It must be done by analyzing the history and publication category, world production, experimental design, developmental stages, chemical classes, neuromasts and hair cell visualization methods, and zebrafish strains. Based on the results, number, survival and fluorescence intensity of neuromasts, and their hair cells, were the parameters oftentimes used to assess ototoxicity in zebrafish. The wild AB strain was the most used one, and it was followed by Tübingen and transgenic strains with GFP markers. DASPEI was the fluorescent dye most often applied as method to visualize neuromasts, and it was followed by Yo-Pro-1 and GFP transgenic lines. Antibiotics, antitumorals, metals, nanoparticles and plant extracts were the most frequent classes of chemicals used in the analyzed studies. Overall, pollutants can harm zebrafish's mechanosensory system, as well as affect their behavior and survival. Results have shown that zebrafish is a suitable model system to assess ototoxicity induced by environmental pollution.
Collapse
Affiliation(s)
- Felipe Cirqueira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Livia Pitombeira de Figueirêdo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
5
|
Yang S, Wu Y, Cheng X, Zhang LW, Yu Y, Wang Y, Wang Y. Harnessing astaxanthin-loaded diselenium cross-linked apotransferrin nanoparticles for the treatment of secretory otitis media. J Control Release 2024; 365:398-411. [PMID: 38007194 DOI: 10.1016/j.jconrel.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Secretory otitis media (SOM) is a clinical condition characterized by the accumulation of fluids and oxidative stress in the middle ear, leading to hearing impairment and infection complications. One potential solution for mitigating oxidative stress associated with SOM is the use of antioxidants such as astaxanthin. However, its effectiveness is limited due to its poor bioavailability and rapid oxidation. Herein, we developed a novel diselenium-crosslinked apotransferrin enriched with astaxanthin (AST@dSe-AFT) nanoparticles to augment the transport of astaxanthin across biological membranes, resulting in increased bioavailability and reduced oxidative stress in SOM. Our research demonstrated that AST@dSe-AFT efficiently accumulated in the middle ear, allowing for controlled delivery of astaxanthin in response to reactive oxygen species and reducing oxidative stress. Additionally, AST@dSe-AFT stimulated macrophages to polarize towards M2 phenotype and neutrophils to polarize towards N2 phenotype, thereby facilitating an anti-inflammatory response and tissue restoration. Importantly, AST@dSe-AFT exhibited no toxicity or adverse effects, suggesting its potential for safety and future clinical translation. Our findings suggested that AST@dSe-AFT represents a promising approach for the treatment of secretory otitis media and other oxidative stress-related disorders.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yafeng Yu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China.
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Yu B, Liu Y, Zhang Y, Xu L, Jin K, Sun A, Zhao X, Wang Y, Liu H. An SS31-rapamycin conjugate via RBC hitchhiking for reversing acute kidney injury. Biomaterials 2023; 303:122383. [PMID: 37939640 DOI: 10.1016/j.biomaterials.2023.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dysfunction plays a major role in driving acute kidney injury (AKI) via alteration in energy and oxygen supply, which creates further ROS and inflammatory responses. However, mitochondrial targeting medicine in recovering AKI is challenging. Herein, we conjugated SS31, a mitochondria-targeted antioxidant tetrapeptide connecting a cleavable linker to rapamycin (Rapa), which provided specific interaction with FK506-binding protein (FKBP) in the RBCs. Once entering the bloodstream, SS31-Rapa could be directed to the intracellular space of RBCs, allowing the slow diffusion of the conjugate to tissues via the concentration gradient. The new RBC hitchhiking strategy enables the encapsulation of conjugate into RBC via a less traumatic and more natural and permissive manner, resulting in prolonging the t1/2 of SS31 by 6.9 folds. SS31-Rapa underwent the direct cellular uptake, instead of the lysosomal pathway, released SS31 in response to activated caspase-3 stimulation in apoptotic cells, favoring the mitochondrial accumulation of SS31. Combined with autophagy induction associated with Rapa, a single dose of SS31-Rapa can effectively reverse cisplatin and ischemia reperfusion-induced AKI. This work thus highlights a simple and effective RBC hitchhiking strategy and a clinically translatable platform technology to improve the outcome of other mitochondrial dysfunctional related diseases.
Collapse
Affiliation(s)
- Bohong Yu
- Collage of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Yubo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Yingxi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Linyi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Kai Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Andi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Xiuli Zhao
- Collage of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| |
Collapse
|
7
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
8
|
Perumal V, Ravula AR, Shao N, Chandra N. Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model. J Otol 2023; 18:38-48. [PMID: 36820161 PMCID: PMC9937842 DOI: 10.1016/j.joto.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
Blast injuries are common among the military service members and veterans. One of the devastating effects of blast wave induced TBI is either temporary or permanent hearing loss. Treating hearing loss using minocycline is restricted by optimal drug concentration, route of administration, and its half-life. Therefore, therapeutic approach using novel therapeutic delivery method is in great need. Among the different delivery methods, nanotechnology-based drug delivery is desirable, which can achieve longer systemic circulation, pass through some biological barriers and specifically targets desired sites. The current study aimed to examine therapeutic effect of minocycline and its nanoparticle formulation in moderate blast induced hearing loss rat model through central auditory system. The I.v. administered nanoparticle at reduced dose and frequency than regularly administered toxic dose. After moderate blast exposure, rats had hearing impairment as determined by ABR at 7- and 30-days post exposure. In chronic condition, free minocycline also showed the significant reduction in ABR threshold. In central auditory system, it is found in this study that minocycline nanoparticles ameliorate excitation in inferior colliculus; and astrocytes and microglia activation after the blast exposure is reduced by minocycline nanoparticles administration. The study demonstrated that in moderate blast induced hearing loss, minocycline and its nanoparticle formulation exhibited the optimal therapeutic effect on the recovery of the ABR impairment and a protective effect through central auditory system. In conclusion, targeted and non-targeted nanoparticle formulation have therapeutic effect on blast induced hearing loss.
Collapse
Key Words
- 5-HsT, 5-hydroxytryptamine
- ABR, auditory brainstem response
- AC, auditory cortex
- Blast injury and targeted drug delivery
- CAS, central auditory system
- DAI, (diffuse axonal injury)
- GABA, gamma-aminobutyric acid
- HL, (Hearing loss)
- Hearing loss
- Minocycline
- NMDAR1, N-methyl-D-aspartate receptor 1
- Nanoparticle
- PAS, peripheral auditory system
- bTBI, blast traumatic brain injury
Collapse
|
9
|
Shi Y, Luo Z, You J. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1803. [PMID: 35441489 DOI: 10.1002/wnan.1803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Primarily responsible for the biogenesis and metabolism of biomolecules, endoplasmic reticulum (ER) and mitochondria are gradually becoming the targets of therapeutic modulation, whose physiological activities and pathological manifestations determine the functional capacity and even the survival of cells. Drug delivery systems with specific physicochemical properties (passive targeting), or modified by small molecular compounds, polypeptides, and biomembranes demonstrating tropism for ER and mitochondria (active targeting) are able to reduce the nonselective accumulation of drugs, enhancing efficacy while reducing side effects. Lipid nanoparticles feature high biocompatibility, diverse cargo loading, and flexible structure modification, which are frequently used for subcellular organelle-targeted delivery of therapeutics. However, there is still a lack of systematic understanding of lipid nanoparticle-based ER and mitochondria targeting. Herein, we review the pathological significance of drug selectively delivered to the ER and mitochondria. We also summarize the molecular basis and application prospects of lipid nanoparticle-based ER and mitochondria targeting strategies, which may provide guidance for the prevention and treatment of associated diseases and disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhang L, Bai X, Wang R, Xu L, Ma J, Xu Y, Lu Z. Advancements in the studies of novel nanomaterials for inner ear drug delivery. Nanomedicine (Lond) 2022; 17:1463-1475. [PMID: 36189895 DOI: 10.2217/nnm-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hearing loss is currently one of the most prevalent sensory disorders worldwide. Because both the blood-labyrinth barrier and the limited blood circulation in the inner ear restrain the effective delivery of most drugs to the inner ear tissues, current treatments for hearing loss are limited to mainly medication, hearing devices and cochlear surgery for therapeutic purposes, whereas treatments lack a noninvasive targeted drug-delivery system. With the continuously rapid development of new nanomaterials, the nanodelivery systems are expected to provide a potentially effective method of clinical treatment for hearing loss. This paper reviews the advantages and disadvantages of the commonly used drug-delivery methods and novel nanomaterials for inner ears as well as advancements in the targeted treatment of hearing loss.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Xiaohui Bai
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Lulu Xu
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Jingyu Ma
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Yue Xu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Zhiming Lu
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| |
Collapse
|
11
|
Barbara M, Margani V, Covelli E, Filippi C, Volpini L, El-Borady OM, El-Kemary M, Elzayat S, Elfarargy HH. The Use of Nanoparticles in Otoprotection. Front Neurol 2022; 13:912647. [PMID: 35968304 PMCID: PMC9364836 DOI: 10.3389/fneur.2022.912647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
The inner ear can be insulted by various noxious stimuli, including drugs (cisplatin and aminoglycosides) and over-acoustic stimulation. These stimuli damage the hair cells giving rise to progressive hearing loss. Systemic drugs have attempted protection from ototoxicity. Most of these drugs poorly reach the inner ear with consequent ineffective action on hearing. The reason for these failures resides in the poor inner ear blood supply, the presence of the blood-labyrinthine barrier, and the low permeability of the round window membrane (RWM). This article presents a review of the use of nanoparticles (NPs) in otoprotection. NPs were recently used in many fields of medicine because of their ability to deliver drugs to the target organs or cells. The studies included in the review regarded the biocompatibility of the used NPs by in vitro and in vivo experiments. In most studies, NPs proved safe without a significant decrease in cell viability or signs of ototoxicity. Many nano-techniques were used to improve the drugs' kinetics and efficiency. These techniques included encapsulation, polymerization, surface functionalization, and enhanced drug release. In such a way, it improved drug transmission through the RWM with increased and prolonged intra-cochlear drug concentrations. In all studies, the fabricated drug-NPs effectively preserved the hair cells and the functioning hearing from exposure to different ototoxic stimuli, simulating the actual clinical circumstances. Most of these studies regarded cisplatin ototoxicity due to the wide use of this drug in clinical oncology. Dexamethasone (DEX) and antioxidants represent the most used drugs in most studies. These drugs effectively prevented apoptosis and reactive oxygen species (ROS) production caused by ototoxic stimuli. These various successful experiments confirmed the biocompatibility of different NPs and made it successfully to human clinical trials.
Collapse
Affiliation(s)
- Maurizio Barbara
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Valerio Margani
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Edoardo Covelli
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Chiara Filippi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Luigi Volpini
- Otolaryngology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Ola M. El-Borady
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Saad Elzayat
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Haitham H. Elfarargy
- Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
- *Correspondence: Haitham H. Elfarargy ;
| |
Collapse
|
12
|
Chen Y, Gu J, Liu Y, Xu K, Song J, Wang X, Yu D, Wu H. Epigallocatechin gallate-loaded tetrahedral DNA nanostructures as a novel inner ear drug delivery system. NANOSCALE 2022; 14:8000-8011. [PMID: 35587814 DOI: 10.1039/d1nr07921b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of drug delivery systems to the inner ear is a crucial but challenging field. The sensory organ (in the inner ear) is protected by the petrous bone labyrinth and the membranous labyrinth, both of which need to be overcome during the drug delivery process. The requirements for such a delivery system include small size, appropriate flexibility and biodegradability. DNA nanostructures, biomaterials that can arrange multiple functional components with nanometer precision, exhibit characteristics that are compatible with the requirements for inner ear drug delivery. Herein, we report the development of a novel inner ear drug delivery system based on epigallocatechin gallate (EGCG)-loaded tetrahedral DNA nanostructures (TDNs, EGCG@TDNs). The TDNs self-assembled via base-pairing of four single-stranded DNA constructs and EGCG was loaded into the TDNs through non-covalent interactions. Cy5-labeled TDNs (Cy5-TDNs) were significantly internalized by the House Ear Institute-Organ of Corti 1 cell line, and this endocytosis was energy-, clathrin-, and micropinocytosis-dependent. Cy5-TDNs penetrated the round window membrane (RWM) rapidly in vivo. Local application of EGCG@TDNs onto the RWM of guinea pigs in a single dose continuously released EGCG over 4 hours. Drug concentrations in the perilymph were significantly elevated compared with the administration of free EGCG at the same dose. EGCG@TDNs were found to have favorable biocompatibility and strongly affected the RSL3-induced down-regulation of GPX4 and the generation of reactive oxygen species, on the basis of 2',7'-dichlorodihydrofluorescein diacetate staining. JC-1 staining suggested that EGCG@TDNs successfully reversed the decrease in mitochondrial membrane potential induced by RSL-3 in vitro and rescued cells from apoptosis, as demonstrated by the analysis of Annexin V-FITC/PI staining. Further functional studies showed that a locally administered single-dose of EGCG@TDNs effectively preserved spiral ganglion cells in C57/BL6 mice after noise-induced hearing loss. Hearing loss at 5.6 and 8 kHz frequencies was significantly attenuated when compared with the control EGCG formulation. Histological analyses indicated that the administration of TDNs and EGCG@TDNs did not induce local inflammatory responses. These favorable histological and functional effects resulting from the delivery of EGCG by TDNs through a local intratympanic injection suggest potential for therapeutic benefit in clinical applications.
Collapse
Affiliation(s)
- Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| |
Collapse
|
13
|
Ye R, Sun L, Peng J, Wu A, Chen X, Wen L, Bai C, Chen G. Design, Synthesis, and Biological Evaluation of Dexamethasone-Salvianolic Acid B Conjugates and Nanodrug Delivery against Cisplatin-Induced Hearing Loss. J Med Chem 2021; 64:3115-3130. [PMID: 33666428 DOI: 10.1021/acs.jmedchem.0c01916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cisplatin (CDDP) is an extensively used chemotherapeutic agent but has a high incidence of severe ototoxicity. Although a few molecules have entered clinical trials, none have been approved to prevent or treat CDDP-induced hearing loss by the Food and Drug Administration. In this study, an amphiphilic drug-drug conjugate was synthesized by covalently linking dexamethasone (DEX) and salvianolic acid B (SAL) through an ester or amide bond. The conjugates could self-assemble into nanoparticles (NPs) with ultrahigh drug loading capacity and favorable stability. Compared with DEX, SAL, or their physical mixture at the same concentrations, both conjugates and NPs showed enhanced otoprotection in vitro and in vivo. More importantly, the conjugates and NPs almost completely restored hearing in a guinea pig model with good biocompatibility. Immunohistochemical analyses suggested that conjugates and NPs activated the glucocorticoid receptor, which may work as one of the major mechanisms for their protective effects.
Collapse
Affiliation(s)
- Ruiqin Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lifang Sun
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinghui Peng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Aixin Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaozhu Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuan Bai
- Institute of Human Virology, Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
14
|
Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8837893. [PMID: 33354280 PMCID: PMC7735836 DOI: 10.1155/2020/8837893] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
Mitochondria are the main organelles that produce adenosine 5′-triphosphate (ATP) and reactive oxygen species (ROS) in eukaryotic cells and meanwhile susceptible to oxidative damage. The irreversible oxidative damage in mitochondria has been implicated in various human diseases. Increasing evidence indicates the therapeutic potential of mitochondria-targeted antioxidants (MTAs) for oxidative damage-associated diseases. In this article, we introduce the advantageous properties of MTAs compared with the conventional (nontargeted) ones, review different mitochondria-targeted delivery systems and antioxidants, and summarize their experimental results for various disease treatments in different animal models and clinical trials. The combined evidence demonstrates that mitochondrial redox homeostasis is a potential target for disease treatment. Meanwhile, the limitations and prospects for exploiting MTAs are discussed, which might pave ways for further trial design and drug development.
Collapse
|
15
|
Nazemi Z, Nourbakhsh MS, Kiani S, Heydari Y, Ashtiani MK, Daemi H, Baharvand H. Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. J Control Release 2020; 321:145-158. [PMID: 32035190 DOI: 10.1016/j.jconrel.2020.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Spinal cord injury (SCI) induces pathological and inflammatory responses that create an inhibitory environment at the site of trauma, resulting in axonal degeneration and functional disability. Combination therapies targeting multiple aspects of the injury, will likely be more effective than single therapies to facilitate tissue regeneration after SCI. In this study, we designed a dual-delivery system consisting of a neuroprotective drug, minocycline hydrochloride (MH), and a neuroregenerative drug, paclitaxel (PTX), to enhance tissue regeneration in a rat hemisection model of SCI. For this purpose, PTX-encapsulated poly (lactic-co-glycolic acid) PLGA microspheres along with MH were incorporated into the alginate hydrogel. A prolonged and sustained release of MH and PTX from the alginate hydrogel was obtained over eight weeks. The obtained hydrogels loaded with a combination of both drugs or each of them alone, along with the blank hydrogel (devoid of any drugs) were injected into the lesion site after SCI (at the acute phase). Histological assessments showed that the dual-drug treatment reduced inflammation after seven days. Moreover, a decrease in the scar tissue, as well as an increase in neuronal regeneration was observed after 28 days in rats treated with dual-drug delivery system. Over time, a fast and sustained functional improvement was achieved in animals that received dual-drug treatment compared with other experimental groups. This study provides a novel dual-drug delivery system that can be developed to test for a variety of SCI models or neurological disorders.
Collapse
Affiliation(s)
- Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran; Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran.
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Yasaman Heydari
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
16
|
Tumor Microenvironment Stimuli-Responsive Polymeric Prodrug Micelles for Improved Cancer Therapy. Pharm Res 2019; 37:4. [DOI: 10.1007/s11095-019-2709-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
|
17
|
Kim S, Nam HY, Lee J, Seo J. Mitochondrion-Targeting Peptides and Peptidomimetics: Recent Progress and Design Principles. Biochemistry 2019; 59:270-284. [PMID: 31696703 DOI: 10.1021/acs.biochem.9b00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are multifunctional subcellular organelles whose operations encompass energy production, signal transduction, and metabolic regulation. Given their wide range of roles, they have been studied extensively as a potential therapeutic target for the treatment of various diseases, including cancer, diabetes, and neurodegenerative diseases. Mitochondrion-mediated pathways have been identified as promising targets in the context of these diseases. However, the delivery of specific probes and drugs to the mitochondria is one of the major problems that remains to be solved. Over the past decade, much effort has been devoted to developing mitochondrion-targeted delivery methods based on the membrane characteristics and the protein import machinery of mitochondria. While various methods utilizing small molecules to polymeric particles have been introduced, it is notable that many of these compounds share common structural elements and physicochemical properties for optimal selectivity and efficiency. In this Perspective, we will review the most recently developed mitochondrion-targeting peptides and peptidomimetics to outline the key aspects of structural requirements and design principles. We will also discuss successful and potential applications of mitochondrial delivery to assess opportunities and challenges in the targeting of mitochondria.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
18
|
Kumar P, Huo P, Liu B. Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceutics 2019; 11:E381. [PMID: 31382369 PMCID: PMC6722551 DOI: 10.3390/pharmaceutics11080381] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
The folate receptor (FR) is a tumor-associated antigen that can bind with folic acid (FA) and its conjugates with high affinity and ingests the bound molecules inside the cell via the endocytic mechanism. A wide variety of payloads can be delivered to FR-overexpressed cells using folate as the ligand, ranging from small drug molecules to large DNA-containing macromolecules. A broad range of folate attached liposomes have been proven to be highly effective as the targeted delivery system. For the rational design of folate-targeted liposomes, an intense conceptual understanding combining chemical and biomedical points of view is necessary because of the interdisciplinary nature of the field. The fabrication of the folate-conjugated liposomes basically involves the attachment of FA with phospholipids, cholesterol or peptides before liposomal formulation. The present review aims to provide detailed information about the design and fabrication of folate-conjugated liposomes using FA attached uncleavable/cleavable phospholipids, cholesterol or peptides. Advances in the area of folate-targeted liposomes and their biomedical applications have also been discussed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|