1
|
Teng Y, Zhong Y, Xu P, Li J, Pan Z, Hu T, Ji H, Zhang X, Lou Y. Utilizing pillararenes as capping agents to stabilize copper nanoparticles for cost-effective and high-performance SERS application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125919. [PMID: 39986254 DOI: 10.1016/j.saa.2025.125919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Gold, silver, and copper nanoparticles (CuNPs) exhibit strong localized surface plasmon resonance (LSPR) effects at specific sizes, which can amplify the Raman signals of adsorbed molecules. However, despite the cost-effectiveness of CuNPs, their applications in surface-enhanced Raman spectroscopy (SERS) are limited due to their susceptibility to surface oxidation and particle aggregation. In this study, three distinct capping agents-pillararenes, polyvinylpyrrolidone, and sodium citrate-were employed to enhance particle dispersion, improve stability, and protect the CuNPs from oxidation and degradation. The synthesized CuNPs were thoroughly characterized using UV-Vis absorption spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy. Results revealed that CuNPs capped with pillararenes demonstrated superior SERS enhancement effects when using 4-aminothiophenol as the probe molecule, achieving an enhancement factor of 3.7 × 105. Furthermore, pillararene-capped CuNPs exhibited a broader linear range in SERS quantitative detection applications. This proposed method offers a versatile and cost-effective SERS substrate compared to commercial gold and silver nanocolloids, positioning it as a promising candidate for a wide range of SERS applications.
Collapse
Affiliation(s)
- Yuanjie Teng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yi Zhong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pei Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jie Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zaifa Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianyu Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibing Ji
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Xingchen Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yantao Lou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Xiao T, Diao P. Quantifying Localized Surface Plasmon Resonance Induced Enhancement on Metal@Cu 2O Composites for Photoelectrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501069. [PMID: 40244077 DOI: 10.1002/adma.202501069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/30/2025] [Indexed: 04/18/2025]
Abstract
The localized surface plasmon resonance (LSPR) of metal nanoparticles can substantially enhance the activity of photoelectrocatalytic (PEC) reactions. However, quantifying the respective contributions of different LSPR mechanisms to the enhancement of PEC performance remains an urgent challenge. In this work, Cu@Cu2O composites prepared by annealing Cu2O under an inert atmosphere and electrodeposited metal@Cu2O composites (MED@Cu2O, MED = CuED, AuED, AgED, PdED, PtED) are employed as platform materials to investigate the LSPR effect on the PEC hydrogen evolution reaction (HER). All the composites exhibited remarkably LSPR-enhanced activity toward PEC HER. The contributions of two LSPR mechanisms, plasmon induced resonance energy transfer (PIRET) and hot electron transfer (HET), to the photocurrent on Cu@Cu2O and CuED@Cu2O are quantified by using different bands of incident light. Moreover, using MED@Cu2O composites, the effects of both the metal species and the applied potential on HET are quantitatively investigated. The results reveal that a pronounced HET enhancement occurs only when the LSPR peak energy is lower than the semiconductor bandgap energy (Eg) and that HET strengthens as the applied potential becomes more negative for PEC HER. This work therefore provides a quantitative understanding of the roles of PIRET and HET in boosting PEC activity.
Collapse
Affiliation(s)
- Tiantian Xiao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Peng Diao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
3
|
Koons JF, Paul S, Dick JE. Oxygen Reduction Allows Morphology-Tunable Copper Nanoparticle Electrodeposition from Aqueous Nanodroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5524-5533. [PMID: 39963933 DOI: 10.1021/acs.langmuir.4c05215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Expanding the tunability of metallic nanoparticles in simple and cost-effective manners is essential for developing heterogeneous catalysts needed for the energy conversion systems of the future. Many current methods of switching between different nanoparticle morphologies and compositions include the use of surfactants, pH adjustments or other coreactants. One relatively unexplored and new route to tuning these nanoparticle properties involves taking advantage of the organic phase surrounding the aqueous droplets used in nanodroplet mediated electrodeposition techniques. These aqueous nanodroplets contain metal precursor salts that electrodeposit nanoparticles when they collide with a sufficiently biased electrode. Organic solvents such as 1,2-dichloroethane, known to have relatively high dioxygen solubilities compared to water, may provide an oxygen rich environment at the droplet interface, promoting heterogeneous oxygen reduction. In this work, the oxygen reduction reaction is used in the electrodeposition of copper to tune the resulting nanoparticle morphologies and compositions. These effects are also compared to those in bulk aqueous electrodeposition. The properties of the nanoparticles and the role of oxygen reduction in their synthesis are probed through electrochemical techniques, electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. When only reducing copper at the electrode, the resulting nanoparticles possess a range of cubic and spherical morphologies and multiple copper oxidation states indicative of zerovalent copper and copper oxide nanoparticles. When reducing both copper and oxygen, the electrodeposited nanoparticles possess a distinctive rod-like morphology with oxidation states and atomic ratios indicative of copper hydroxide. The latter nanoparticle morphology and composition was not attainable when copper was electrodeposited from a bulk aqueous solution at the same applied reducing potential. Our results show that one can take advantage of the fundamental electrochemistry taking place at the aqueous|organic|electrode interface to tune key properties of copper nanoparticles.
Collapse
Affiliation(s)
- John F Koons
- James Tarpo Jr. and Margeret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Saptarshi Paul
- James Tarpo Jr. and Margeret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- James Tarpo Jr. and Margeret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Ramírez O, Lopéz-Frances A, Baldoví HG, Saldías C, Navalón S, Leiva A, Díaz DD. Hydrogel composites based on chitosan and CuAuTiO 2 photocatalysts for hydrogen production under simulated sunlight irradiation. Int J Biol Macromol 2024; 273:132898. [PMID: 38844280 DOI: 10.1016/j.ijbiomac.2024.132898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024]
Abstract
This study explored the photocatalytic hydrogen evolution reaction (HER) using novel biohydrogel composites comprising chitosan, and a photocatalyst consisting in TiO2 P25 decorated with Au and/or Cu mono- and bimetallic nanoparticles (NPs) to boost its optical and catalytic properties. Low loads of Cu and Au (1 mol%) were incorporated onto TiO2 via a green photodeposition methodology. Characterization techniques confirmed the incorporation of decoration metals as well as improvements in the light absorption properties in the visible light interval (λ > 390 nm) and electron transfer capability of the semiconductors. Thereafter, Au and/or Cu NP-supported TiO2 were incorporated into chitosan-based physically crosslinked hydrogels revealing significant interactions between chitosan functional groups (hydroxyls, amines and amides) with the NPs to ensure its encapsulation. These materials were evaluated as photocatalysts for the HER using water and methanol mixtures under simulated sunlight and visible light irradiation. Sample CuAuTiO2/ChTPP exhibited a maximum hydrogen generation of 1790 μmol g-1 h-1 under simulated sunlight irradiation, almost 12-folds higher compared with TiO2/ChTPP. Also, the nanocomposites revealed a similar tendency under visible light with a maximum hydrogen production of 590 μmol g-1 h-1. These results agree with the efficiency of photoinduced charge separation revealed by transient photocurrent and EIS.
Collapse
Affiliation(s)
- Oscar Ramírez
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Antón Lopéz-Frances
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Herme G Baldoví
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - César Saldías
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Angel Leiva
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de la Laguna, La Laguna 38206, Spain; Instituto Universitario de Bio-Orgánica, Universidad de la Laguna, La Laguna 38206, Spain.
| |
Collapse
|
5
|
Besenhard MO, Pal S, Gkogkos G, Gavriilidis A. Non-fouling flow reactors for nanomaterial synthesis. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review provides a holistic description of flow reactor fouling for wet-chemical nanomaterial syntheses. Fouling origins and consequences are discussed together with the variety of flow reactors for its prevention.
Collapse
Affiliation(s)
| | - Sayan Pal
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
6
|
Proença M, Rodrigues MS, Meira DI, Castro MCR, Rodrigues PV, Machado AV, Alves E, Barradas NP, Borges J, Vaz F. Optimization of Au:CuO Thin Films by Plasma Surface Modification for High-Resolution LSPR Gas Sensing at Room Temperature. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22187043. [PMID: 36146392 PMCID: PMC9501632 DOI: 10.3390/s22187043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/21/2023]
Abstract
In this study, thin films composed of gold nanoparticles embedded in a copper oxide matrix (Au:CuO), manifesting Localized Surface Plasmon Resonance (LSPR) behavior, were produced by reactive DC magnetron sputtering and post-deposition in-air annealing. The effect of low-power Ar plasma etching on the surface properties of the plasmonic thin films was studied, envisaging its optimization as gas sensors. Thus, this work pretends to attain the maximum sensing response of the thin film system and to demonstrate its potential as a gas sensor. The results show that as Ar plasma treatment time increases, the host CuO matrix is etched while Au nanoparticles are uncovered, which leads to an enhancement of the sensitivity until a certain limit. Above such a time limit for plasma treatment, the CuO bonds are broken, and oxygen is removed from the film's surface, resulting in a decrease in the gas sensing capabilities. Hence, the importance of the host matrix for the design of the LSPR sensor is also demonstrated. CuO not only provides stability and protection to the Au NPs but also promotes interactions between the thin film's surface and the tested gases, thereby improving the nanocomposite film's sensitivity. The optimized sensor sensitivity was estimated at 849 nm/RIU, which demonstrates that the Au-CuO thin films have the potential to be used as an LSPR platform for gas sensors.
Collapse
Affiliation(s)
- Manuela Proença
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Marco S. Rodrigues
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Diana I. Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - M. Cidalia R. Castro
- Instituto de Polímeros e Compósitos, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Pedro V. Rodrigues
- Instituto de Polímeros e Compósitos, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Ana V. Machado
- Instituto de Polímeros e Compósitos, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Eduardo Alves
- IPFN, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 Bobadela LRS, 2695-066 Lisboa, Portugal
| | - Nuno P. Barradas
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 Bobadela LRS, 2695-066 Lisboa, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Correspondence: ; Tel.: +351-253-510-471
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
7
|
Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Gu Y, Wang W, Gao C, Feng L, Wu J, Zhao L. Chiral CuS nanoparticles and their photothermal properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00680d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral CuS NPs were prepared through a ligand-exchange process and CPL-controlled photothermal performance was realized.
Collapse
Affiliation(s)
- Yarong Gu
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhe Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Chenqi Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
9
|
Li C, Khuje S, Petit D, Huang Y, Sheng A, An L, Di Luigi M, Jalouli A, Navarro M, Islam A, Ren S. Printed copper-nanoplate conductor for electro-magnetic interference. NANOTECHNOLOGY 2021; 33:115601. [PMID: 34875635 DOI: 10.1088/1361-6528/ac40bc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/07/2021] [Indexed: 06/13/2023]
Abstract
As one of the conductive ink materials with high electric conductivity, elemental copper (Cu) based nanocrystals promise for printable electronics. Here, single crystalline Cu nanoplates were synthesized using a facile hydrothermal method. Size engineering of Cu nanoplates can be rationalized by using the LaMer model and the versatile Cu conductive ink materials are suitable for different printing technologies. The printed Cu traces show high electric conductivity of 6 MS m-1, exhibiting electro-magnetic interference shielding efficiency value of 75 dB at an average thicknesses of 11μm. Together with flexible alumina ceramic aerogel substrates, it kept 87% conductivity at the environmental temperature of 400 °C, demonstrating the potential of Cu conductive ink for high-temperature printable electronics applications.
Collapse
Affiliation(s)
- Changning Li
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Saurabh Khuje
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Donald Petit
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Aaron Sheng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Lu An
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Massimigliano Di Luigi
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Alireza Jalouli
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Marieross Navarro
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Abdullah Islam
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Shenqiang Ren
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
- Research and Education in Energy Environment & Water Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| |
Collapse
|
10
|
Lungulescu EM, Setnescu R, Pătroi EA, Lungu MV, Pătroi D, Ion I, Fierăscu RC, Șomoghi R, Stan M, Nicula NO. High-Efficiency Biocidal Solution Based on Radiochemically Synthesized Cu-Au Alloy Nanoparticles. NANOMATERIALS 2021; 11:nano11123388. [PMID: 34947739 PMCID: PMC8705577 DOI: 10.3390/nano11123388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023]
Abstract
The use of nanotechnologies in the applied biomedical sciences can offer a new way to treat infections and disinfect surfaces, materials, and products contaminated with various types of viruses, bacteria, and fungi. The Cu-Au nanoparticles (NPs) were obtained by an eco-friendly method that allowed the obtaining in a one-step process of size controlled, well dispersed, fully reduced, highly stable NPs at very mild conditions, using high energy ionizing radiations. The gamma irradiation was performed in an aqueous system of Cu2+/Au3+/Sodium Dodecyl Sulfate (SDS)/Ethylene Glycol. After irradiation, the change of color to ruby-red was the first indicator for the formation of NPs. Moreover, the UV-Vis spectra showed a maximum absorption peak between 524 and 540 nm, depending on the copper amount. The Cu-Au NPs presented nearly spherical shapes, sizes between 20 and 90 nm, and a zeta potential of about −44 mV indicating a good electrostatic stability. The biocidal properties performed according to various standards applied in the medical area, in dirty conditions, showed a 5 lg reduction for Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus hirae, a 5 lg reduction for both enveloped and non-enveloped viruses such as Adenovirus type 5, Murine Norovirus, and human Coronavirus 229E, and a 4 lg reduction for Candida albicans, respectively. Thus, the radiochemically synthesized Cu-Au alloy NPs proved to have high biocide efficiency against the tested bacteria, fungi, and viruses (both encapsulated and non-encapsulated). Therefore, these nanoparticle solutions are suitable to be used as disinfectants in the decontamination of hospital surfaces or public areas characterized by high levels of microbiological contamination.
Collapse
Affiliation(s)
- Eduard-Marius Lungulescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
- Correspondence:
| | - Radu Setnescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
- Department of Advanced Technologies, Faculty of Sciences and Arts, Valahia University of Târgoviște, 13 Aleea Sinaia, 130004 Targoviste, Romania
| | - Eros A. Pătroi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Magdalena V. Lungu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Delia Pătroi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Ioana Ion
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Radu-Claudiu Fierăscu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.-C.F.); (R.Ș.)
| | - Raluca Șomoghi
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.-C.F.); (R.Ș.)
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Nicoleta-Oana Nicula
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| |
Collapse
|
11
|
Kim HM, Bae SW, Park JH, Lee SK. Detection limit enhancement of fiber optic localized surface plasmon resonance biosensor by increased scattering efficiency and reduced background signal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Singh RP, Handa R, Manchanda G. Nanoparticles in sustainable agriculture: An emerging opportunity. J Control Release 2020; 329:1234-1248. [PMID: 33122001 DOI: 10.1016/j.jconrel.2020.10.051] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Conventional agriculture often relies on bulky doses of fertilizers and pesticides that have adversely affected the living beings as well as the ecosystems. As a basic tenet of sustainable agriculture, minimum agrochemicals should be used so that the environment can be protected and various species can be conserved. Further, sustainable agriculture should be a low input system, where the production costs are lower and net returns are higher. The application of nanotechnology in agriculture can significantly enhance the efficiency of agricultural inputs and thus it offers a significant way to maintain sustainable development of agroecosystems via nanoparticles. In this regard, nano-plant growth promoters, nanopesticides, nanofertilizers, nano-herbicides, agrochemical encapsulated nanocarrier systems etc. have been developed for the potential applications in agriculture. These can have great benefits for agriculture, including higher production of crops, inhibition of plant pathogens, removal of unwanted weeds and insects with lesser cost, energy and waste production. However, there are several concerns related to the use of nanoparticles in agriculture. These include the approaches for synthesis, their mechanisms of penetration to applied surfaces and the risks involved. Though, advent of new technologies has significantly improved the synthesis and application of nanomaterials in agriculture, there are many uncertainties regarding nano-synthesis, their way of utilization, uptake and internalization inside the crop cells. Therefore, an elaborate investigation is required for deciphering the engineered nanomaterials, assessing their mechanistic application and agroecological toxicity. Hence, this review is aimed to critically highlight the NPs material application and points towards the vital gaps in the use of nanotechnology for sustainable agriculture.
Collapse
Affiliation(s)
- Raghvendra Pratap Singh
- Department of Research & Development, Biotechnology, Uttaranchal University, Uttarakhand 248007, India.
| | - Rahul Handa
- Department of Botany and Environment Studies, DAV University, Jalandhar, Punjab 144001, India
| | - Geetanjali Manchanda
- Department of Botany and Environment Studies, DAV University, Jalandhar, Punjab 144001, India.
| |
Collapse
|
13
|
Li X, Kwon HJ, Qi X, Choi HK, Lim S, Kim TW, Kim SH. Direct-patterned copper/poly(ethylene oxide) composite electrodes for organic thin-film transistors through cone-jet mode by electrohydrodynamic jet printing. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Abiraman T, Rajavelu K, Rajakumar P, Balasubramanian S. Sub 1 nm Poly(acrylic acid)-Capped Copper Nanoparticles for the Synthesis of 1,2,3-Triazole Compounds. ACS OMEGA 2020; 5:7815-7822. [PMID: 32309691 PMCID: PMC7160833 DOI: 10.1021/acsomega.9b03995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The stable, water-soluble, and fluorescent sub 1 nm sized poly(acrylic acid)-capped copper nanoparticles (PAACC NPs) were synthesized using a high-intensity ultrasound sonication (30 KHz) method. The reduction of copper NPs from copper(II) salt by mild reducing agent l-ascorbic acid in an aqueous medium was achieved in the presence of poly(acrylic acid). The PAACC NPs were characterized by DRS UV-visible, XPS, PL, FESEM, and HRTEM techniques. The resulting PAACC NPs show orange fluorescence with a peaking center at 560 nm. The PAACC NPs serve as effective catalysts for the synthesis of 1,2,3-triazoles via click reaction in good yields under mild reaction conditions.
Collapse
Affiliation(s)
| | - Kannan Rajavelu
- Photonic
Materials Research Laboratory, Department of Chemistry, National Central University, Jhong-Li District, Taoyuan City 32001, Taiwan
- Department
of Organic Chemistry, University of Madras, 600025 Chennai, India
| | - Perumal Rajakumar
- Department
of Organic Chemistry, University of Madras, 600025 Chennai, India
| | | |
Collapse
|
15
|
Uniform and dense copper nanoparticles directly modified indium tin oxide electrode for non-enzymatic glucose sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Huerta Aguilar CA, Narayanan J, Shanmuganathan R, Ricardo CT, Avilés Castrillo JI, Piña Miranda MY, Aguilar Pérez KM. FONs of highly preorganized N,N’-bis(3-aminobenzyl)-5,8-diiminequinoline with aggregation induced emission enhancement and metal-chelation for selective Cd2+ detection. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
de Melo C, Jullien M, Battie Y, En Naciri A, Ghanbaja J, Montaigne F, Pierson JF, Rigoni F, Almqvist N, Vomiero A, Migot S, Mücklich F, Horwat D. Tunable Localized Surface Plasmon Resonance and Broadband Visible Photoresponse of Cu Nanoparticles/ZnO Surfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40958-40965. [PMID: 30398332 DOI: 10.1021/acsami.8b17194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmonic Cu nanoparticles (NP) were successfully deposited on ZnO substrates by atomic layer deposition (ALD) owing to the Volmer-Weber island growth mode. An evolution from Cu NP to continuous Cu films was observed with an increasing number of ALD cycles. Real and imaginary parts of the NP dielectric functions, determined by spectroscopic ellipsometry using an effective medium approach, evidence a localized surface plasmon resonance that can be tuned between the visible and near-infrared ranges by controlling the interparticle spacing and size of the NP. The resulting Cu NP/ZnO device shows an enhanced photoresponse under white light illumination with good responsivity values, fast response times, and stability under dark/light cycles. The significant photocurrent detected for this device is related to the hot-electron generation at the NP surface and injection into the conduction band of ZnO. The possibility of tuning the plasmon resonance together with the photoresponsivity of the device is promising in many applications related to photodetection, photonics, and photovoltaics.
Collapse
Affiliation(s)
- Claudia de Melo
- Université de Lorraine, CNRS, IJL , F-54000 Nancy , France
- Department of Materials Science and Engineering , Saarland University , D-66123 Saarbrücken , Germany
| | - Maud Jullien
- Université de Lorraine, CNRS, IJL , F-54000 Nancy , France
| | - Yann Battie
- LCP-A2MC, Institut Jean Barriol , Université de Lorraine , 1 Blvd. Arago , 57070 Metz , France
| | - Aotmane En Naciri
- LCP-A2MC, Institut Jean Barriol , Université de Lorraine , 1 Blvd. Arago , 57070 Metz , France
| | | | | | | | - Federica Rigoni
- Department of Engineering Sciences and Mathematics, Division of Materials Science , Luleå University of Technology , 971 87 Luleå , Sweden
| | - Nils Almqvist
- Department of Engineering Sciences and Mathematics, Division of Materials Science , Luleå University of Technology , 971 87 Luleå , Sweden
| | - Alberto Vomiero
- Department of Engineering Sciences and Mathematics, Division of Materials Science , Luleå University of Technology , 971 87 Luleå , Sweden
| | - Sylvie Migot
- Department of Materials Science and Engineering , Saarland University , D-66123 Saarbrücken , Germany
| | - Frank Mücklich
- Department of Materials Science and Engineering , Saarland University , D-66123 Saarbrücken , Germany
| | - David Horwat
- Université de Lorraine, CNRS, IJL , F-54000 Nancy , France
| |
Collapse
|
18
|
Lee JW, Han J, Lee DS, Bae S, Lee SH, Lee SK, Moon BJ, Choi CJ, Wang G, Kim TW. 2D Single-Crystalline Copper Nanoplates as a Conductive Filler for Electronic Ink Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703312. [PMID: 29266730 DOI: 10.1002/smll.201703312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Large-scale 2D single-crystalline copper nanoplates (Cu NPLs) are synthesized by a simple hydrothermal method. The combination of a mild reductant, stabilizer, and shape modifier allows the dimensional control of the Cu nanocrystals from 1D nanowires (NWs) to 2D nanoplates. High-resolution transmission electron microscopy (HR-TEM) reveals that the prepared Cu NPLs have a single-crystalline structure. From the X-ray photoelectron spectroscopy (XPS) analysis, it is found that iodine plays an important role in the modification of the copper nanocrystals through the formation of an adlayer on the basal plane of the nanoplates. Cu NPLs with an average edge length of 10 μm are successfully synthesized, and these Cu NPLs are the largest copper 2D crystals synthesized by a solution-based process so far. The application of the metallic 2D crystals as a semitransparent electrode proves their feasibility as a conductive filler, exhibiting very low sheet resistance (0.4 Ω ▫-1 ) compared to Cu NWs and a transmittance near 75%. The efficient charge transport is due to the increased contact area between each Cu NPL, i.e., so-called plane contact (2D electrical contact). In addition, this type of contact enhances the current-carrying capability of the Cu NPL electrodes, implying that the large-size Cu NPLs are promising conductive fillers for printable electrode applications.
Collapse
Affiliation(s)
- Jin-Won Lee
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Jiyoon Han
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Dong Su Lee
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Sukang Bae
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Sang Hyun Lee
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Seoung-Ki Lee
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Byung Joon Moon
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Chel-Jong Choi
- School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Tae-Wook Kim
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| |
Collapse
|
19
|
Lemineur JF, Noël JM, Combellas C, Ausserré D, Kanoufi F. The promise of antireflective gold electrodes for optically monitoring the electro-deposition of single silver nanoparticles. Faraday Discuss 2018; 210:381-395. [DOI: 10.1039/c8fd00037a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combined to electrochemical actuation, it allows the dynamic in situ visualization of the electrochemical growth and dissolution of individual Ag nanoparticles.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université Sorbonne Paris Cité
- Université Paris Diderot
- ITODYS
- CNRS UMR 7086
- F-75013 Paris
| | - Catherine Combellas
- Université Sorbonne Paris Cité
- Université Paris Diderot
- ITODYS
- CNRS UMR 7086
- F-75013 Paris
| | - Dominique Ausserré
- Université du Maine
- Institut des Matériaux et Molécules du Mans
- CNRS UMR 6283
- F-72000 Le Mans
- France
| | - Frédéric Kanoufi
- Université Sorbonne Paris Cité
- Université Paris Diderot
- ITODYS
- CNRS UMR 7086
- F-75013 Paris
| |
Collapse
|