1
|
Zhang Q, Wang D, Liu X, Li Y, Sun J, Meng N, Ji Z, Lan Y, Cao X, Sun B, Li J. Flavor characteristics and formation mechanisms in spirits: A case study in whisky. Food Res Int 2025; 203:115901. [PMID: 40022408 DOI: 10.1016/j.foodres.2025.115901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/03/2025]
Abstract
Alcoholic beverages are a crucial segment of the global food industry, with water and ethanol serving as their foundational components. Trace compounds, though present in minute quantities, significantly influence the flavor complexity and sensory quality of these beverages. Understanding the flavor formation mechanisms in alcoholic beverages has emerged as a key research area. Whisky, a global esteemed spirit, is discussed thoroughly in this review with regard to its diverse flavor characters and distinctive flavor formation mechanisms. Chemical compositions and their organoleptic contributions were generalized, highlighting the intricacies of flavor development. Furthermore, flavor formation patterns and potential compound interactions were proposed based on various production processes, including raw material selection, fermentation, distillation, and aging. Additionally, non-volatile compounds were thoroughly reviewed on their gustatory and olfactory implications, emphasizing their subtle yet significant contributions to the overall sensory experience. The review also discusses sensory interactions among diverse flavor compounds, offering insights into the complex interaction and suggesting future research directions in whisky flavor analysis and other alcoholic beverages. Instrumental analysis techniques and authentication methods are reviewed, providing valuable perspectives for advancing the analytical landscape. This comprehensive overview pioneers an understanding of whisky's flavor profile and underlying flavor formation mechanisms, while proposing innovative concepts for flavor interaction investigations, serving as a pivotal reference for future research.
Collapse
Affiliation(s)
- Qiuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048 China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Dan Wang
- Luzhou Laojiao Co.,Ltd., Luzhou, Sichuan, China
| | - Xiaogang Liu
- Luzhou Laojiao Co.,Ltd., Luzhou, Sichuan, China; Luzhou Pinchuang Technology Co., Ltd., Luzhou, Sichuan, China
| | - Yugen Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048 China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048 China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Nan Meng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048 China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zhe Ji
- Luzhou Laojiao Co.,Ltd., Luzhou, Sichuan, China
| | - Yu Lan
- Luzhou Laojiao Co.,Ltd., Luzhou, Sichuan, China
| | | | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048 China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jinchen Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048 China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Bayat A, Dondapati JS, Ahmed SR, Srinivasan S, Rajabzadeh AR. Electrochemical detection of 4(5)-methylimidazole in aqueous solutions. Food Chem 2024; 450:139320. [PMID: 38640530 DOI: 10.1016/j.foodchem.2024.139320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
4(5)-methylimidazole (4-MeI) is a potential carcinogen widely used in food colours. EU regulations specify a maximum allowable concentration of 200 ppm for 4-MeI in caramel colours. This study reports an electrochemical determination technique for 4-MeI in caramel colours for the first time. The effect of pH and interference from air were studied to optimize the detection conditions on a glassy carbon electrode in aqueous alkaline solutions using square wave voltammetry (SWV) technique. The concentration of 4-MeI was quantitatively measured down to 10 μM (∼0.8 ppm). Traditional methods such as HPLC, GC, spectrometry and immunoassays involve either expensive instrumentation and reagents or time consuming preparation and detection processes. This study demonstrates the possibility of rapid and simple electrochemical determination of (4-MeI) in food colours with minimum workup using a portable potentiostat.
Collapse
Affiliation(s)
- Akhtar Bayat
- W. Booth School of Engineering Practice & Technology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jesse Smiles Dondapati
- W. Booth School of Engineering Practice & Technology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Syed Rahin Ahmed
- W. Booth School of Engineering Practice & Technology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Seshasai Srinivasan
- W. Booth School of Engineering Practice & Technology, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- W. Booth School of Engineering Practice & Technology, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
3
|
Soman SS, Samad SA, Venugopalan P, Kumawat N, Kumar S. Microfluidic paper analytic device (μPAD) technology for food safety applications. BIOMICROFLUIDICS 2024; 18:031501. [PMID: 38706979 PMCID: PMC11068414 DOI: 10.1063/5.0192295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Foodborne pathogens, food adulterants, allergens, and toxic chemicals in food can cause major health hazards to humans and animals. Stringent quality control measures at all stages of food processing are required to ensure food safety. There is, therefore, a global need for affordable, reliable, and rapid tests that can be conducted at different process steps and processing sites, spanning the range from the sourcing of food to the end-product acquired by the consumer. Current laboratory-based food quality control tests are well established, but many are not suitable for rapid on-site investigations and are costly. Microfluidic paper analytical devices (μPADs) are a fast-growing field in medical diagnostics that can fill these gaps. In this review, we describe the latest developments in the applications of microfluidic paper analytic device (μPAD) technology in the food safety sector. State-of-the-art μPAD designs and fabrication methods, microfluidic assay principles, and various types of μPAD devices with food-specific applications are discussed. We have identified the prominent research and development trends and future directions for maximizing the value of microfluidic technology in the food sector and have highlighted key areas for improvement. We conclude that the μPAD technology is promising in food safety applications by using novel materials and improved methods to enhance the sensitivity and specificity of the assays, with low cost.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | - Shafeek Abdul Samad
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | | - Nityanand Kumawat
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | |
Collapse
|
4
|
Okolo CA, Kilcawley KN, O'Connor C. Recent advances in whiskey analysis for authentication, discrimination, and quality control. Compr Rev Food Sci Food Saf 2023; 22:4957-4992. [PMID: 37823807 DOI: 10.1111/1541-4337.13249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
In order to safeguard authentic whiskey products from fraudulent or counterfeit practices, high throughput solutions that provide robust, rapid, and reliable solutions are required. The implementation of some analytical strategies is quite challenging or costly in routine analysis. Qualitative screening of whiskey products has been explored, but due to the nonspecificity of the chemical compounds, a more quantitative confirmatory technique is required to validate the result of the whiskey analysis. Hence, combining analytical and chemometric methods has been fundamental in whiskey sample differentiation and classification. A comprehensive update on the most relevant and current analytical techniques, including spectroscopic, chromatographic, and novel technologies employed within the last 5 years in whiskey analysis for authentication, discrimination, and quality control, are presented. Furthermore, the technical challenges in employing these analytical techniques, future trends, and perspectives are emphasized.
Collapse
Affiliation(s)
- Chioke A Okolo
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Kieran N Kilcawley
- Food Quality & Sensory Science Department, Teagasc Food Research Centre, Co Cork, Ireland
- School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Christine O'Connor
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
5
|
de O K Franco M, Cardoso WJ, Vilanculo CB, Dos Santos VB, de Almeida JPB, Capitán-Vallvey LF, Suarez WT. Using a biphasic system and digital imaging analysis with chemometric tools for simultaneous determination of Cu 2+ and furfural in cachaça. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2300-2308. [PMID: 37089039 DOI: 10.1039/d3ay00311f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present study reports, for the first time, the development and application of a highly efficient method based on digital imaging analysis for the simultaneous determination of Cu2+ and furfural in cachaça samples using a two-phase system and chemometrics tools. Furfural reacts with aniline in an acidic medium to form a Schiff base, which exhibits a pink color. On the other hand, Cu2+ reacts with cuprizone in a basic medium to form a blue complex. The two reactions were performed on a porcelain plate, and a smartphone was used to capture the colorimetric images. Partial least squares (PLS) regression was used to construct the prediction models for Cu2+ and furfural contents in cachaça samples. After finding the best PLS models, the ordered predictor selection (OPS) analysis was performed in order to select the most predictive variables. The method developed was found to be effective in estimating the amounts of Cu2+ and furfural in cachaça samples, with a mean absolute error of 0.2 mg L-1 for the Cu2+ model, and 0.3 mg per 100 mL of anhydrous alcohol for the furfural model. The method proposed in this study is simple and straightforward; it does not require complex technical knowledge and can be used by the producers themselves in the cachaça manufacturing process.
Collapse
Affiliation(s)
| | - Wilson J Cardoso
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG, Brazil.
| | | | - Vagner B Dos Santos
- Fundamental Chemistry Department, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Willian T Suarez
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
6
|
Anushka, Bandopadhyay A, Das PK. Paper based microfluidic devices: a review of fabrication techniques and applications. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 232:781-815. [PMID: 36532608 PMCID: PMC9743133 DOI: 10.1140/epjs/s11734-022-00727-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/09/2022] [Indexed: 06/14/2023]
Abstract
A wide range of applications are possible with paper-based analytical devices, which are low priced, easy to fabricate and operate, and require no specialized equipment. Paper-based microfluidics offers the design of miniaturized POC devices to be applied in the health, environment, food, and energy sector employing the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free and Deliverable to end users) principle of WHO. Therefore, this field is growing very rapidly and ample research is being done. This review focuses on fabrication and detection techniques reported to date. Additionally, this review emphasises on the application of this technology in the area of medical diagnosis, energy generation, environmental monitoring, and food quality control. This review also presents the theoretical analysis of fluid flow in porous media for the efficient handling and control of fluids. The limitations of PAD have also been discussed with an emphasis to concern on the transformation of such devices from laboratory to the consumer.
Collapse
Affiliation(s)
- Anushka
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Prasanta Kumar Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
7
|
Yang M, Chen D, Hu J, Zheng X, Lin ZJ, Zhu H. The application of coffee-ring effect in analytical chemistry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Gavahian M, Ratchaneesiripap P, Lin Y. Bioactive compounds extraction from oak chips into rice spirit: New application of ultrasound. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan
| | - Paphawarin Ratchaneesiripap
- International Master's Degree Program in Food Science, International College National Pingtung University of Science and Technology Pingtung Taiwan
| | - Yan‐Jin Lin
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan
| |
Collapse
|
9
|
Gracie J, Zamberlan F, Andrews IB, Smith BO, Peveler WJ. Growth of Plasmonic Nanoparticles for Aging Cask-Matured Whisky. ACS APPLIED NANO MATERIALS 2022; 5:15362-15368. [PMID: 36338330 PMCID: PMC9624259 DOI: 10.1021/acsanm.2c03406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 05/06/2023]
Abstract
The maturation of spirit in wooden casks is key to the production of whisky, a hugely popular and valuable product, with the transfer and reaction of molecules from the wooden cask with the alcoholic spirit imparting color and flavor. However, time in the cask adds significant cost to the final product, requiring expensive barrels and decades of careful storage. Thus, many producers are concerned with what "age" means in terms of the chemistry and flavor profiles of whisky. We demonstrate here a colorimetric test for spirit "agedness" based on the formation of gold nanoparticles (NPs) by whisky. Gold salts were reduced by barrel-aged spirit and produce colored gold NPs with distinct optical properties. Information from an extinction profile, such as peak position, growth rate, or profile shape, was analyzed, and our assay output was correlated with measurements of the whisky sample makeup, assays for key functional groups, and spiking experiments to explore the mechanism in more detail. We conclude that age is not just a number, that the chemical fingerprint of key flavor compounds is a useful marker for determining whisky "age", and that our simple reduction assay could assist in defining the aged character of a whisky and become a useful future tool on the warehouse floor.
Collapse
Affiliation(s)
- Jennifer Gracie
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | | | - Iain B. Andrews
- The
Scotch Whisky Research Institute, Edinburgh EH14 4AP, U.K.
| | - Brian O. Smith
- School
of Molecular Biosciences, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | | |
Collapse
|
10
|
Xu J, Liang C, Gao W, Gao Z, Wu Z, Song YY. Photocatalysis engineered hydrophilic reactors on hydrophobic paper for the visual and colorimetric assay of alkaline phosphatase activity. Mikrochim Acta 2022; 189:343. [PMID: 35999293 DOI: 10.1007/s00604-022-05454-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Taking advantage of the intrinsic photocatalysis of TiO2, hydrophilic reactor arrays were lithographically patterned on a hydrophobic paper via a simple UV irradiation. As a proof-of-concept, alkaline phosphatase (ALP) was used as the model analyte for colorimetric analysis. As ALP can induce hydrolysis of pyrophosphate-Zn(II) framework, the released Zn2+ ions are subsequently coordinated with red-colored zincon to form blue-colored zincon-Zn(II) chelate complex, and these color differences were applied for further colorimetric assay. The sensing platform showed response to ALP ranging from 20 ~ 800 U L-1 with a detection limit of 3 U L-1, and the recoveries of ALP in serum samples were in the range 95.7 ~ 104.5% with relative standard deviations from 2.10 to 3.84%. Additionally, the distinct wettability features of the proposed sensing platform effectively prevent lateral fluid spread out of hydrophilic reactors, thus allowing not only the use of minimum amount of analyte but it has also a high potential for simultaneous quantification of multiple samples.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Chenchen Liang
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Weina Gao
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Zhiyong Wu
- College of Sciences, Northeastern University, Shenyang, 110004, China.
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang, 110004, China.
| |
Collapse
|
11
|
Wang J, Liu Y, Li J, Diao Y, Hu Z, Yan S. Mechanism of bluish pigment formation in lotus rhizome starch with ferrous sulfate and its application in rapid detection of adulteration. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jie Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, China
- Hubei Aquatic Vegetable Preservation Processing Engineering Technology Research Center, Wuhan, China
| | - Ying Diao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Zhongli Hu
- Hubei Lotus Rhizome Engineering Technology Research Center, College of Life Science, Wuhan University, Wuhan, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, China
- Hubei Aquatic Vegetable Preservation Processing Engineering Technology Research Center, Wuhan, China
| |
Collapse
|
12
|
Rezende KCA, Duarte LM, Pinheiro KMP, Cardoso TMG, Nogueira SA, Coltro WKT. Portable Analytical Platforms Associated with Chemometrics for Rapid Screening of Whisky Adulteration. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Arslan M, Zareef M, Tahir HE, Zhang J, Ahmad W, Rakha A, Shi J, Xiaobo Z, Khan MR. Discrimination of basmati rice adulteration using colorimetric sensor array system. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Kadir NHA, Mohammad M, Alam M, Torkashvand M, Silvaragi TGB, Gururuloo SL. Utilization of nanocellulose fibers, nanocrystalline cellulose and bacterial cellulose in biomedical and pharmaceutical applications. NANOTECHNOLOGY IN PAPER AND WOOD ENGINEERING 2022:409-470. [DOI: 10.1016/b978-0-323-85835-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Nilghaz A, Mousavi SM, Li M, Tian J, Cao R, Wang X. Paper-based microfluidics for food safety and quality analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Faura G, Grazioli C, Dossi N, Svigelj R, Toniolo R, Bontempelli G. Transmittance measurements on paper soaked with deep eutectic solvents. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Determination of the alcoholic content in whiskeys using micellar electrokinetic chromatography on microchips. Food Chem 2020; 329:127175. [PMID: 32516708 DOI: 10.1016/j.foodchem.2020.127175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/31/2023]
Abstract
This report describes the development of a methodology based on micellar electrokinetic chromatography for the separation of alcohols on chip-based systems aiming the determination of alcoholic content in whiskey samples. The separation conditions were optimized the best results were achieved using 50 mmolL-1 phosphate buffer containing 30 mmolL-1 sodium dodecyl sulfate. The alcoholic content was determined in 16 seized whiskey samples from 4 different brands as well as in the original samples. The methodology presented herein allowed the correct classification of 75% of the seized samples as adulterated and the data obtained did not statistically differ from those recorded by a reference technique. The proposed analytical approach emerges as a promising tool to provide a rapid screening of the beverages authenticity and it may be useful to be widely explored for the quality control.
Collapse
|
18
|
Fernandes GM, Silva WR, Barreto DN, Lamarca RS, Lima Gomes PCF, Flávio da S Petruci J, Batista AD. Novel approaches for colorimetric measurements in analytical chemistry - A review. Anal Chim Acta 2020; 1135:187-203. [PMID: 33070854 DOI: 10.1016/j.aca.2020.07.030] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/20/2023]
Abstract
Colorimetric techniques have been developed and used in routine analyses for over a century and apparently all their potentialities have been exhaustively explored. However, colorimetric techniques have gained high visibility in the last two decades mainly because of the development of the miniaturization concept, for example, paper-based analytical devices that mostly employ colorimetric reactions, and by the advances and popularity of image capture instruments. The impressive increase in the use of these devices was followed by the development and enhancement of different modes of color detection to meet the demands of making qualitative, semi-quantitative, and fully quantitative analyses of multiple analytes. Cameras, scanners, and smartphones are now being used for this purpose and have become suitable alternatives for different approaches to colorimetric analysis; this, in addition to advancements in miniaturized devices. On the other hand, recent developments in optoelectronics technologies have launched more powerful, more stable and cheaper light-emitting diodes (LEDs), which once again have become an interesting tool for the design of portable and miniaturized devices based on colored reactions. Here, we present a critical review of recent developments and challenges of colorimetric detection in modern analytical chemistry in the last five years, and present thoughts and insights towards future perspectives in the area to improve the use of colorimetric detection in different application approaches.
Collapse
Affiliation(s)
- Gabriel Martins Fernandes
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
| | - Weida R Silva
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
| | - Diandra Nunes Barreto
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
| | - Rafaela S Lamarca
- National Institute for Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Materials (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, SP, Brazil
| | - Paulo Clairmont F Lima Gomes
- National Institute for Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Materials (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, SP, Brazil
| | - João Flávio da S Petruci
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
| | - Alex D Batista
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil.
| |
Collapse
|
19
|
Patari S, Mahapatra PS. Liquid Wicking in a Paper Strip: An Experimental and Numerical Study. ACS OMEGA 2020; 5:22931-22939. [PMID: 32954142 PMCID: PMC7495729 DOI: 10.1021/acsomega.0c02407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 05/14/2023]
Abstract
In this decade, paper-based microfluidics has gained more interest in the research due to the vast applications in medical diagnosis, environmental monitoring, food safety analysis, etc. In this work, we presented a set of experiments to understand the physics of the capillary flow phenomenon through paper strips. Here, using the wicking phenomenon of the liquid in porous media, experimentally, we find out the capillary height of the liquid in filter paper at different time intervals. It was found that the Lucas-Washburn (L-W) model, as well as the evaporation model, fails to predict the capillary rise accurately. However, the detailed numerical solution shows a better similarity with the experimental results. We have also shown the different regimes of the wicking phenomenon using scaling analysis of the modified L-W model. The capillary rise method was applied to detect the added water content in milk. We used milk as a liquid food and found the added water content from the change in the capillary height at different concentrations of milk. Finally, results obtained from the paper-based device were verified with the commercially available lactometer data.
Collapse
|
20
|
Lobo‐Júnior EO, Chagas CLS, Duarte LC, Cardoso TMG, Souza FR, Lima RS, Coltro WKT. Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a soft‐embossing protocol. Electrophoresis 2020; 41:1641-1650. [DOI: 10.1002/elps.202000131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/06/2022]
Affiliation(s)
| | - Cyro L. S. Chagas
- Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
- Instituto de Química Universidade de Brasília Brasília DF Brazil
| | - Lucas C. Duarte
- Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
| | | | - Fabrício R. Souza
- Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
| | - Renato S. Lima
- Laboratório Nacional de Nanotecnologia Centro Nacional de Pesquisa em Energia e Materiais Campinas SP Brazil
- Instituto de Química Universidade Estadual de Campinas Campinas SP Brazil
| | - Wendell K. T. Coltro
- Instituto de Química Universidade Federal de Goiás Goiânia GO Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica Campinas SP Brazil
| |
Collapse
|
21
|
Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol Adv 2020; 39:107442. [DOI: 10.1016/j.biotechadv.2019.107442] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/04/2019] [Accepted: 08/26/2019] [Indexed: 01/23/2023]
|
22
|
Tan W, Zhang L, Doery JCG, Shen W. Three-dimensional microfluidic tape-paper-based sensing device for blood total bilirubin measurement in jaundiced neonates. LAB ON A CHIP 2020; 20:394-404. [PMID: 31853529 DOI: 10.1039/c9lc00939f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
More than 60% newborns experience hyperbilirubinemia and jaundice within the initial week after birth due to the accumulation of total bilirubin in blood. Left untreated high levels of bilirubin may result in brain impairment. Simple, fast, accurate, low-cost and timely point-of-care (POC) analysis of total bilirubin is an unmet need especially in resource-limited areas. This work introduces a novel sensing device, named a "tape-paper sensor", capable of separating plasma from whole blood and measuring total bilirubin by a colorimetric diazotization method. The tape-paper sensing method overcomes non-homogeneous color distribution caused by the "coffee stain" effect, which improves the accuracy of colorimetric evaluation on paper-based analytical devices. The level of hemolysis in the plasma extracted by the device is evaluated, confirming no interference in the detection of total bilirubin. The accuracy of the tape-paper sensing approach for neonatal blood sample measurement is verified by comparison with the hospital pathology laboratory method. The small volume of samples and reagents, minimal equipment (an office scanner), fast detection (<10 min) and low fabrication cost (∼A$ 0.6) reveal the suitability of the device for POC use and in resource-limited settings. The tape-paper sensor is a low-cost, fast, and user-friendly device for measurement of blood total bilirubin levels in neonatal jaundice diagnostics.
Collapse
Affiliation(s)
- Weirui Tan
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Liyuan Zhang
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia. and National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Science and Technology Institute, Wuhan Textile University, Wuhan 430200, China
| | - James C G Doery
- Monash Pathology, Monash Health, Clayton Road, VIC 3168, Australia and Department of Medicine, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Wei Shen
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
23
|
Alessio KO, Voss M, Flores EMM, Costa AB, Duarte FA, Barin JS. Infrared thermal imaging combined with paper microzone plates and natural reagent extracts for simple, fast, and green enthalpimetric analysis. Talanta 2019; 204:266-271. [PMID: 31357292 DOI: 10.1016/j.talanta.2019.05.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 12/01/2022]
Abstract
Paper microzone plates and thermal infrared enthalpimetry (TIE) were combined with potato juice as natural reagent extract to perform the determination of hydrogen peroxide in pharmaceutical, bleaching, and toiletry products. A multichannel pipette was used for reagent addition simultaneously in multiple zones of paper devices, and the temperature rise was determined using an infrared camera. In order to provide suitable measurements, some parameters were optimized such as pH, volume of reagents, and stability of the extract. Results for the hydrogen peroxide were compared with those obtained using methods from official compendia (United States Pharmacopeia and ASTM D2180-17), with agreements ranging from 96 to 103%. The green analytical procedure index was used to compare the greenness of the proposed method with official ones, with clear advantages for TIE. Only microliters of samples and natural reagent extracts were required for analysis, and it was found that waste generation could be greatly reduced. After analysis, the paper device could be directly disposed since the final products of the reaction were O2 and water. According to these features, the proposed method could be considered a promising alternative to routine analysis in agreement with green analytical chemistry principles.
Collapse
Affiliation(s)
- Keiti O Alessio
- Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil; Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Monica Voss
- Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Erico M M Flores
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Adilson B Costa
- Grupo de Pesquisa em Quimiometria - Programa de Pós-Graduação em Sistemas e Processos Industriais, Universidade de Santa Cruz do Sul, 96815-900, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Fabio A Duarte
- Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Juliano S Barin
- Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
24
|
Huang X, Li Z, Zou X, Shi J, Elrasheid Tahir H, Xu Y, Zhai X, Hu X. A low cost smart system to analyze different types of edible Bird's nest adulteration based on colorimetric sensor array. J Food Drug Anal 2019; 27:876-886. [PMID: 31590759 PMCID: PMC9306987 DOI: 10.1016/j.jfda.2019.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 11/02/2022] Open
Abstract
This study was performed to develop a low-cost smart system for identification and quantification of adulterated edible bird’s nest (EBN). The smart system was constructed with a colorimetric sensor array (CSA), a smartphone and a multi-layered network model. The CSA were used to collect the odor character of EBN and the response signals of CSA were captured by the smartphone systems. The principal component analysis (PCA) and hierarchical cluster analysis (HAC) were used to inquiry the similarity among authentic and adulterated EBNs. The multi-layered network model was constructed to analyze EBN adulteration. In this model, discrimination of authentic EBN and adulterated EBN was realized using back-propagation neural networks (BPNN) algorithm. Then, another BPNN-based model was developed to identify the type of adulterant in the mixed EBN. Finally, adulterated percentage prediction model for each kind of adulterate EBN was built using partial least square (PLS) method. Results showed that recognition rates of the authentic EBN and adulterated EBN was as high as 90%. The correlation coefficient of percentage prediction model for calibration set was 0.886, and 0.869 for prediction set. The low-cost smart system provides a real-time, nondestructive tool to authenticate EBN for customers and retailers.
Collapse
|
25
|
Photochemical oxidation of alcohols: Simple derivatization strategy for their analysis by capillary electrophoresis. Food Chem 2019; 292:114-120. [DOI: 10.1016/j.foodchem.2019.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/31/2023]
|
26
|
de Oliveira LMA, Dos Santos VB, da Silva EKN, Lopes AS, Dantas-Filho HA. An environment-friendly spot test method with digital imaging for the micro-titration of citric fruits. Talanta 2019; 206:120219. [PMID: 31514888 DOI: 10.1016/j.talanta.2019.120219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
A new method to determine the total titratable acidity of orange, lemon and passion fruit, based on a spot test obtained from digital images and using anthocyanins as the biodegradable indicator, is presented for the first time. The colorimetric reactions were carried out by acid-base titration on a microscale, employing anthocyanin with a microplate for spot test purposes, with detection by digital imaging. To obtain highly precise data, a chamber based on a diffuser was developed to control the illumination supplied by the light emitting diodes, and coupled to a smartphone to acquire adequate digital images. High precision was obtained with a relative standard deviation of 0.758% for n = 95. The RGB values were extracted from the digital images and used as analytical signals, the values being correlated with the micro-volume of the titrant and used to construct the titration curves and obtain the first and second derivatives, respectively. For comparative purposes, the official AOAC (Association of Official Analytical Chemists) and MAPA (Ministry of Agriculture, Livestock and Food Supply of Brazil) methods were used and the results compared by applying the paired t-test at the 95% confidence level (n = 3). No difference was found between the values and the relative errors were less than 2.8%. The micro-titrimetric method was fast, uses anthocyanins as the natural indicator, is practical, and permits a reduction of 922 times or 99.9% of the volume required in a conventional titration. It is therefore ideal for routine analyses leading to a reduction in the waste generated, according to the principles of green chemistry.
Collapse
Affiliation(s)
| | - Vagner Bezerra Dos Santos
- Institute of Exact and Natural Science, Federal University of Pará, Belém, PA, Brazil; Fundamental Chemistry Department, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Emelle K N da Silva
- Institute of Exact and Natural Science, Federal University of Pará, Belém, PA, Brazil
| | - Alessandra Santos Lopes
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110, Belém, Pará, Brazil
| | | |
Collapse
|
27
|
Redox titration on foldable paper-based analytical devices for the visual determination of alcohol content in whiskey samples. Talanta 2019; 194:363-369. [DOI: 10.1016/j.talanta.2018.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022]
|
28
|
Pinheiro KMP, Moreira RC, Rezende KCA, Talhavini M, Logrado LPL, Baio JAF, Lanza MRV, Coltro WKT. Rapid separation of post-blast explosive residues on glass electrophoresis microchips. Electrophoresis 2018; 40:462-468. [DOI: 10.1002/elps.201800245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/21/2023]
Affiliation(s)
| | - Roger C. Moreira
- Instituto de Química; Universidade Federal de Goiás; Goiânia GO Brazil
| | | | - Márcio Talhavini
- Instituto Nacional de Criminalística; Polícia Federal Brasileira; Brasília DF Brazil
| | | | - José A. F. Baio
- Instituto de Química de São Carlos; Universidade de São Paulo; São Carlos SP Brazil
| | - Marcos R. V. Lanza
- Instituto de Química de São Carlos; Universidade de São Paulo; São Carlos SP Brazil
| | - Wendell K. T. Coltro
- Instituto de Química; Universidade Federal de Goiás; Goiânia GO Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas SP Brazil
| |
Collapse
|
29
|
de Araujo WR, Cardoso TM, da Rocha RG, Santana MH, Muñoz RA, Richter EM, Paixão TR, Coltro WK. Portable analytical platforms for forensic chemistry: A review. Anal Chim Acta 2018; 1034:1-21. [DOI: 10.1016/j.aca.2018.06.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/18/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
|
30
|
Fu LM, Wang YN. Detection methods and applications of microfluidic paper-based analytical devices. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Dias AA, Cardoso TMG, Chagas CLS, Oliveira VXG, Munoz RAA, Henry CS, Santana MHP, Paixão TRLC, Coltro WKT. Detection of Analgesics and Sedation Drugs in Whiskey Using Electrochemical Paper-based Analytical Devices. ELECTROANAL 2018. [DOI: 10.1002/elan.201800308] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Anderson A. Dias
- Instituto de Química; Universidade Federal de Goiás; Goiânia, GO 74690-900 Brazil
| | - Thiago M. G. Cardoso
- Instituto de Química; Universidade Federal de Goiás; Goiânia, GO 74690-900 Brazil
| | - Cyro L. S. Chagas
- Instituto de Química; Universidade Federal de Goiás; Goiânia, GO 74690-900 Brazil
| | | | - Rodrigo A. A. Munoz
- Instituto de Química; Universidade Federal de Uberlândia; Uberlândia, MG 38408-100 Brazil
| | - Charles S. Henry
- Department of Chemistry; Colorado State University; Fort Collins, CO 80523 United States of America
| | - Mário H. P. Santana
- Unidade Técnico-Científica -; Superintendência Regional da Polícia Federal em MG; Uberlândia, MG 38408-6630 Brazil
| | - Thiago R. L. C. Paixão
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; 05508-000 São Paulo, SP Brazil
| | - Wendell K. T. Coltro
- Instituto de Química; Universidade Federal de Goiás; Goiânia, GO 74690-900 Brazil
| |
Collapse
|