1
|
Liu Y, Han D, Liu L. Temporary Structural Supports for Chemical Protein Synthesis. Angew Chem Int Ed Engl 2025:e202504405. [PMID: 40248862 DOI: 10.1002/anie.202504405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The range of functional proteins that can be prepared by chemical protein synthesis includes those bearing complex modifications and incorporating d-amino acids, and exceeds what can be accessed by biological means, but the technique is still limited by the unfavorable solution behavior of many synthetic protein intermediates in buffer, leading to inefficient ligation, purification, and in vitro folding. One approach to address this limitation is the use of temporary structural supports-chemical modifications, usually solubilizing functionalities such as polyamines or carbohydrates-that are installed on either the backbone or side chains of the synthetic protein intermediates and removed at a later stage of chemical protein synthesis. The basic processes for introducing and removing such temporary structural supports are reminiscent of the canonical protecting groups ubiquitous in organic chemistry. However, unlike the synthesis of small organic molecules, where solubility is rarely an issue, the purpose of temporary structural supports is to modulate the solution behavior of the synthetic protein intermediates to prevent them from aggregation, precipitation, or retention in unfavorable solvation-phase conformations. In this review, we summarize recent advances in the development of temporary structural supports for chemical protein synthesis and organize them into three categories: 1) Temporary structural supports to improve solubility; 2) Temporary structural supports to assist chemical ligation; and 3) Temporary structural supports to promote in vitro folding.
Collapse
Affiliation(s)
- Yanbo Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongyang Han
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Tanaka S, Narumi T, Mase N, Sato K. Hydrazide-Mediated Solubilizing Strategy for Poorly Soluble Peptides Using a Dialkoxybenzaldehyde Linker. Chem Pharm Bull (Tokyo) 2022; 70:707-715. [PMID: 36184453 DOI: 10.1248/cpb.c22-00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins modified in a controlled manner with artificial moieties such as fluorophores or affinity tags have been shown to be a powerful tool for functional or structural analysis of proteins. A reliable way to prepare proteins with a well-defined modification is protein synthesis. Although many successful syntheses have been reported, the poor aqueous solubility of synthetic intermediates causes difficulty in the chemical synthesis of proteins. Here we describe a solubilizing strategy for poorly soluble peptides which uses chemoselective incorporation of a hydrophilic tag onto a hydrazide in a peptide. We found that a hydrophilic tag possessing a dialkoxybenzaldehyde moiety can react with peptide hydrazides through reductive N-alkylation. No protecting groups are required for this reaction, and peptides modified in this way show enhanced solubility and consequently good peak separation during HPLC purification. The tag can be removed subsequently by treatment with trifluoroacetic acid to generate a free hydrazide, which can be converted in a one-pot reaction to a thioester for further modification. This method was validated by synthesis of a Lys63-linked ubiquitin dimer derivative. This late-stage solubilization can be applied in principal to any peptide and opens the possibility of the synthesis of proteins that have previously been considered inaccessible due to their poor solubility.
Collapse
Affiliation(s)
- Shoko Tanaka
- Graduate School of Science and Technology, Shizuoka University
| | - Tetsuo Narumi
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| | - Nobuyuki Mase
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| | - Kohei Sato
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
3
|
Kerul L, Schrems M, Schmid A, Meli R, Becker CFW, Bello C. Semisynthesis of Homogeneous, Active Granulocyte Colony-Stimulating Factor Glycoforms. Angew Chem Int Ed Engl 2022; 61:e202206116. [PMID: 35853828 PMCID: PMC9804750 DOI: 10.1002/anie.202206116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/09/2023]
Abstract
Granulocyte colony stimulating factor (G-CSF) is a cytokine used to treat neutropenia. Different glycosylated and non-glycosylated variants of G-CSF for therapeutic application are currently generated by recombinant expression. Here, we describe our approaches to establish a first semisynthesis strategy to access the aglycone and O-glycoforms of G-CSF, thereby enabling the preparation of selectively and homogeneously post-translationally modified variants of this important cytokine. Eventually, we succeeded by combining selenocysteine ligation of a recombinantly produced N-terminal segment with a synthetic C-terminal part, transiently equipped with a side-chain-linked, photocleavable PEG moiety, at low concentration. The transient PEGylation enabled quantitative enzymatic elongation of the carbohydrate at Thr133. Overall, we were able to significantly reduce the problems related to the low solubility and the tendency to aggregate of the two protein segments, which allowed the preparation of four G-CSF variants that were successfully folded and demonstrated biological activity in cell proliferation assays.
Collapse
Affiliation(s)
- Lukas Kerul
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Maximilian Schrems
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Alanca Schmid
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Rajeshwari Meli
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Claudia Bello
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of Florencevia della Lastruccia 1350019Sesto Fiorentino (Florence)Italy
| |
Collapse
|
4
|
Kerul L, Schrems M, Schmid A, Meli R, Becker CF, Bello C. Semisynthesis of Homogeneous, Active Granulocyte Colony‐Stimulating Factor Glycoforms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lukas Kerul
- University of Vienna: Universitat Wien Chemistry AUSTRIA
| | | | - Alanca Schmid
- University of Vienna: Universitat Wien Chemistry AUSTRIA
| | | | - Christian F.W. Becker
- Universitat Wien Institute of Biological Chemistry Währinger Str. 38 1090 Vienna AUSTRIA
| | - Claudia Bello
- University of Florence: Universita degli Studi di Firenze Chemistry ITALY
| |
Collapse
|
5
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angew Chem Int Ed Engl 2022; 61:e202111266. [PMID: 34611966 PMCID: PMC9303669 DOI: 10.1002/anie.202111266] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Julia Kriegesmann
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
6
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemische Synthese und Semisynthese von lipidierten Proteinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111266. [PMID: 38504765 PMCID: PMC10947004 DOI: 10.1002/ange.202111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/11/2022]
Abstract
AbstractLipidierung ist eine ubiquitäre Modifikation von Peptiden und Proteinen, die entweder co‐ oder posttranslational auftreten kann. Für die Vielzahl von Lipidklassen wurde gezeigt, dass diese viele entscheidende biologische Aktivitäten, z. B. die Regulierung der Signalweiterleitung, Zell‐Zell‐Adhäsion sowie die Anlagerung von Proteinen an Lipid‐Rafts und Phospholipidmembranen, beeinflussen. Während die Natur Enzyme nutzt, um Lipidmodifikationen in Proteine einzubringen, ist ihre Nutzung für die chemoenzymatische Herstellung von lipidierten Proteinen häufig ineffizient. Eine Alternative ist die Kombination moderner synthetischer und semisynthetischer Techniken, um lipidierte Proteine in reiner und homogen modifizierter Form zu erhalten. Dieser Aufsatz erörtert Fortschritte in der Entwicklung der Lipidierungs‐ und Ligationschemie und deren Anwendung in der Synthese und Semisynthese homogen lipidierter Proteine, die es ermöglichen, den Einfluss dieser Modifikationen auf die Proteinstruktur und ‐funktion zu untersuchen.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australien
| | - Julia Kriegesmann
- Institut für Biologische ChemieFakultät für ChemieUniversität WienWienÖsterreich
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| |
Collapse
|
7
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
8
|
Kasim JK, Kavianinia I, Harris PWR, Brimble MA. Three Decades of Amyloid Beta Synthesis: Challenges and Advances. Front Chem 2019; 7:472. [PMID: 31334219 PMCID: PMC6614915 DOI: 10.3389/fchem.2019.00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
Aggregation of the pathological amyloid beta (Aβ) isoform Aβ1−42 into senile plaques is a neuropathological hallmark of Alzheimer's disease (AD). The biochemical significance of this phenomenon therefore necessitates the need for ready access to Aβ1−42 for research purposes. Chemical synthesis of the peptide, however, is technically difficult to perform given its propensity to aggregate both on resin during solid phase peptide synthesis and in solution during characterization. This review presents a chronological summary of key publications in the field of Aβ1−42 synthesis, dating back from its maiden synthesis by Burdick et al. Challenges associated with the preparation of Aβ1−42 were identified, and the solutions designed over the course of time critically discussed herein. Ultimately, the intention of this review is to provide readers with an insight into the progress that has been made in the last three decades, and how this has advanced broader research in AD.
Collapse
Affiliation(s)
- Johanes K Kasim
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Kasim JK, Kavianinia I, Ng J, Harris PWR, Birch NP, Brimble MA. Efficient synthesis and characterisation of the amyloid beta peptide, Aβ 1-42, using a double linker system. Org Biomol Chem 2019; 17:30-34. [PMID: 30500032 DOI: 10.1039/c8ob02929f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amyloidogenic Aβ42 peptide was efficiently prepared using a double linker system, markedly improving solubility and chromatographic peak resolution, thus enabling full characterisation using standard techniques. The tag was readily cleaved with sodium hydroxide and removed by aqueous extraction, affording Aβ42 in high purity and yield for biophysical characterisation studies.
Collapse
Affiliation(s)
- Johanes K Kasim
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
| | - Iman Kavianinia
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Jin Ng
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Brain Research New Zealand Rangahau Roro Aotearoa and Centre for Brain Research, Auckland 1010, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Nigel P Birch
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Brain Research New Zealand Rangahau Roro Aotearoa and Centre for Brain Research, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
10
|
McInnes LE, Noor A, Kysenius K, Cullinane C, Roselt P, McLean CA, Chiu FCK, Powell AK, Crouch PJ, White JM, Donnelly PS. Potential Diagnostic Imaging of Alzheimer's Disease with Copper-64 Complexes That Bind to Amyloid-β Plaques. Inorg Chem 2019; 58:3382-3395. [PMID: 30785268 DOI: 10.1021/acs.inorgchem.8b03466] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amyloid-β plaques, consisting of aggregated amyloid-β peptides, are one of the pathological hallmarks of Alzheimer's disease. Copper complexes formed using positron-emitting copper radionuclides that cross the blood-brain barrier and bind to specific molecular targets offer the possibility of noninvasive diagnostic imaging using positron emission tomography. New thiosemicarbazone-pyridylhydrazone based ligands that incorporate pyridyl-benzofuran functional groups designed to bind amyloid-β plaques have been synthesized. The ligands form stable complexes with copper(II) ( Kd = 10-18 M) and can be radiolabeled with copper-64 at room temperature. Subtle changes to the periphery of the ligand backbone alter the metabolic stability of the complexes in mouse and human liver microsomes, and influenced the ability of the complexes to cross the blood-brain barrier in mice. A lead complex was selected based on possessing the best metabolic stability and brain uptake in mice. Synthesis of this lead complex with isotopically enriched copper-65 allowed us to show that the complex bound to amyloid-β plaques present in post-mortem human brain tissue using laser ablation-inductively coupled plasma-mass spectrometry. This work provides insight into strategies to target metal complexes to amyloid-β plaques, and how small modifications to ligands can dramatically alter the metabolic stability of metal complexes as well as their ability to cross the blood-brain barrier.
Collapse
Affiliation(s)
| | | | | | - Carleen Cullinane
- Research Division , Peter MacCallum Cancer Centre , Melbourne , Victoria , Australia , 3000.,The Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Victoria , Australia , 3000
| | - Peter Roselt
- Research Division , Peter MacCallum Cancer Centre , Melbourne , Victoria , Australia , 3000
| | - Catriona A McLean
- Department of Anatomical Pathology , The Alfred Hospital , Melbourne , Victoria , Australia , 3181
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria , Australia , 3052
| | - Andrew K Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria , Australia , 3052
| | | | | | | |
Collapse
|
11
|
Miyahara M, Shiozaki H, Tukada H, Ishikawa Y, Oikawa M. Photoremovable NPEC group compatible with Ns protecting group in polyamine synthesis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Kael MA, Weber DK, Separovic F, Sani MA. Aggregation kinetics in the presence of brain lipids of Aβ(1–40) cleaved from a soluble fusion protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Rhenium and technetium complexes of thioamide derivatives of pyridylhydrazine that bind to amyloid-β plaques. J Biol Inorg Chem 2018; 23:1139-1151. [PMID: 29982869 DOI: 10.1007/s00775-018-1590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/22/2018] [Indexed: 01/05/2023]
Abstract
Age-associated deposition of amyloid-β in cerebral blood vessels, a condition referred to as cerebral amyloid angiopathy, can contribute to stroke and dementia. This research aimed to design new radioactive technetium-99 m complexes that bind to amyloid-β plaques that have the potential to assist in diagnosis of cerebral amyloid angiopathy using single-photon-emitted computed tomography (SPECT) imaging. Six new pyridylthiosemicarbazide ligands containing either benzofuran or styrylpyridyl functional groups that are known to selectively bind to amyloid plaques were prepared. Non-radioactive isotopes of technetium are not available so rhenium was used as a surrogate for exploratory chemistry. The new ligands were used to prepare well-defined [Re-oxo]3+ complexes where two pyridylthiosemicarbazide ligands were coordinated to a single metal ion to give bivalent complexes with two amyloid-β targeting functional groups. The interaction of the [Re-oxo]3+ complexes with synthetic amyloid-β1-42 and with amyloid plaques in human brain tissue was investigated. Two ligands were selected to develop methods to prepare their [99mTc-oxo]3+ complexes at the tracer level. These technetium-99 m complexes are likely to be isostructural to their rhenium-oxo analogues.
Collapse
|
14
|
Shiozaki H, Miyahara M, Otsuka K, Miyako K, Honda A, Takasaki Y, Takamizawa S, Tukada H, Ishikawa Y, Sakai R, Oikawa M. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B. Org Lett 2018; 20:3403-3407. [DOI: 10.1021/acs.orglett.8b01331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroki Shiozaki
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Masayoshi Miyahara
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kazunori Otsuka
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kei Miyako
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Akito Honda
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Yuichi Takasaki
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Satoshi Takamizawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Hideyuki Tukada
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuichi Ishikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Masato Oikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|