1
|
Lee J, Kim H, Sakaguchi T, Kwak G. Solvent-Dependent Fluorescence Behavior and Water Detection Sensor Application of Visible Light-Emitting Fluorenone Derivative. J Fluoresc 2025; 35:437-443. [PMID: 38085462 PMCID: PMC11807051 DOI: 10.1007/s10895-023-03531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 02/09/2025]
Abstract
The Sonogashira coupling reaction was used to synthesize a fluorenone derivative, with an extended conjugated structure to which fluorene is connected via acetylene linkage. This compound exhibited diverse fluorescence (FL) colors in the visible region depending on the polarity of the matrix solvents used. The solvatochromic FL presented as sky blue, green, and yellow in hexane, THF, and DMF, respectively. Fluorene moiety and fluorenone moiety acted as an electron donor (D) and as an electron acceptor (A), respectively, leading to an excited state intramolecular charge transfer based on the D-π-A electronic structure. In particular, this derivative showed a remarkable FL quenching in alcohol and chloroform, probably due to vibronic coupling through hydrogen bonding with these solvents. This idea was supported by the fact that the two solvents are characterized by very high hydrogen bond donor acidities compared to other solvents used in this study. This derivative also responded to the presence of very small amounts of water at several mg/mL levels in organic solvents, resulting in remarkable FL quenching.
Collapse
Affiliation(s)
- Jineun Lee
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu, 702-701, South Korea
| | - Heesang Kim
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu, 702-701, South Korea
| | - Toshikazu Sakaguchi
- Department of Materials Science and Engineering, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui, 910-8507, Japan.
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu, 702-701, South Korea.
| |
Collapse
|
2
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
O'Connor JP, Schultz JD, Tcyrulnikov NA, Kim T, Young RM, Wasielewski MR. Distinct vibrational motions promote disparate excited-state decay pathways in cofacial perylenediimide dimers. J Chem Phys 2024; 161:074306. [PMID: 39145558 DOI: 10.1063/5.0218752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
A complex interplay of structural, electronic, and vibrational degrees of freedom underpins the fate of molecular excited states. Organic assemblies exhibit a myriad of excited-state decay processes, such as symmetry-breaking charge separation (SB-CS), excimer (EX) formation, singlet fission, and energy transfer. Recent studies of cofacial and slip-stacked perylene-3,4:9,10-bis(dicarboximide) (PDI) multimers demonstrate that slight variations in core substituents and H- or J-type aggregation can determine whether the system follows an SB-CS pathway or an EX one. However, questions regarding the relative importance of structural properties and molecular vibrations in driving the excited-state dynamics remain. Here, we use a combination of two-dimensional electronic spectroscopy, femtosecond stimulated Raman spectroscopy, and quantum chemistry computations to compare the photophysics of two PDI dimers. The dimer with 1,7-bis(pyrrolidin-1'-yl) substituents (5PDI2) undergoes ultrafast SB-CS from a photoexcited mixed state, while the dimer with bis-1,7-(3',5'-di-t-butylphenoxy) substituents (PPDI2) rapidly forms an EX state. Examination of their quantum beating features reveals that SB-CS in 5PDI2 is driven by the collective vibronic coupling of two or more excited-state vibrations. In contrast, we observe signatures of low-frequency vibrational coherence transfer during EX formation by PPDI2, which aligns with several previous studies. We conclude that key electronic and structural differences between 5PDI2 and PPDI2 determine their markedly different photophysics.
Collapse
Affiliation(s)
- James P O'Connor
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jonathan D Schultz
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Nikolai A Tcyrulnikov
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Taeyeon Kim
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
4
|
Timmer D, Lünemann DC, Riese S, Sio AD, Lienau C. Full visible range two-dimensional electronic spectroscopy with high time resolution. OPTICS EXPRESS 2024; 32:835-847. [PMID: 38175103 DOI: 10.1364/oe.511906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful method to study coherent and incoherent interactions and dynamics in complex quantum systems by correlating excitation and detection energies in a nonlinear spectroscopy experiment. Such dynamics can be probed with a time resolution limited only by the duration of the employed laser pulses and in a spectral range defined by the pulse spectrum. In the blue spectral range (<500 nm), the generation of sufficiently broadband ultrashort pulses with pulse durations of 10 fs or less has been challenging so far. Here, we present a 2DES setup based on a hollow-core fiber supercontinuum covering the full visible range (400-700 nm). Pulse compression via custom-made chirped mirrors yields a time resolution of <10 fs. The broad spectral coverage, in particular the extension of the pulse spectra into the blue spectral range, unlocks new possibilities for coherent investigations of blue-light absorbing and multichromophoric compounds, as demonstrated by a 2DES measurement of chlorophyll a.
Collapse
|
5
|
Gustin I, Kim CW, McCamant DW, Franco I. Mapping electronic decoherence pathways in molecules. Proc Natl Acad Sci U S A 2023; 120:e2309987120. [PMID: 38015846 PMCID: PMC10710033 DOI: 10.1073/pnas.2309987120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Establishing the fundamental chemical principles that govern molecular electronic quantum decoherence has remained an outstanding challenge. Fundamental questions such as how solvent and intramolecular vibrations or chemical functionalization contribute to the decoherence remain unanswered and are beyond the reach of state-of-the-art theoretical and experimental approaches. Here we address this challenge by developing a strategy to isolate electronic decoherence pathways for molecular chromophores immersed in condensed phase environments that enables elucidating how electronic quantum coherence is lost. For this, we first identify resonance Raman spectroscopy as a general experimental method to reconstruct molecular spectral densities with full chemical complexity at room temperature, in solvent, and for fluorescent and non-fluorescent molecules. We then show how to quantitatively capture the decoherence dynamics from the spectral density and identify decoherence pathways by decomposing the overall coherence loss into contributions due to individual molecular vibrations and solvent modes. We illustrate the utility of the strategy by analyzing the electronic decoherence pathways of the DNA base thymine in water. Its electronic coherences decay in [Formula: see text]30 fs. The early-time decoherence is determined by intramolecular vibrations while the overall decay by solvent. Chemical substitution of thymine modulates the decoherence with hydrogen-bond interactions of the thymine ring with water leading to the fastest decoherence. Increasing temperature leads to faster decoherence as it enhances the importance of solvent contributions but leaves the early-time decoherence dynamics intact. The developed strategy opens key opportunities to establish the connection between molecular structure and quantum decoherence as needed to develop chemical strategies to rationally modulate it.
Collapse
Affiliation(s)
- Ignacio Gustin
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju61186, South Korea
| | - David W. McCamant
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, NY14627
- Department of Physics, University of Rochester, Rochester, NY14627
| |
Collapse
|
6
|
Jacobs M, Krumland J, Valencia AM, Cocchi C. Pulse-Induced Dynamics of a Charge-Transfer Complex from First Principles. J Phys Chem A 2023; 127:8794-8805. [PMID: 37824697 PMCID: PMC10614200 DOI: 10.1021/acs.jpca.3c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/18/2023] [Indexed: 10/14/2023]
Abstract
The ultrafast dynamics of charge carriers in organic donor-acceptor interfaces are of primary importance to understanding the fundamental properties of these systems. In this work, we focus on a charge-transfer complex formed by quaterthiophene p-doped by tetrafluoro-tetracyanoquinodimethane and investigate electron dynamics and vibronic interactions also at finite temperatures by applying a femtosecond pulse in resonance with the two lowest energy excitations of the system with perpendicular and parallel polarization with respect to the interface. The adopted ab initio formalism based on real-time time-dependent density-functional theory coupled to Ehrenfest dynamics enables monitoring the dynamical charge transfer across the interface and assessing the role played by the nuclear motion. Our results show that the strong intermolecular interactions binding the complex already in the ground state influence the dynamics, too. The analysis of the nuclear motion involved in these processes reveals the participation of different vibrational modes depending on the electronic states stimulated by the resonant pulse. Coupled donor-acceptor modes mostly influence the excited state polarized across the interface, while intramolecular vibrations in the donor molecule dominate the excitation in the orthogonal direction. The results obtained at finite temperatures are overall consistent with this picture, although thermal disorder contributes to slightly decreasing interfacial charge transfer.
Collapse
Affiliation(s)
- Matheus Jacobs
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, Berlin 12489, Germany
| | - Jannis Krumland
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, Berlin 12489, Germany
| | - Ana M. Valencia
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, Berlin 12489, Germany
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Caterina Cocchi
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, Berlin 12489, Germany
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CeNaD), Carl von
Ossietzky Universität, Oldenburg 26129, Germany
| |
Collapse
|
7
|
Aarabi M, Aranda D, Gholami S, Meena SK, Lerouge F, Bretonniere Y, Gürol I, Baldeck P, Parola S, Dumoulin F, Cerezo J, Garavelli M, Santoro F, Rivalta I. Quantum-Classical Protocol for Efficient Characterization of Absorption Lineshape and Fluorescence Quenching upon Aggregation: The Case of Zinc Phthalocyanine Dyes. J Chem Theory Comput 2023; 19:5938-5957. [PMID: 37641958 PMCID: PMC10500990 DOI: 10.1021/acs.jctc.3c00446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/31/2023]
Abstract
A quantum-classical protocol that incorporates Jahn-Teller vibronic coupling effects and cluster analysis of molecular dynamics simulations is reported, providing a tool for simulations of absorption spectra and ultrafast nonadiabatic dynamics in large molecular photosystems undergoing aggregation in solution. Employing zinc phthalocyanine dyes as target systems, we demonstrated that the proposed protocol provided fundamental information on vibronic, electronic couplings and thermal dynamical effects that mostly contribute to the absorption spectra lineshape and the fluorescence quenching processes upon dye aggregation. Decomposing the various effects arising upon dimer formation, the structure-property relations associated with their optical responses have been deciphered at atomistic resolution.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Daniel Aranda
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Catedrático
J. Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Samira Gholami
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Santosh Kumar Meena
- Department
of Chemical Engineering, Indian Institute
of Technology Ropar, Rupnagar, 140001 Punjab, India
| | - Frederic Lerouge
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Yann Bretonniere
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Ilke Gürol
- TÜBITAK
Marmara Research Center, Materials Technologies, Gebze, 41470 Kocaeli, Türkiye
| | - Patrice Baldeck
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Stephane Parola
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Fabienne Dumoulin
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Javier Cerezo
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Departamento
de Química and Institute for Advanced Research in Chemical
Sciences (IAdChem), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Fabrizio Santoro
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| |
Collapse
|
8
|
Kim T, Feng Y, O'Connor JP, Stoddart JF, Young RM, Wasielewski MR. Coherent Vibronic Wavepackets Show Structure-Directed Charge Flow in Host-Guest Donor-Acceptor Complexes. J Am Chem Soc 2023. [PMID: 37018535 DOI: 10.1021/jacs.2c13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Designing and controlling charge transfer (CT) pathways in organic semiconductors are important for solar energy applications. To be useful, a photogenerated, Coulombically bound CT exciton must further separate into free charge carriers; direct observations of the detailed CT relaxation pathways, however, are lacking. Here, photoinduced CT and relaxation dynamics in three host-guest complexes, where a perylene (Per) electron donor guest is incorporated into two symmetric and one asymmetric extended viologen cyclophane acceptor hosts, are presented. The central ring in the extended viologen is either p-phenylene (ExV2+) or electron-rich 2,5-dimethoxy-p-phenylene (ExMeOV2+), resulting in two symmetric cyclophanes with unsubstituted or methoxy-substituted central rings, ExBox4+ and ExMeOBox4+, respectively, and an asymmetric cyclophane with one of the central viologen rings being methoxylated ExMeOVBox4+. Upon photoexcitation, the asymmetric host-guest ExMeOVBox4+ ⊃ Per complex exhibits directional CT toward the energetically unfavorable methoxylated side due to structural restrictions that facilitate strong interactions between the Per donor and the ExMeOV2+ side. The CT state relaxation pathways are probed using ultrafast optical spectroscopy by focusing on coherent vibronic wavepackets, which are used to identify CT relaxations along charge localization and vibronic decoherence coordinates. Specific low- and high-frequency nuclear motions are direct indicators of a delocalized CT state and the degree of CT character. Our results show that the CT pathway can be controlled by subtle chemical modifications of the acceptor host in addition to illustrating how coherent vibronic wavepackets can be used to probe the nature and time evolution of the CT states.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
9
|
Andermann AM, Rego LGC. Quantum Mechanical Assessment of Optimal Photovoltaic Conditions in Organic Solar Cells. J Phys Chem Lett 2022; 13:11001-11007. [PMID: 36404620 DOI: 10.1021/acs.jpclett.2c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recombination losses contribute to reducing JSC, VOC, and the fill factor of organic solar cells. Recent advances in non-fullerene organic photovoltaics have shown, nonetheless, that efficient charge generation can occur under small energetic driving forces (ΔEDA) and low recombination losses. To shed light on this issue, we set up a coarse-grained open quantum mechanical model for investigating the charge generation dynamics subject to various energy loss mechanisms. The influences of energetic driving force, Coulomb interaction, vibrational disorder, geminate recombination, temperature, and external bias are included in the analysis of the optimal photovoltaic conditions for charge carrier generation. The assessment reveals that the overall energy losses are not only minimized when ΔEDA approaches the effective reorganization energy at the interface but also become insensitive to temperature and electric field variations. It is also observed that a moderate reverse bias reduces geminate recombination losses significantly at vanishing driving forces, where the charge generation is strongly affected by temperature.
Collapse
Affiliation(s)
- Artur M Andermann
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Luis G C Rego
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
10
|
Timmer D, Zheng F, Gittinger M, Quenzel T, Lünemann DC, Winte K, Zhang Y, Madjet ME, Zablocki J, Lützen A, Zhong JH, De Sio A, Frauenheim T, Tretiak S, Lienau C. Charge Delocalization and Vibronic Couplings in Quadrupolar Squaraine Dyes. J Am Chem Soc 2022; 144:19150-19162. [PMID: 36206456 DOI: 10.1021/jacs.2c08682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Squaraines are prototypical quadrupolar charge-transfer chromophores that have recently attracted much attention as building blocks for solution-processed photovoltaics, fluorescent probes with large two-photon absorption cross sections, and aggregates with large circular dichroism. Their optical properties are often rationalized in terms of phenomenological essential state models, considering the coupling of two zwitterionic excited states to a neutral ground state. As a result, optical transitions to the lowest S1 excited state are one-photon allowed, whereas the next higher S2 state can only be accessed by two-photon transitions. A further implication of these models is a substantial reduction of vibronic coupling to the ubiquitous high-frequency vinyl-stretching modes of organic materials. Here, we combine time-resolved vibrational spectroscopy, two-dimensional electronic spectroscopy, and quantum-chemical simulations to test and rationalize these predictions for nonaggregated molecules. We find small Huang-Rhys factors below 0.01 for the high-frequency, 1500 cm-1 modes in particular, as well as a noticeable reduction for those of lower frequency modes in general for the electronic S0 → S1 transition. The two-photon allowed state S2 is well separated energetically from S1 and has weak vibronic signatures as well. Thus, the resulting pronounced concentration of the oscillator strength in a narrow region relevant to the lowest electronic transition makes squaraines and their aggregates exceptionally interesting for strong and ultrastrong coupling of excitons to localized light modes in external resonators with chiral properties that can largely be controlled by the molecular architecture.
Collapse
Affiliation(s)
- Daniel Timmer
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Moritz Gittinger
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Thomas Quenzel
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Daniel C Lünemann
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Katrin Winte
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Yu Zhang
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Mohamed E Madjet
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Jennifer Zablocki
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn53121, Germany
| | - Arne Lützen
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn53121, Germany
| | - Jin-Hui Zhong
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Antonietta De Sio
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany.,Beijing Computational Science Research Center (CSRC), Beijing100193, China.,Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen518110, China
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Christoph Lienau
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, Oldenburg26129, Germany.,Forschungszentrum Neurosensorik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| |
Collapse
|
11
|
Mondelo-Martell M, Brey D, Burghardt I. Quantum dynamical study of inter-chain exciton transport in a regioregular P3HT model system at finite temperature: HJ vs. H-aggregate models. J Chem Phys 2022; 157:094108. [DOI: 10.1063/5.0104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on quantum dynamical simulations of inter-chain exciton transport in a model of regioregular poly(3-hexylthiophene), rr-P3HT, at finite temperature, using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for a system of up to 63 electronic states and 180 vibrational modes. A Frenkel Hamiltonian of HJ aggregate type is used, along with a reduced H-aggregate representation; electron-phonon coupling includes local high-frequency modes as well as anharmonic intermolecular modes. The latter are operative in mediating inter-chain transport, by a mechanism of transient localization type. Strikingly, this mechanism is found to be of quantum coherent character and involves non-adiabatic effects. Using periodic boundary conditions, a normal diffusion regime is identified from the exciton mean-squared displacement, apart from early-time transients. Diffusion coefficients are found to be of the order of 3 x 10-3 cm2/s, showing a non-monotonous increase with temperature.
Collapse
Affiliation(s)
- Manel Mondelo-Martell
- Institut für Physikalische u. Theoretische Chemie, Goethe-Universitat Frankfurt am Main Institut fur Physikalische und Theoretische Chemie, Germany
| | | | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Germany
| |
Collapse
|
12
|
Segalina A, Aranda D, Green JA, Cristino V, Caramori S, Prampolini G, Pastore M, Santoro F. How the Interplay among Conformational Disorder, Solvation, Local, and Charge-Transfer Excitations Affects the Absorption Spectrum and Photoinduced Dynamics of Perylene Diimide Dimers: A Molecular Dynamics/Quantum Vibronic Approach. J Chem Theory Comput 2022; 18:3718-3736. [PMID: 35377648 PMCID: PMC9202308 DOI: 10.1021/acs.jctc.2c00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/12/2022]
Abstract
In this contribution we present a mixed quantum-classical dynamical approach for the computation of vibronic absorption spectra of molecular aggregates and their nonadiabatic dynamics, taking into account the coupling between local excitations (LE) and charge-transfer (CT) states. The approach is based on an adiabatic (Ad) separation between the soft degrees of freedom (DoFs) of the system and the stiff vibrations, which are described by the quantum dynamics (QD) of wave packets (WPs) moving on the coupled potential energy surfaces (PESs) of the LE and CT states. These PESs are described with a linear vibronic coupling (LVC) Hamiltonian, parameterized by an overlap-based diabatization on the grounds of time-dependent density functional theory computations. The WPs time evolution is computed with the multiconfiguration time-dependent Hartree method, using effective modes defined through a hierarchical representation of the LVC Hamiltonian. The soft DoFs are sampled with classical molecular dynamics (MD), and the coupling between the slow and fast DoFs is included by recomputing the key parameters of the LVC Hamiltonians, specifically for each MD configuration. This method, named Ad-MD|gLVC, is applied to a perylene diimide (PDI) dimer in acetonitrile and water solutions, and it is shown to accurately reproduce the change in the vibronic features of the absorption spectrum upon aggregation. Moreover, the microscopic insight offered by the MD trajectories allows for a detailed understanding of the role played by the fluctuation of the aggregate structure on the shape of the vibronic spectrum and on the population of LE and CT states. The nonadiabatic QD predicts an extremely fast (∼50 fs) energy transfer between the two LEs. CT states have only a moderate effect on the absorption spectrum, despite the fact that after photoexcitation they are shown to acquire a fast and non-negligible population, highlighting their relevance in dictating the charge separation and transport in PDI-based optical devices.
Collapse
Affiliation(s)
- Alekos Segalina
- Université
de Lorraine and CNRS, LPCT, UMR 7019, F-54000 Nancy, France
| | - Daniel Aranda
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Catedrático J. Beltrán 2, 46980 Paterna, Valencia, Spain
| | - James A. Green
- Consiglio
Nazionale delle Ricerche, Istituto di Biostrutture
e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Vito Cristino
- Dipartimento
di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Stefano Caramori
- Dipartimento
di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Giacomo Prampolini
- Istituto
di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi
1, I-56124 Pisa, Italy
| | | | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi
1, I-56124 Pisa, Italy
| |
Collapse
|
13
|
Pudlák M, Pinčák R, Bartoš E. Effect of vibrational modes on electron transfer directionality: Photosynthetic reaction centers. Phys Rev E 2022; 105:064408. [PMID: 35854547 DOI: 10.1103/physreve.105.064408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
It is shown in the example of the photosynthetic reaction centers (RCs) that the electron transfer can be directed by vibrational modes into the needed site where it is localized. In the case of the RC, it is the low vibrational mode that produces such an effect. We find that the electron transfer unidirectionality in the photosynthetic reaction center can be determined by the asymmetry in the reorganization energy of the vibrational modes at high temperatures. We also numerically solve generalized master equations for various vibration relaxation times. The results are compared with the solution of master equations. It is shown that for small relaxation times, the non-Markovian electron transfer kinetics gives similar results as the Markovian approximation, but the results are significantly different for the long vibration relaxation times.
Collapse
Affiliation(s)
- Michal Pudlák
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice, Slovak Republic
| | - Richard Pinčák
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice, Slovak Republic
| | - Erik Bartoš
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovak Republic
| |
Collapse
|
14
|
Patra S, Tiwari V. Vibronic resonance along effective modes mediates selective energy transfer in excitonically coupled aggregates. J Chem Phys 2022; 156:184115. [PMID: 35568533 DOI: 10.1063/5.0088855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently proposed effective normal modes for excitonically coupled aggregates that exactly transform the energy transfer Hamiltonian into a sum of one-dimensional Hamiltonians along the effective normal modes. Identifying physically meaningful vibrational motions that maximally promote vibronic mixing suggested an interesting possibility of leveraging vibrational-electronic resonance for mediating selective energy transfer. Here, we expand on the effective mode approach, elucidating its iterative nature for successively larger aggregates, and extend the idea of mediated energy transfer to larger aggregates. We show that energy transfer between electronically uncoupled but vibronically resonant donor-acceptor sites does not depend on the intermediate site energy or the number of intermediate sites. The intermediate sites simply mediate electronic coupling such that vibronic coupling along specific promoter modes leads to direct donor-acceptor energy transfer, bypassing any intermediate uphill energy transfer steps. We show that the interplay between the electronic Hamiltonian and the effective mode transformation partitions the linear vibronic coupling along specific promoter modes to dictate the selectivity of mediated energy transfer with a vital role of interference between vibronic couplings and multi-particle basis states. Our results suggest a general design principle for enhancing energy transfer through synergistic effects of vibronic resonance and weak mediated electronic coupling, where both effects individually do not promote efficient energy transfer. The effective mode approach proposed here paves a facile route toward four-wavemixing spectroscopy simulations of larger aggregates without severely approximating resonant vibronic coupling.
Collapse
Affiliation(s)
- Sanjoy Patra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
15
|
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat Chem 2022; 14:786-793. [PMID: 35469005 DOI: 10.1038/s41557-022-00927-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.
Collapse
|
16
|
Andermann AM, Rego LGC. Energetics of the charge generation in organic donor-acceptor interfaces. J Chem Phys 2022; 156:024104. [PMID: 35032994 DOI: 10.1063/5.0076611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-fullerene acceptor materials have posed new paradigms for the design of organic solar cells , whereby efficient carrier generation is obtained with small driving forces, in order to maximize the open-circuit voltage (VOC). In this paper, we use a coarse-grained mixed quantum-classical method, which combines Ehrenfest and Redfield theories, to shed light on the charge generation process in small energy offset interfaces. We have investigated the influence of the energetic driving force as well as the vibronic effects on the charge generation and photovoltaic energy conversion. By analyzing the effects of the Holstein and Peierls vibrational couplings, we find that vibrational couplings produce an overall effect of improving the charge generation. However, the two vibronic mechanisms play different roles: the Holstein relaxation mechanism decreases the charge generation, whereas the Peierls mechanism always assists the charge generation. Moreover, by examining the electron-hole binding energy as a function of time, we evince two distinct regimes for the charge separation: the temperature independent excitonic spread on a sub-100 fs timescale and the complete dissociation of the charge-transfer state that occurs on the timescale of tens to hundreds of picoseconds, depending on the temperature. The quantum dynamics of the system exhibits the three regimes of the Marcus electron transfer kinetics as the energy offset of the interface is varied.
Collapse
Affiliation(s)
- Artur M Andermann
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Luis G C Rego
- Department of Physics, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
17
|
Brey D, Binder R, Martinazzo R, Burghardt I. Signatures of coherent vibronic exciton dynamics and conformational control in two-dimensional electronic spectroscopy of conjugated polymers. Faraday Discuss 2022; 237:148-167. [DOI: 10.1039/d2fd00014h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional electronic spectroscopy (2DES) signals for homo-oligomer J-aggregates are computed, with a focus on the role of structural change induced by low-frequency torsional modes along with quasi-stationary trapping effects induced...
Collapse
|
18
|
Paz J, Loroño M, Garrido Schaeffer A, González-Paz LA, Marquez E, Vera-Villalobos J, Mora JR, Alvarado YJ. Absorptive and dispersive responses in a two-level molecule with vibronic coupling: Permanent dipole moments effects. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Domínguez-Castro A, Frauenheim T. Impact of vibronic coupling effects on light-driven charge transfer in pyrene-functionalized middle and large-sized metalloid gold nanoclusters from Ehrenfest dynamics. Phys Chem Chem Phys 2021; 23:17129-17133. [PMID: 34355230 DOI: 10.1039/d1cp02890a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical calculations are an effective strategy to complement and understand the experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach are performed to reveal for the first time the electron dynamics for the charge separation of pyrene-functionalized middle-sized Au70S20(PH3)16 and large-sized Au108S24(PR3)16 (R = H, CH3, C2H5, C6H5) clusters. The proposed mechanism uncovers an ultrafast and irreversible photoinduced charge transfer from the gold nanocluster (GNC) unit to the pyrene derivative in all cases. By a Fourier transform analysis of the dynamics, the effect of vibronic couplings is highlighted. The Au108S24(PPh3)15PPh2Pyr system exhibits the best performance for charge separation.
Collapse
|
20
|
Hu Z, Xu Z, Chen G. Vibration-mediated resonant charge separation across the donor-acceptor interface in an organic photovoltaic device. J Chem Phys 2021; 154:154703. [PMID: 33887946 DOI: 10.1063/5.0049176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Examination of a recent open-system Ehrenfest dynamics simulation suggests that a vibration-mediate resonance may play a pivotal role in the charge transfer across a donor-acceptor interface in an organic solar cell. Based on this, a concise dissipative two-level electronic system coupled to a molecular vibrational mode is proposed and solved quantum mechanically. It is found that the charge transfer is enhanced substantially when the vibrational energy quanta is equal to the electronic energy loss across the interface. This vibration-mediate resonant charge transfer process is ultrafast, occurring within 100 fs, comparable to experimental findings. The open-system Ehrenfest dynamics simulation of the two-level model is carried out, and similar results are obtained, which confirms further that the earlier open-system Ehrenfest dynamics simulation indeed correctly predicted the occurrence of the resonant charge transfer across the donor-acceptor interface.
Collapse
Affiliation(s)
- Ziyang Hu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ziyao Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
21
|
Deng GH, Qian Y, Li X, Zhang T, Jiang W, Harutyunyan AR, Chen G, Chen H, Rao Y. Singlet Fission Driven by Anisotropic Vibronic Coupling in Single-Crystalline Pentacene. J Phys Chem Lett 2021; 12:3142-3150. [PMID: 33755478 DOI: 10.1021/acs.jpclett.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vibronic coupling is believed to play an important role in siglet fission, wherein a photoexcited singlet exciton is converted into two triplet excitons. In the present study, we examine the role of vibronic coupling in singlet fission using polarized transient absorption microscopy and ab initio simulations on single-crystalline pentacene. It was found that singlet fission in pentacene is greatly facilitated by the vibrational coherence of a 35.0 cm-1 phonon, where anisotropic coherence persists extensively for a few picoseconds. This coherence-preserving phonon that drives the anisotropic singlet fission is made possible by a unique cross-axial charge-transfer intermediate state. In the same fashion, this phonon was also found to predominantly drive the quantum decohence of a correlated triplet pair to form a decoupled triplet dimer. Moreover, our transient kinetic experimental data illustrates notable directional anisotropicity of the singlet fission rate in single-crystalline pentacene.
Collapse
Affiliation(s)
- Gang-Hua Deng
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Xia Li
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Jiang
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | - Gugang Chen
- Honda Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Hanning Chen
- Department of Chemistry, American University, Washington, D.C. 20016, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
22
|
Schultz JD, Shin JY, Chen M, O'Connor JP, Young RM, Ratner MA, Wasielewski MR. Influence of Vibronic Coupling on Ultrafast Singlet Fission in a Linear Terrylenediimide Dimer. J Am Chem Soc 2021; 143:2049-2058. [PMID: 33464054 DOI: 10.1021/jacs.0c12201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission (SF) is a photophysical process capable of boosting the efficiency of solar cells. Recent experimental investigations into the mechanism of SF provide evidence for coherent mixing between the singlet, triplet, and charge transfer basis states. Up until now, this interpretation has largely focused on electronic interactions; however, nuclear motions resulting in vibronic coupling have been suggested to support rapid and efficient SF in organic chromophore assemblies. Further information about the complex interactions between vibronic excited states is needed to understand the potential role of this coupling in SF. Here, we report mixed singlet and correlated triplet pair states giving rise to sub-50 fs SF in a terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer in which the two TDI molecules are covalently linked by a direct N-N connection at one of their imide positions, leading to a linear dimer with perpendicular TDI π systems. We observe the transfer of low-frequency coherent wavepackets between the initial predominantly singlet states to the product triplet-dominated states. This implies a non-negligible dependence of SF on nonadiabatic coupling in this dimer. We interpret our experimental results in the framework of a modified Holstein Hamiltonian, which predicts that vibronic interactions between low-frequency singlet modes and high-frequency correlated triplet pair motions lead to mixing of the pure basis states. These results highlight how nonadiabatic mixing can shape the complex potential energy landscape underlying ultrafast SF.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, 30019 Sejong-ro, Sejong, South Korea
| | - Michelle Chen
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark A Ratner
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
23
|
Cainelli M, Tanimura Y. Exciton transfer in organic photovoltaic cells: A role of local and nonlocal electron–phonon interactions in a donor domain. J Chem Phys 2021; 154:034107. [DOI: 10.1063/5.0036590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mauro Cainelli
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
De Sio A, Sommer E, Nguyen XT, Groß L, Popović D, Nebgen BT, Fernandez-Alberti S, Pittalis S, Rozzi CA, Molinari E, Mena-Osteritz E, Bäuerle P, Frauenheim T, Tretiak S, Lienau C. Intermolecular conical intersections in molecular aggregates. NATURE NANOTECHNOLOGY 2021; 16:63-68. [PMID: 33199882 DOI: 10.1038/s41565-020-00791-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Conical intersections (CoIns) of multidimensional potential energy surfaces are ubiquitous in nature and control pathways and yields of many photo-initiated intramolecular processes. Such topologies can be potentially involved in the energy transport in aggregated molecules or polymers but are yet to be uncovered. Here, using ultrafast two-dimensional electronic spectroscopy (2DES), we reveal the existence of intermolecular CoIns in molecular aggregates relevant for photovoltaics. Ultrafast, sub-10-fs 2DES tracks the coherent motion of a vibrational wave packet on an optically bright state and its abrupt transition into a dark state via a CoIn after only 40 fs. Non-adiabatic dynamics simulations identify an intermolecular CoIn as the source of these unusual dynamics. Our results indicate that intermolecular CoIns may effectively steer energy pathways in functional nanostructures for optoelectronics.
Collapse
Affiliation(s)
- Antonietta De Sio
- Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität, Oldenburg, Germany.
| | - Ephraim Sommer
- Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Xuan Trung Nguyen
- Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Lynn Groß
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - Duško Popović
- Institut für Organische Chemie II und Neue Materialien, Universität Ulm, Ulm, Germany
| | | | - Sebastian Fernandez-Alberti
- National University of Quilmes/CONICET, Department of Science and Technology, Bernal (B1876BXD), Buenos Aires Province, Argentina
| | | | | | - Elisa Molinari
- Istituto Nanoscienze-CNR, Modena, Italy
- Università di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Modena, Italy
| | - Elena Mena-Osteritz
- Institut für Organische Chemie II und Neue Materialien, Universität Ulm, Ulm, Germany
| | - Peter Bäuerle
- Institut für Organische Chemie II und Neue Materialien, Universität Ulm, Ulm, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
- Computational Science Research Center, Beijing and Computational Science and Applied Research Institute Shenzhen, Shenzhen, China
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Christoph Lienau
- Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität, Oldenburg, Germany
| |
Collapse
|
25
|
Sahu A, Kurian JS, Tiwari V. Vibronic resonance is inadequately described by one-particle basis sets. J Chem Phys 2020; 153:224114. [DOI: 10.1063/5.0029027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Amitav Sahu
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Jo Sony Kurian
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
26
|
Stochastic optical Bloch equations in complex system with vibronic coupling: Use of Novikov’s theorem. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Di Maiolo F, Brey D, Binder R, Burghardt I. Quantum dynamical simulations of intra-chain exciton diffusion in an oligo (para-phenylene vinylene) chain at finite temperature. J Chem Phys 2020; 153:184107. [PMID: 33187420 DOI: 10.1063/5.0027588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report on quantum dynamical simulations of exciton diffusion in an oligo(para-phenylene vinylene) chain segment with 20 repeat units (OPV-20) at finite temperature, complementary to our recent study of the same system at T = 0 K [R. Binder and I. Burghardt, J. Chem. Phys. 152, 204120 (2020)]. Accurate quantum dynamical simulations are performed using the multi-layer multi-configuration time-dependent Hartree method as applied to a site-based Hamiltonian comprising 20 electronic states of Frenkel type and 460 vibrational modes, including site-local quinoid-distortion modes along with site-correlated bond-length alternation (BLA) modes, ring torsional modes, and an explicit harmonic-oscillator bath. A first-principles parameterized Frenkel-Holstein type Hamiltonian is employed, which accounts for correlations between the ring torsional modes and the anharmonically coupled BLA coordinates located at the same junction. Thermally induced fluctuations of the torsional modes are described by a stochastic mean-field approach, and their impact on the excitonic motion is characterized in terms of the exciton mean-squared displacement. A normal diffusion regime is observed under periodic boundary conditions, apart from transient localization features. Even though the polaronic exciton species are comparatively weakly bound, exciton diffusion is found to be a coherent-rather than hopping type-process, driven by the fluctuations of the soft torsional modes. Similar to the previous observations for oligothiophenes, the evolution for the most part exhibits a near-adiabatic dynamics of local exciton ground states (LEGSs) that adjust to the local conformational dynamics. However, a second mechanism, involving resonant transitions between neighboring LEGSs, gains importance at higher temperatures.
Collapse
Affiliation(s)
- Francesco Di Maiolo
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Dominik Brey
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Robert Binder
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Irene Burghardt
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
28
|
Hegger R, Binder R, Burghardt I. First-Principles Quantum and Quantum-Classical Simulations of Exciton Diffusion in Semiconducting Polymer Chains at Finite Temperature. J Chem Theory Comput 2020; 16:5441-5455. [PMID: 32786907 DOI: 10.1021/acs.jctc.0c00351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on first-principles quantum-dynamical and quantum-classical simulations of photoinduced exciton dynamics in oligothiophene chain segments, representative of intrachain exciton migration in the poly(3-hexylthiophene) (P3HT) polymer. Following up on our recent study (Binder R.; Burghardt, I. Faraday Discuss. 2020, 221, 406), multilayer multiconfiguration time-dependent Hartree calculations for a short oligothiophene segment comprising 20 monomer units (OT-20) are carried out to obtain full quantum-dynamical simulations at finite temperature. These are employed to benchmark mean-field Ehrenfest calculations, which are shown to give qualitatively correct results for the present system. Periodic boundary conditions turn out to significantly improve earlier estimates of diffusion coefficients. Using the Ehrenfest approach, a series of calculations are subsequently carried out for larger lattices (OT-40 to OT-80), leading to estimates for temperature-dependent mean-squared displacements, which are found to exhibit a near-linear dependence as a function of time. The resulting diffusion coefficient estimates are an increasing function of temperature, whose detailed functional form depends on the degree of static disorder. With a realistic static disorder parameter (σs ≃ 0.06 eV), the diffusion coefficients decrease from D ∼ 1 × 10-2 cm2 s-1 to D ∼ 1 × 10-3 cm2 s-1, in qualitative agreement with experimental data for P3HT. The dynamical scenario obtained from our simulations shows that exciton migration in P3HT-type chains is a largely adiabatic process throughout the temperature regime we investigated (i.e., T = 50-300 K). The resulting picture of exciton migration is a coherent, but not bandlike, motion of an exciton-polaron driven by fluctuations induced by low-frequency modes. This process acquires partial hopping character if static disorder becomes prominent and Anderson localization sets in.
Collapse
Affiliation(s)
- Rainer Hegger
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Robert Binder
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Irene Burghardt
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
29
|
Effati E, Heidari H, Pourabbas B. Synthesis of PEDOT in a continuous microfluidic system. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Binder R, Bonfanti M, Lauvergnat D, Burghardt I. First-principles description of intra-chain exciton migration in an oligo(para-phenylene vinylene) chain. I. Generalized Frenkel-Holstein Hamiltonian. J Chem Phys 2020; 152:204119. [PMID: 32486686 DOI: 10.1063/5.0004510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A generalized Frenkel-Holstein Hamiltonian is constructed to describe exciton migration in oligo(para-phenylene vinylene) chains, based on excited state electronic structure data for an oligomer comprising 20 monomer units (OPV-20). Time-dependent density functional theory calculations using the ωB97XD hybrid functional are employed in conjunction with a transition density analysis to study the low-lying singlet excitations and demonstrate that these can be characterized to a good approximation as a Frenkel exciton manifold. Based on these findings, we employ the analytic mapping procedure of Binder et al. [J. Chem. Phys. 141, 014101 (2014)] to translate one-dimensional (1D) and two-dimensional (2D) potential energy surface (PES) scans to a fully anharmonic, generalized Frenkel-Holstein (FH) Hamiltonian. A 1D PES scan is carried out for intra-ring quinoid distortion modes, while 2D PES scans are performed for the anharmonically coupled inter-monomer torsional and vinylene bridge bond length alternation modes. The kinetic energy is constructed in curvilinear coordinates by an exact numerical procedure, using the TNUM Fortran code. As a result, a fully molecular-based, generalized FH Hamiltonian is obtained, which is subsequently employed for quantum exciton dynamics simulations, as shown in Paper II [R. Binder and I. Burghardt, J. Chem. Phys. 152, 204120 (2020)].
Collapse
Affiliation(s)
- Robert Binder
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Matteo Bonfanti
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Irene Burghardt
- Institute for Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
31
|
Kurban M, Sertbakan TR, Gündüz B. A combined experimental and DFT/TD-DFT studies on the electronic structure, structural and optical properties of quinoline derivatives. J Mol Model 2020; 26:131. [PMID: 32394400 DOI: 10.1007/s00894-020-04405-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
In this work, the structural, electronic, and optical features of quinoline derivatives were carried out by experiment and density functional theory (DFT). Our results show that a change in the substitution position of methyl group (CH3) gives rise to a decrease in the bandgap of quinoline derivatives from 2.75 to 2.50 eV for 2-Chloro-5,7-dimethylquinoline-3-carboxaldehyde (C7DMQCA) and 2-Chloro-5,7-dimethylquinoline-3-carboxaldehyde (C8DMQCA), respectively. From dipole moment, the C7DMQCA has stronger intermolecular interaction which is comparable with the bandgap energies. The absorbance maxima are found between 313 nm (3.96 eV) and 365 nm (3.39 eV) for C7DMQCA and C8DMQCA. The refractive index and optical conductivity of the C7DMQCA are found to be higher than that of the C8DMQCA. Besides, the transmittance, angle of incidence and refraction, and (αhϑ)2curves were investigated in detail. Theoretical predictions are also compatible with experimental findings. The study shows the C7DMQCA has desirable properties such as lower optical bandgap, higher refractive index, and optical conductivity than the C8DMQCA.
Collapse
Affiliation(s)
- Mustafa Kurban
- Department of Electronics and Automation, Kırşehir Ahi Evran University, 40100, Kırşehir, Turkey.
| | | | - Bayram Gündüz
- Department of Science Education, Muş Alparslan University, 49250, Muş, Turkey
| |
Collapse
|
32
|
Interference among Multiple Vibronic Modes in Two-Dimensional Electronic Spectroscopy. MATHEMATICS 2020. [DOI: 10.3390/math8020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vibronic coupling between electronic and vibrational states in molecules plays a critical role in most photo-induced phenomena. Many key details about a molecule’s vibronic coupling are hidden in linear spectroscopic measurements, and therefore nonlinear optical spectroscopy methods such as two-dimensional electronic spectroscopy (2D ES) have become more broadly adopted. A single vibrational mode of a molecule leads to a Franck–Condon progression of peaks in a 2D spectrum. Each peak oscillates as a function of the waiting time, and Fourier transformation can produce a spectral slice known as a ‘beating map’ at the oscillation frequency. The single vibrational mode produces a characteristic peak structure in the beating map. Studies of single modes have limited utility, however, because most molecules have numerous vibrational modes that couple to the electronic transition. Interactions or interference among the modes may lead to complicated peak patterns in each beating map. Here, we use lineshape-function theory to simulate 2D ES arising from a system having multiple vibrational modes. The simulations reveal that the peaks in each beating map are affected by all of the vibrational modes and therefore do not isolate a single mode, which was anticipated.
Collapse
|
33
|
Binder R, Burghardt I. First-principles quantum simulations of exciton diffusion on a minimal oligothiophene chain at finite temperature. Faraday Discuss 2020; 221:406-427. [PMID: 31596291 DOI: 10.1039/c9fd00066f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High-dimensional multiconfigurational quantum dynamics simulations are carried out at finite temperature to simulate exciton diffusion on an oligothiophene chain, representative of a segment of the poly(3-hexylthiophene) (P3HT) polymer. The ab initio parametrized site-based Hamiltonian of Binder et al. [Phys. Rev. Lett., 2018, 120, 227401] is employed to model a 20-site system, including intra-ring and inter-ring high-frequency modes as well as torsional modes which undergo thermal fluctuations induced by an explicit harmonic oscillator bath. The system-bath dynamics is treated within the setting of a stochastic mean-field Schrödinger equation. For the 20-site excitonic system, a total of 20 Frenkel states and 248 modes are propagated using the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. The resulting dynamics can be interpreted in terms of the coherent motion of an exciton-polaron quasi-particle stochastically driven by torsional fluctuations. This dynamics yields a near-linear mean squared displacement (MSD) as a function of time, from which a diffusion coefficient can be deduced which increases with temperature, up to 5.7 × 10-3 cm2 s-1 at T = 300 K.
Collapse
Affiliation(s)
- Robert Binder
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
34
|
Xu Z, Zhou Y, Groß L, De Sio A, Yam CY, Lienau C, Frauenheim T, Chen G. Coherent Real-Space Charge Transport Across a Donor-Acceptor Interface Mediated by Vibronic Couplings. NANO LETTERS 2019; 19:8630-8637. [PMID: 31698905 DOI: 10.1021/acs.nanolett.9b03194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is growing experimental and theoretical evidence that vibronic couplings, couplings between electronic and nuclear degrees of freedom, play a fundamental role in ultrafast excited-state dynamics in organic donor-acceptor hybrids. Whereas vibronic coupling has been shown to support charge separation at donor-acceptor interfaces, so far, little is known about its role in the real-space transport of charges in such systems. Here we theoretically study charge transport in thiophene:fullerene stacks using time-dependent density functional tight-binding theory combined with Ehrenfest molecular dynamics for open systems. Our results reveal coherent oscillations of the charge density between neighboring donor sites, persisting for ∼200 fs and promoting charge transport within the polymer stacks. At the donor-acceptor interface, vibronic wave packets are launched, propagating coherently over distances of more than 3 nm into the acceptor region. This supports previous experimental observations of long-range ballistic charge-carrier motion in organic photovoltaic systems and highlights the importance of vibronic coupling engineering as a concept for tailoring the functionality of hybrid organic devices.
Collapse
Affiliation(s)
- Ziyao Xu
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Yi Zhou
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Lynn Groß
- Bremen Center for Computational Materials Science , University of Bremen , Am Fallturm 1 , 28359 Bremen , Germany
| | - Antonietta De Sio
- Institut für Physik and Center of Interface Science , Carl von Ossietzky Universität , Oldenburg 26129 , Germany
| | - Chi Yung Yam
- Beijing Computational Science Research Center , Beijing 100084 , China
| | - Christoph Lienau
- Institut für Physik and Center of Interface Science , Carl von Ossietzky Universität , Oldenburg 26129 , Germany
- Research Center Neurosensory Science , Carl von Ossietzky Universität , Oldenburg 26111 , Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science , University of Bremen , Am Fallturm 1 , 28359 Bremen , Germany
| | - GuanHua Chen
- Department of Chemistry , University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| |
Collapse
|
35
|
Nguyen XT, Timmer D, Rakita Y, Cahen D, Steinhoff A, Jahnke F, Lienau C, De Sio A. Ultrafast Charge Carrier Relaxation in Inorganic Halide Perovskite Single Crystals Probed by Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2019; 10:5414-5421. [PMID: 31449755 DOI: 10.1021/acs.jpclett.9b01936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Halide perovskites are promising optoelectronic materials. Despite impressive device performance, especially in photovoltaics, the femtosecond dynamics of elementary optical excitations and their interactions are still debated. Here we combine ultrafast two-dimensional electronic spectroscopy (2DES) and semiconductor Bloch equations (SBEs) to probe the room-temperature dynamics of nonequilibrium excitations in CsPbBr3 crystals. Experimentally, we distinguish between excitonic and free-carrier transitions, extracting a ∼30 meV exciton binding energy, in agreement with our SBE calculations and with recent experimental studies. The 2DES dynamics indicate remarkably short, <30 fs carrier relaxation at a ∼3 meV/fs rate, much faster than previously anticipated for this material, but similar to that in direct band gap semiconductors such as GaAs. Dynamic screening of excitons by free carriers also develops on a similarly fast <30 fs time scale, emphasizing the role of carrier-carrier interactions for this material's optical properties. Our results suggest that strong electron-phonon couplings lead to ultrafast relaxation of charge carriers, which, in turn may limit halide perovskites' carrier mobilities.
Collapse
Affiliation(s)
- Xuan Trung Nguyen
- Institut für Physik , Carl von Ossietzky Universität , 26129 Oldenburg , Germany
| | - Daniel Timmer
- Institut für Physik , Carl von Ossietzky Universität , 26129 Oldenburg , Germany
| | - Yevgeny Rakita
- Department of Materials & Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David Cahen
- Department of Materials & Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Alexander Steinhoff
- Institut für Theoretische Physik , Universität Bremen , 28359 Bremen , Germany
| | - Frank Jahnke
- Institut für Theoretische Physik , Universität Bremen , 28359 Bremen , Germany
| | - Christoph Lienau
- Institut für Physik , Carl von Ossietzky Universität , 26129 Oldenburg , Germany
| | - Antonietta De Sio
- Institut für Physik , Carl von Ossietzky Universität , 26129 Oldenburg , Germany
| |
Collapse
|
36
|
Somoza AD, Marty O, Lim J, Huelga SF, Plenio MB. Dissipation-Assisted Matrix Product Factorization. PHYSICAL REVIEW LETTERS 2019; 123:100502. [PMID: 31573298 DOI: 10.1103/physrevlett.123.100502] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Charge and energy transfer in biological and synthetic organic materials are strongly influenced by the coupling of electronic states to a highly structured dissipative environment. Nonperturbative simulations of these systems require a substantial computational effort, and current methods can only be applied to large systems if environmental structures are severely coarse grained. Time evolution methods based on tensor networks are fundamentally limited by the times that can be reached due to the buildup of entanglement in time, which quickly increases the size of the tensor representation, i.e., the bond dimension. In this Letter, we introduce a dissipation-assisted matrix product factorization (DAMPF) method that combines a tensor network representation of the vibronic state within a pseudomode description of the environment where a continuous bosonic environment is mapped into a few harmonic oscillators under Lindblad damping. This framework is particularly suitable for a tensor network representation, since damping suppresses the entanglement growth among oscillators and significantly reduces the bond dimension required to achieve a desired accuracy. We show that dissipation removes the "time-wall" limitation of existing methods, enabling the long-time simulation of large vibronic systems consisting of 10-50 sites coupled to 100-1000 underdamped modes in total and for a wide range of parameter regimes. For these reasons, we believe that our formalism will facilitate the investigation of spatially extended systems with applications to quantum biology, organic photovoltaics, and quantum thermodynamics.
Collapse
Affiliation(s)
- Alejandro D Somoza
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - Oliver Marty
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - James Lim
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - Susana F Huelga
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| |
Collapse
|
37
|
Guo Y, Ma Z, Niu X, Zhang W, Tao M, Guo Q, Wang Z, Xia A. Bridge-Mediated Charge Separation in Isomeric N-Annulated Perylene Diimide Dimers. J Am Chem Soc 2019; 141:12789-12796. [PMID: 31334641 DOI: 10.1021/jacs.9b05723] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The possibility and rate of charge separation (CS) in donor-bridge-acceptor molecules mainly depend on two factors: electronic coupling and solvent effects. The question of how CS occurred in two identical chromophores is fundamental, as it is particularly interesting for potential molecular electronics applications and the photosynthetic reaction centers (RCs). Conjugated bridge definitely plays a crucial role in electronic coupling. To determine the bridge-mediated charge separation dynamics between the two identical chromophores, the isomeric N-annulated perylene diimide dimers (para-BDNP and meta-BDNP) with different conjugated bridge structures have been comparatively investigated in different solvents using femtosecond transient absorption spectra (fs-TA). It is found that the charge separation is disfavored in weak polar solvent, whereas direct spectroscopic signatures of radicals are observed in polar solvents, and the rate of charge separation increases as the solvent polarity increasing. To our surprise, the rate of charge separation in m-BDNP is more than an order of magnitude slower than that in p-BDNP, although there is a larger negative ΔGCS in m-BDNP. The slow CS rate that occurred in m-BDNP mainly results from the intrinsic destructive interference of the wave function through the meta-substituted bridge. The roles of solvent effects in free energy and electronic coupling for charge separation are further identified with quantum calculations.
Collapse
Affiliation(s)
- Yuanyuan Guo
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zetong Ma
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinmiao Niu
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Min Tao
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qianjin Guo
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Andong Xia
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
38
|
Popp W, Polkehn M, Hughes KH, Martinazzo R, Burghardt I. Vibronic coupling models for donor-acceptor aggregates using an effective-mode scheme: Application to mixed Frenkel and charge-transfer excitons in oligothiophene aggregates. J Chem Phys 2019; 150:244114. [DOI: 10.1063/1.5100529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Wjatscheslaw Popp
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Matthias Polkehn
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Keith H. Hughes
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL572UW, United Kingdom
| | - Rocco Martinazzo
- Department of Chemistry, Università degli Studi di Milano, v. Golgi 19, 20133 Milano, Italy
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
39
|
Effati E, Pourabbas B, Zakerhamidi MS. Continuous microfluidic fabrication of polypyrrole nanoparticles. RSC Adv 2019; 9:16977-16988. [PMID: 35519887 PMCID: PMC9064579 DOI: 10.1039/c9ra00946a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022] Open
Abstract
Polypyrrole (PPy) nanoparticles were synthesized successfully by oxidation polymerization in droplets by microfluidic system. The oxidizing agent ammonium persulfate was added at various molar ratios with respect to the monomer. The details of the procedure, droplet formation inside the channel and the effects of various factors are described. The method is a fast and continuous way for the synthesis of PPy. Products were characterized using Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermal gravimetric analysis, cyclic voltammetry, electrochemical impedance spectroscopy and photoluminescence spectroscopy.
Collapse
Affiliation(s)
- Elham Effati
- Dept. of Polymer Engineering, Nanostructured Materials Research Center, Sahand University of Technology Tabriz Iran +98 41 3344 4313 +98 41 3345 9083
| | - Behzad Pourabbas
- Dept. of Polymer Engineering, Nanostructured Materials Research Center, Sahand University of Technology Tabriz Iran +98 41 3344 4313 +98 41 3345 9083
| | | |
Collapse
|
40
|
Wang YC, Zhao Y. Effect of an underdamped vibration with both diagonal and off-diagonal exciton-phonon interactions on excitation energy transfer. J Comput Chem 2019; 40:1097-1104. [PMID: 30549065 DOI: 10.1002/jcc.25611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 11/08/2022]
Abstract
A numerically exact approach, named as the hierarchical stochastic Schrödinger equation, is employed to investigate the resonant vibration-assisted excitation energy transfer in a dimer system, where an underdamped vibration with both diagonal and off-diagonal exciton-phonon interactions is incorporated. From a large parameter space over the site-energy difference, excitonic coupling, and reorganization energy, it is found that the promotion effect of the underdamped vibration is significant only when the excitonic coupling is smaller than the site-energy difference. Under the circumstance, there is an optimal strength ratio between diagonal and off-diagonal exciton-phonon interactions for the resonant vibration-assisted excitation energy transfer as the site-energy difference is greater than the reorganization energy, whereas in the opposite situation the most efficient energy transfer occurs as the exciton-phonon interaction is totally off-diagonal. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu-Chen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
41
|
Sommer E, De Sio A, Mena-Osteritz E, Bäuerle P, Lienau C. Two-dimensional electronic spectroscopy reveals ultrafast dynamics at a conical intersection in an organic photovoltaic material. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920506014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional electronic spectroscopy with sub-10-fs time resolution reveals signatures of vibronic coupling and wavepacket motion through a conical intersection in the initial charge separation dynamics of an acceptor-donor-acceptor oligomer thin film for organic solar cells.
Collapse
|
42
|
Wu EC, Arsenault EA, Bhattacharyya P, Lewis NHC, Fleming GR. Two-dimensional electronic vibrational spectroscopy and ultrafast excitonic and vibronic photosynthetic energy transfer. Faraday Discuss 2019; 216:116-132. [DOI: 10.1039/c8fd00190a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Dimensional electronic vibrational spectroscopy presents a novel experimental and theoretical approach to study energy transfer.
Collapse
Affiliation(s)
- Eric C. Wu
- Department of Chemistry
- University of California
- Berkeley 94720
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | | | - Pallavi Bhattacharyya
- Department of Chemistry
- University of California
- Berkeley 94720
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | | | - Graham R. Fleming
- Department of Chemistry
- University of California
- Berkeley 94720
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| |
Collapse
|
43
|
Joseph S, Ravva MK, Bredas JL. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene-Fullerene Complex: Implications for Organic Solar Cells. J Phys Chem Lett 2017; 8:5171-5176. [PMID: 28968105 DOI: 10.1021/acs.jpclett.7b02049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.
Collapse
Affiliation(s)
- Saju Joseph
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mahesh Kumar Ravva
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jean-Luc Bredas
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| |
Collapse
|