1
|
Denkler LM, Aladahalli Shekar M, Ngan TSJ, Wylie L, Abdullin D, Engeser M, Schnakenburg G, Hett T, Pilz FH, Kirchner B, Schiemann O, Kielb P, Bunescu A. A General Iron-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202403292. [PMID: 38735849 DOI: 10.1002/anie.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
We report an iron-catalyzed decarboxylative C(sp3)-O bond-forming reaction under mild, base-free conditions with visible light irradiation. The transformation uses readily available and structurally diverse carboxylic acids, iron photocatalyst, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) derivatives as oxygenation reagents. The process exhibits a broad scope in acids possessing a wide range of stereoelectronic properties and functional groups. The developed reaction was applied to late-stage oxygenation of a series of bio-active molecules. The reaction leverages the ability of iron complexes to generate carbon-centered radicals directly from carboxylic acids by photoinduced carboxylate-to-iron charge transfer. Kinetic, electrochemical, EPR, UV/Vis, HRMS, and DFT studies revealed that TEMPO has a triple role in the reaction: as an oxygenation reagent, an oxidant to turn over the Fe-catalyst, and an internal base for the carboxylic acid deprotonation. The obtained TEMPO adducts represent versatile synthetic intermediates that were further engaged in C-C and C-heteroatom bond-forming reactions using commercial organo-photocatalysts and nucleophilic reagents.
Collapse
Affiliation(s)
- Luca Mareen Denkler
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Meghana Aladahalli Shekar
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tak Shing Jason Ngan
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Dinar Abdullin
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tobias Hett
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Frank Hendrik Pilz
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Olav Schiemann
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Patrycja Kielb
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Ala Bunescu
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
2
|
Neumann T, Thompson BC, Hebron D, Graycon DM, Collauto A, Roessler MM, Wilson DWN, Musgrave RA. Heterobimetallic 3d-4f complexes supported by a Schiff-base tripodal ligand. Dalton Trans 2024; 53:9921-9932. [PMID: 38808633 DOI: 10.1039/d3dt03760f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Complexes featuring multiple metal centres are of growing interest regarding metal-metal cooperation and its tuneability. Here the synthesis and characterisation of heterobimetallic complexes of a 3d metal (4: Mn, 5: Co) and lanthanum supported by a (1,1,1-tris[(3-methoxysalicylideneamino)methyl]ethane) ligand is reported, as well as discussion of their electronic structure via electron paramagnetic resonance (EPR) spectroscopy, electrochemical experiments and computational studies. Competitive binding experiments of the ligand and various metal salts unequivocally demonstrate that in these heterobimetallic complexes the 3d metal (Mn, Co) selectively occupies the κ6-N3O3 binding site of the ligand, whilst La occupies the κ6-O6 metal binding site in line with their relative oxophilicities. EPR spectroscopy supported by density functional theory analysis indicates that the 3d metal is high spin in both cases (S = 5/2 (Mn), 3/2 (Co)). Cyclic voltammetry studies on the Mn/La and Co/La bimetallic complexes revealed a quasi-reversible Mn2+/3+ redox process and poorly-defined irreversible oxidation events respectively.
Collapse
Affiliation(s)
- Till Neumann
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Benedict C Thompson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Denny Hebron
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Daniel M Graycon
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Alberto Collauto
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Maxie M Roessler
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Daniel W N Wilson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Rebecca A Musgrave
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
3
|
Mukhopadhyaya A, Ali ME. Can Iron-Porphyrins Behave as Single-Molecule Magnets? J Phys Chem A 2024. [PMID: 38504619 DOI: 10.1021/acs.jpca.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The study of magnetic properties, especially the magnetic anisotropy of iron-porphyrin complexes employing multiconfigurational methods, is quite challenging due to many strongly correlated electrons in nearly degenerate orbitals. However, a prerequisite for observing the magnetic anisotropy and slow magnetization relaxation, the zero-field splitting parameter, D, was experimentally observed decades ago for halide-based axially ligated penta-coordinate Fe(III)-porphyrins. In these complexes, the signs of D were reported mostly as positive; in a few cases, inconclusive signs of the D parameter were also mentioned. However, no ab initio calculations have been reported to shed light on this. Deciphering the electronic structure of these penta-coordinated complexes employing the complete active space self-consistent field method and N-electron valence second-order perturbation theory, we confirm the positive D values. However, a negative D value is highly desired to observe the single-molecule magnet properties without an external magnetic field, which we observed in the Fe(II)-porphyrin complexes with axial imidazole ligands instead of halide ligands. The detailed analysis of the multireference wave functions unravels the role of axial ligands in determining the sign and magnitude of the D parameters.
Collapse
Affiliation(s)
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| |
Collapse
|
4
|
Scheuchzer P, Syryamina VN, Zimmermann MB, Zeder C, Nyström L, Yulikov M, Moretti D. Ferric Pyrophosphate Forms Soluble Iron Coordination Complexes with Zinc Compounds and Solubilizing Agents in Extruded Rice and Predicts Increased Iron Solubility and Bioavailability in Young Women. J Nutr 2023; 153:636-644. [PMID: 36931746 PMCID: PMC10127525 DOI: 10.1016/j.tjnut.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Co-extrusion of ferric pyrophosphate (FePP) with solubilizers, citric acid/trisodium citrate (CA/TSC), or ethylenediaminetetraacetic acid (EDTA) sharply increases iron absorption. Whether this can protect against the inhibition of iron absorption by phytic acid (PA) is unclear. Sodium pyrophosphate (NaPP) may be a new enhancer of iron absorption from FePP. OBJECTIVES Our objectives were to 1) investigate the ligand coordination of iron, zinc, and solubilizers in extruded rice and test associations with iron solubility and absorption, 2) assess whether co-extrusion of FePP + CA/TSC rice can protect against inhibition of iron absorption by PA; 3) determine the effect of zinc oxide (ZnO) compared with zinc sulfate (ZnSO4), and 4) quantify iron absorption from FePP + NaPP rice. METHODS We produced labeled 57FePP rice cofortified with ZnSO4 and EDTA, CA/TSC or NaPP, and FePP + EDTA rice with ZnO. We used electron paramagnetic resonance (EPR) to characterize iron-ligand complexes. We measured in vitro iron solubility and fractional iron absorption (FIA) in young women (n = 21, age: 22 ± 2 y, BMI: 21.3 ± 1.5 kg/m2 geometric mean plasma ferritin, 28.5 μg/L) compared with ferrous sulfate (58FeSO4). FIA was compared by linear mixed-effect model analysis. RESULTS The addition of zinc and solubilizers created new iron coordination complexes of Fe(III) species with a weak ligand field at a high-spin state that correlated with solubility (r2 = 0.50, P = 0.02) and absorption (r2 = 0.72, P = 0.02). Phytic acid reduced FIA from FePP + CA/TSC rice by 50% (P < 0.001), to the same extent as FeSO4. FIA from FePP + EDTA + ZnO and FePP + EDTA + ZnSO4 rice did not significantly differ. Mean FIAs from FePP + EDTA + ZnSO4, FePP + CA/TSC + ZnSO4, and FePP + NaPP + ZnSO4 rice were 9% to 11% and did not significantly differ from each other or from FeSO4. CONCLUSION Rice extrusion of FePP with solubilizers resulted in bioavailable iron coordination complexes. In the case of FePP + CA/TSC, PA exerted similar inhibition of FIA as with FeSO4. FePP + NaPP could be a further viable solubilizing agent for rice fortification. This study was registered at clinicaltrials.gov as NCT03703739.
Collapse
Affiliation(s)
- Pornpimol Scheuchzer
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland
| | - Victoria N Syryamina
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Food Biochemistry, ETH Zürich, Zürich, Switzerland; Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk, Russian Federation
| | - Michael Bruce Zimmermann
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland
| | - Christophe Zeder
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland
| | - Laura Nyström
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Food Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Bioscience (D-CHAB), Laboratory of Physical Chemistry (LPC), ETH Zürich, Zürich, Switzerland
| | - Diego Moretti
- Department for Health Sciences and Technology (D-HEST), Institute of Food, Nutrition and Health (IFNH), Laboratory of Human Nutrition, ETH Zürich, Zürich, Switzerland; Department of Health, Nutrition Research, Swiss Distance University of Applied Sciences (FFHS), Zürich, Switzerland.
| |
Collapse
|
5
|
Cirulli M, Salvadori E, Zhang Z, Dommett M, Tuna F, Bamberger H, Lewis JEM, Kaur A, Tizzard GJ, van Slageren J, Crespo‐Otero R, Goldup SM, Roessler MM. Rotaxane Co II Complexes as Field-Induced Single-Ion Magnets. Angew Chem Int Ed Engl 2021; 60:16051-16058. [PMID: 33901329 PMCID: PMC8361961 DOI: 10.1002/anie.202103596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/02/2022]
Abstract
Mechanically chelating ligands have untapped potential for the engineering of metal ion properties. Here we demonstrate this principle in the context of CoII -based single-ion magnets. Using multi-frequency EPR, susceptibility and magnetization measurements we found that these complexes show some of the highest zero field splittings reported for five-coordinate CoII complexes to date. The predictable coordination behaviour of the interlocked ligands allowed the magnetic properties of their CoII complexes to be evaluated computationally a priori and our combined experimental and theoretical approach enabled us to rationalize the observed trends. The predictable magnetic behaviour of the rotaxane CoII complexes demonstrates that interlocked ligands offer a new strategy to design metal complexes with interesting functionality.
Collapse
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Enrico Salvadori
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Department of ChemistryUniversity of TorinoVia Giuria 710125TorinoItaly
| | - Zhi‐Hui Zhang
- ChemistryUniversity of SouthamptonHighfieldSO 17 1BJUK
| | - Michael Dommett
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Floriana Tuna
- Department of Chemistry and Photon Science InstituteUniversity of ManchesterOxford RoadManchesterM13 0PLUK
| | - Heiko Bamberger
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - James E. M. Lewis
- ChemistryUniversity of SouthamptonHighfieldSO 17 1BJUK
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWood LaneLondonW12 0BZUK
| | | | - Graham J. Tizzard
- EPSRC National Crystallographic ServiceUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Joris van Slageren
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Rachel Crespo‐Otero
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | | | - Maxie M. Roessler
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWood LaneLondonW12 0BZUK
| |
Collapse
|
6
|
Cirulli M, Salvadori E, Zhang Z, Dommett M, Tuna F, Bamberger H, Lewis JEM, Kaur A, Tizzard GJ, Slageren J, Crespo‐Otero R, Goldup SM, Roessler MM. Rotaxane Co
II
Complexes as Field‐Induced Single‐Ion Magnets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Enrico Salvadori
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
- Department of Chemistry University of Torino Via Giuria 7 10125 Torino Italy
| | - Zhi‐Hui Zhang
- Chemistry University of Southampton Highfield SO 17 1BJ UK
| | - Michael Dommett
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute University of Manchester Oxford Road Manchester M13 0PL UK
| | - Heiko Bamberger
- Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - James E. M. Lewis
- Chemistry University of Southampton Highfield SO 17 1BJ UK
- Department of Chemistry Imperial College London Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
| | - Amanpreet Kaur
- Chemistry University of Southampton Highfield SO 17 1BJ UK
| | - Graham J. Tizzard
- EPSRC National Crystallographic Service University of Southampton Highfield Southampton SO17 1BJ UK
| | - Joris Slageren
- Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Rachel Crespo‐Otero
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | | | - Maxie M. Roessler
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
- Department of Chemistry Imperial College London Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
| |
Collapse
|
7
|
Maryasov AG, Bowman MK, Fedin MV, Veber SL. Theoretical Basis for Switching a Kramers Single Molecular Magnet by Circularly-Polarized Radiation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12233865. [PMID: 31771118 PMCID: PMC6926751 DOI: 10.3390/ma12233865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The d-group Kramers ions, having strong zero field splitting (ZFS) with axial symmetry and a negative D value for the ZFS Hamiltonian, are widely considered as candidates for use as single molecular magnets (SMMs). An important need is the means to switch the SMM between its states in a reasonably short and predictable period of time, which is generally not available. We propose an approach, Zeeman-far infrared (ZeFIR) double resonance, in which circularly polarized alternating magnetic fields in the far infrared (FIR) range induce selective magnetic dipole transitions between different Kramers doublets of the SMM and polarized microwave (mw) pulses transfer excitation inside the upper Kramers doublet. A combination of FIR and mw pulses allows unidirectional switching between +S and -S states of the ion. The proposed approach is considered for a model quartet system with total spin S = 3/2, which seems to be the most promising object for selective resonance manipulations of its states by circularly polarized radiation.
Collapse
Affiliation(s)
- Alexander G. Maryasov
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Michael K. Bowman
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA;
- Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Matvey V. Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey L. Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Nakazawa S, Kanno T, Sugisaki K, Kameya H, Matsui M, Ukai M, Sato K, Takui T. Fe-transferrins or their homologues in ex-vivo mushrooms as identified by ESR spectroscopy and quantum chemical calculations: A full spin-Hamiltonian approach for the ferric sextet state with intermediate zero-field splitting parameters. Food Chem 2018; 266:24-30. [PMID: 30381181 DOI: 10.1016/j.foodchem.2018.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Fe-transferrins/their homologues in ex-vivo mushrooms were identified by ESR spectroscopy at liquid helium temperature, 4 K. The ESR fine-structure signals from Grifola frondosa were analyzed by spectral simulation with a full spin-Hamiltonian approach, determining the spin Hamiltonian parameters of the ferric iron species bound in the biological environment: S = 5/2, g = (2.045, 2.01, 2.235), |D| = 0.28 cm-1, |E/D| = 0.05. The zero-field splitting (ZFS) parameters, D- and E-values, are very close to the reported values, |D| = 0.25 cm-1 and |E/D| = 0.06, for an Fe-transferrin with oxalate anion, and to |D| = 0.25 cm-1 and |E/D| = 0.04 for one with malonate anion in human sera, suggesting that the Fe3+ species are from Fe-transferrins or their homologues. Quantum chemical calculations of the ZFS tensors for Fe-transferrins were carried out. Fe-transferrins/homologues have been identified for all the mushrooms under study, suggesting that such Fe3+ enzymes are widely distributed in mushrooms.
Collapse
Affiliation(s)
- Shigeaki Nakazawa
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | - Tomomi Kanno
- Department of Health and Nutritional Sciences, Faculty of Health and Medical Sciences, Aichi Shukutoku University, Aichi 480-1197, Japan.
| | - Kenji Sugisaki
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Hiromi Kameya
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki 305-8642, Japan
| | - Miki Matsui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Mitsuko Ukai
- Hakodate Campus, Hokkaido University of Education, Hakodate 040-8567, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| |
Collapse
|
9
|
Yamane T, Sugisaki K, Matsuoka H, Sato K, Toyota K, Shiomi D, Takui T. ESR analyses of picket fence MnII and 6th ligand coordinated FeIII porphyrins (S = 5/2) and a CoII(hfac) complex (S = 3/2) with sizable ZFS parameters revisited: a full spin Hamiltonian approach and quantum chemical calculations. Dalton Trans 2018; 47:16429-16444. [DOI: 10.1039/c8dt02988a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conventional X-band ESR spectra are fully reanalyzed by a full spin Hamiltonian approach.
Collapse
Affiliation(s)
- Takeshi Yamane
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Kenji Sugisaki
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Hideto Matsuoka
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Kazuo Toyota
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| |
Collapse
|
10
|
Sugisaki K, Toyota K, Sato K, Shiomi D, Takui T. Behaviour of DFT-based approaches to the spin–orbit term of zero-field splitting tensors: a case study of metallocomplexes, MIII(acac)3 (M = V, Cr, Mn, Fe and Mo). Phys Chem Chem Phys 2017; 19:30128-30138. [DOI: 10.1039/c7cp05533a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Zero-field splitting tensors of MIII(acac)3 complexes are calculated using ab initio and DFT methods.
Collapse
Affiliation(s)
- Kenji Sugisaki
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
| | - Kazuo Toyota
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Sumiyoshi-ku
- Japan
- Research Support/URA Centre, University Administration Department, Osaka City University
- Sumiyoshi-ku
| |
Collapse
|