1
|
Carolan J, Jakubec M, Xavier NF, Motala AP, Bifulco E, Aars J, Andersen M, Schmidt AL, Cabré MB, Singh V, Colavita PE, Selfors EW, Sacchi M, O’Reilly S, Halskau Ø, Tiwari MK, Hobbs RG, Holst B. Anti-icing properties of polar bear fur. SCIENCE ADVANCES 2025; 11:eads7321. [PMID: 39879302 PMCID: PMC11777201 DOI: 10.1126/sciadv.ads7321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
The polar bear (Ursus maritimus) is the only Arctic land mammal that dives into water to hunt. Despite thermal insulation provided by blubber and fur layers and low Arctic temperatures, their fur is typically observed to be free of ice. This study investigates the anti-icing properties of polar bear fur. Here, we show that polar bear fur exhibits low ice adhesion strengths comparable to fluorocarbon-coated fibers, with the low ice adhesion a consequence of the fur sebum (hair grease). Lipid analyses reveal the presence of cholesterol, diacylglycerols, anteisomethyl-branched fatty acids, and the unexpected absence of squalene. Quantum chemical calculations predict low ice adsorption energies for identified lipids and high adsorption for squalene, suggesting that sebum composition is responsible for the observed anti-icing properties. Our work enhances understanding of polar bears and their interactions with their environment and builds on Inuit knowledge of natural anti-icing materials.
Collapse
Affiliation(s)
- Julian Carolan
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bio-Engineering Research Centre (AMBER), Trinity College Dublin, College Green, Dublin 2 D02 W085, Ireland
| | - Martin Jakubec
- Department of Biological Sciences, University of Bergen, Thormohlensgate 53, Bergen 5008, Norway
- Department of Chemistry, UiT The Arctic University of Norway, Tromso 9019, Norway
| | - Neubi F. Xavier
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Adam Pestana Motala
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Ersilia Bifulco
- Department of Biological Sciences, University of Bergen, Thormohlensgate 53, Bergen 5008, Norway
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromso 9296, Norway
| | | | - Anne Lisbeth Schmidt
- Research, Collections, and Conservation, National Museum of Denmark, I.C.Modewegsvej, Kgs. Lyngby DK-2800, Denmark
| | - Marc Brunet Cabré
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2 D02 W085, Ireland
| | - Vikaramjeet Singh
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Paula E. Colavita
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2 D02 W085, Ireland
| | - Espen Werdal Selfors
- Department of Physics and Technology, University of Bergen, Allegaten 55, Bergen 5007, Norway
| | - Marco Sacchi
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Shane O’Reilly
- Department of Life Sciences, Atlantic Technological University, Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Thormohlensgate 53, Bergen 5008, Norway
| | - Manish K. Tiwari
- Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- UCL Hawkes Institute, University College London, London WC1H 9BT, UK
- Manufacturing Futures Laboratory, University College London, London E20 2AE, UK
| | - Richard G. Hobbs
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bio-Engineering Research Centre (AMBER), Trinity College Dublin, College Green, Dublin 2 D02 W085, Ireland
| | - Bodil Holst
- Department of Physics and Technology, University of Bergen, Allegaten 55, Bergen 5007, Norway
| |
Collapse
|
2
|
Yang B, Zhao T, Ji S, Liu Y, Xu M, Lu B. Molecular dynamics simulations of the interfacial behaviors and photo-oxidation of phytosterol under different emulsion oil content. Food Chem 2024; 451:139292. [PMID: 38663239 DOI: 10.1016/j.foodchem.2024.139292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
Phytosterol, recognized for its health benefits, is predominantly extracted from plants and exhibits significantly reduced stability under varying light conditions. Their photooxidation is significantly influenced by emulsion interfaces. This study examined the mechanism of interface structure on phytosterol photooxidation with unparalleled molecular precision, utilizing molecular dynamics simulations and experimental procedures. Hydrogen bonding between the hydroxyl group at the C3 position of phytosterols and water molecules, coupled with van der Waals forces between the hydrophobic regions and the oil phase, induced phytosterol molecules to disperse toward the interface. The elevated polarity of the oil phase, specifically in tributyrin, facilitated the permeation of water molecules into the oil phase. This was achieved by diminishing the emulsion's interfacial tension, thereby fostering the development of more interface or micelles, and accelerating the photooxidation process of phytosterols. These simulations unraveled that the preponderance of phytosterol distribution is localized and oxidized at the oil-water interface.
Collapse
Affiliation(s)
- Bowen Yang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Zhao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shengyang Ji
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Liu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minghao Xu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Golodnizky D, Bernardes CES, Davidovich-Pinhas M. Isotropic liquid state of cocoa butter. Food Chem 2024; 439:138066. [PMID: 38035493 DOI: 10.1016/j.foodchem.2023.138066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The complex crystal structure of coca butter (CB) is responsible for the unique melting behavior, surface gloss, and mechanical properties of chocolate. While most studies concentrated on the crystalline state of CB, few studied the isotropic liquid state, which has a major impact on the crystallization process and the characteristics of the resulting crystals. In this study, the molecular organizations of the main CB triacylglycerols (TAGs; 1,3-dipalmitoyl-2-oleoylglycerol, palmitoyl-oleoyl-stearoylglycerol, POS, and 1,3-distearoyl-2-oleoylglycerol) were studied. The findings revealed the tunning-fork (Tf) conformation, commonly found in the crystalline state, is the least abundant in the isotropic liquid state of CB and pure TAGs. Notably, POS was found to interact with itself in CB, while its molecules with Tf conformation, although in small amounts in the mixture, tend to pair with each other at lower temperatures. These results highlight the significance of POS in CB crystallization and provide insights for developing CB alternatives.
Collapse
Affiliation(s)
- Daniel Golodnizky
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Carlos E S Bernardes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
4
|
Ma M, Song J, Dong Y, Fang W, Gao L. Structural and thermodynamic properties of bulk triglycerides and triglyceride/water mixtures reproduced using a polarizable coarse-grained model. Phys Chem Chem Phys 2023; 25:22232-22243. [PMID: 37577752 DOI: 10.1039/d3cp01839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Triglycerides (TGs) play important roles in renewable energies, food production, medicine, and metabolism in organisms. Here, we developed a novel coarse-grained (CG) force field (FF) for triglycerides to reproduce both the structural and thermodynamic properties of bulk TGs, TG/air interfaces, and TG/water mixtures using molecular dynamics (MD) simulations. We rigorously optimized the bonded and nonbonded force parameters between the CG beads of TGs and nonbonded force parameters between TG beads and polarizable CG water beads by employing an efficient meta-multilinear interpolation parameterization algorithm recently developed by us. This CG FF performs very well in reproducing the percolating network of the TG bulk phase self-assembled in water and a variety of molecular conformations predicted by all-atom MD simulations. More importantly, it also correctly reproduces multiple experimentally measurable macroscopic thermodynamic properties, including the density and surface tensions of both the TG/air and TG/water interfaces. This paves the way for studying more complicated systems involving TGs on a large scale.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Junjie Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Yi Dong
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xin-Jie-Kou-Wai Street, Beijing 100875, China.
| |
Collapse
|
5
|
Verbeke R, Nulens I, Thijs M, Lenaerts M, Bastin M, Van Goethem C, Koeckelberghs G, Vankelecom IF. Solutes in solvent resistant and solvent tolerant nanofiltration: How molecular interactions impact membrane rejection. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Lipidomic Analysis of Hand Skin Surface Lipids Reveals Smoking-Related Skin Changes. Metabolites 2023; 13:metabo13020254. [PMID: 36837873 PMCID: PMC9963340 DOI: 10.3390/metabo13020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Smoking contributes to the formation of skin wrinkles and reduces skin function, but the mechanism is not yet fully proven. This study aims to compare and analyze the effects of smoking on skin lipids and to further investigate the harmful effects of smoking on the skin. A total of 40 subjects (20 male smokers and 20 healthy control males) were recruited for this study. Measurement of hand skin-surface lipids (SSLs) in smoking and healthy control groups was undertaken using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Multivariate data analysis was used to investigate the differences in SSLs between the two groups. There were 1230 lipids detected in the two groups and significant differences in SSLs' composition were observed between them. Under selected conditions, 26 types of lipid with significant differences were observed between the two groups (p < 0.05). Sphingolipids (SP) and glycerolipids (GL) were significantly increased, and sterol lipids (ST) were significantly reduced. Smoking causes changes in skin lipids that disrupt skin homeostasis, making the skin more fragile and more susceptible to skin aging and diseases.
Collapse
|
7
|
New insights into the thermodynamics and kinetics of triacylglycerols crystallization. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zhao M, Fan K, Wang J, Wang J, Xu Q, Wei D, Chen Y, Zhou L, Mao Z, Chen T. Lipidomic analysis reveals the effect of passive smoking on facial skin surface lipid in females. Chem Phys Lipids 2022; 247:105228. [PMID: 35940249 DOI: 10.1016/j.chemphyslip.2022.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Smoking has toxic effects on the skin and can damage it. However, few studies have focused on the lipid profile changes of facial skin surface lipids (SSL) by passive smoking. METHOD A cross-sectional analytical study was conducted on middle-aged females volunteered from Henan, China to participate in the study. A total of 20 passive smoking females and 20 non-passive smoking females were recruited for this study. The components of skin surface lipids were measured by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS). Multivariate data analysis and enrichment analysis were used to investigate the differences in facial SSL between passive and non-passive smoking females. RESULT There were 1247 lipid entities identified in facial SSL between passive and non-passive smoking females. Significant differences in composition of facial SSL were observed between the two groups. After multivariate data analysis suggested, 28 significantly different lipids were identified and classified into four classes in SSL of the female cheeks. As well as 32 significantly different lipids were obtained in SSL of the female foreheads, which included three classes of lipids. Subsequent analysis revealed that the content of fatty acids (FA) in passive smoking females was significantly reduced and the content of glycerolipids (GL) and sphingolipids (SP) increased, compared with the control group. CONCLUSION These results indicated that an increase in GLs and SPs of facial lipids and a decrease in FAs in passive smoking females. These changes in lipids might be associated with oxidative stress and interference with signaling pathways by substances in smoke. And passive smoking affected facial SSL and changed the content and metabolism of skin lipids.
Collapse
Affiliation(s)
- Mengzhen Zhao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuanyuan Chen
- Research Center of Yuze skin health, Shanghai Jahwa, Shanghai 200082, PR China
| | - Lihong Zhou
- Division of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, PR China; NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai 200336, PR China
| | - Zhenxing Mao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Tian Chen
- Division of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, PR China; NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai 200336, PR China.
| |
Collapse
|
9
|
Golodnizky D, Shmidov Y, Bitton R, Bernardes CE, Davidovich-Pinhas M. Isotropic liquid state of triacylglycerols. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Nyepetsi M, Mbaiwa F, Oyetunji OA, de Leeuw NH. Understanding the Interactions between Triolein and Cosolvent Binary Mixtures Using Molecular Dynamics Simulations. ACS OMEGA 2022; 7:10212-10224. [PMID: 35382278 PMCID: PMC8973112 DOI: 10.1021/acsomega.1c06762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Biodiesel is one of the emerging renewable sources of energy to replace fossil-fuel-based resources. It is produced by a transesterification reaction in which a triglyceride reacts with methanol in the presence of a catalyst. The reaction is slow because of the low solubility of methanol in triglycerides, which results in low concentrations of methanol available to react with triglyceride. To speed up the reaction, cosolvents are added to create a single phase which helps to improve the concentration of methanol in the triglyceride phase. In this study, molecular dynamics simulations are used to help understand the role of cosolvents in the solvation of triglyceride (triolein). Six binary mixtures of triolein/cosolvent were used to study the solvation of triolein at 298.15 K. Results of 100 ns simulations at constant temperature and pressure to simulate mixing experiments show that in the first 10 ns all the binary mixtures remain largely unmixed. However, for the cosolvents that are fully miscible with triolein, the partial densities across the simulation boxes show that the systems are fully mixed in the final 10 ns. Some solvents were found to interact strongly with the polar part of triolein, while others interacted with the aliphatic part. The radial distribution functions and clustering of the solvents around triolein were also used as indicators for solvation. The presence of cosolvents also influenced the conformation of triolein molecules. In the presence of solvents that solubilize it, triolein preferred a propeller conformation but took up a trident conformation when there is less or no solubilization. The results show that tetrahydrofuran is the best solvent at solubilizing triolein, followed by cyclopentyl methyl ether, diethyl ether, and hexane. With 1,4-dioxane, the solubility improves with an increase in temperature. The miscibility of a solvent in triolein is aided by its ability to interact with both the polar and nonpolar parts of triolein.
Collapse
Affiliation(s)
- Maipelo Nyepetsi
- Department
of Chemical and Forensic Sciences, Botswana
International University of Science and Technology (BIUST), Palapye, Botswana
| | - Foster Mbaiwa
- Department
of Chemical and Forensic Sciences, Botswana
International University of Science and Technology (BIUST), Palapye, Botswana
| | | | - Nora H. de Leeuw
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
11
|
Campomanes P, Prabhu J, Zoni V, Vanni S. Recharging your fats: CHARMM36 parameters for neutral lipids triacylglycerol and diacylglycerol. BIOPHYSICAL REPORTS 2021; 1:None. [PMID: 34939045 PMCID: PMC8651513 DOI: 10.1016/j.bpr.2021.100034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022]
Abstract
Neutral lipids (NLs) are an abundant class of cellular lipids. They are characterized by the total lack of charged chemical groups in their structure, and, as a consequence, they play a major role in intracellular lipid storage. NLs that carry a glycerol backbone, such as triacylglycerols (TGs) and diacylglycerols (DGs), are also involved in the biosynthetic pathway of cellular phospholipids, and they have recently been the subject of numerous structural investigations by means of atomistic molecular dynamics simulations. However, conflicting results on the physicochemical behavior of NLs were observed depending on the nature of the atomistic force field used. Here, we show that current phospholipid-derived CHARMM36 parameters for DGs and TGs cannot adequately reproduce interfacial properties of these NLs because of excessive hydrophilicity at the glycerol-ester region. By following a CHARMM36-consistent parameterization strategy, we develop improved parameters for both TGs and DGs that are compatible with both cutoff-based and particle mesh Ewald schemes for the treatment of Lennard-Jones interactions. We show that our improved parameters can reproduce interfacial properties of NLs and their behavior in more complex lipid assemblies. We discuss the implications of our findings in the context of intracellular lipid storage and NLs’ cellular activity.
Collapse
Affiliation(s)
- Pablo Campomanes
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Janak Prabhu
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Valeria Zoni
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Chemin du Musée 10, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Domingo M, Faraudo J. Interaction between SARS-CoV-2 spike glycoprotein and human skin models: a molecular dynamics study. SOFT MATTER 2021; 17:9457-9468. [PMID: 34612290 DOI: 10.1039/d1sm01026c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The possibility of contamination of human skin by infectious virions plays an important role in indirect transmission of respiratory viruses but little is known about the fundamental physico-chemical aspects of the virus-skin interactions. In the case of coronaviruses, the interaction with surfaces (including the skin surface) is mediated by their large glycoprotein spikes that protrude from (and cover) the viral envelope. Here, we perform all atomic simulations between the SARS-CoV-2 spike glycoprotein and human skin models. We consider an "oily" skin covered by sebum and a "clean" skin exposing the stratum corneum. The simulations show that the spike tries to maximize the contacts with stratum corneum lipids, particularly ceramides, with substantial hydrogen bonding. In the case of "oily" skin, the spike is able to retain its structure, orientation and hydration over sebum with little interaction with sebum components. Comparison of these results with our previous simulations of the interaction of SARS-CoV-2 spike with hydrophilic and hydrophobic solid surfaces, suggests that the "soft" or "hard" nature of the surface plays an essential role in the interaction of the spike protein with materials.
Collapse
Affiliation(s)
- Marc Domingo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain.
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
13
|
Nian B, Xu YJ, Liu Y. Molecular dynamics simulation for mechanism revelation of the safety and nutrition of lipids and derivatives in food: State of the art. Food Res Int 2021; 145:110399. [PMID: 34112402 DOI: 10.1016/j.foodres.2021.110399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulation has proved to be a powerful tool in the study of proteins, nucleic acids, lipids, and carbohydrates et al. in fields of health, nutrition, and food science. In particular, MD simulation has been employed in the investigation of various lipid systems such as triglycerides, phospholipid membranes, etc. Due to the continuous updating of computing resources and the development of new MD simulation methods and force field parameters, the simulation's time and size scale of lipids system has increased by several orders of magnitude. However, MD simulation cannot be used for systems invovle chemical reactions. These greatly limit its further application in the field of lipid research. This paper reviews the progress and development of MD simulation, especially for the application of MD simulation in different lipid systems. In this paper, MD simulation and its general workflow was briefly introduced firstly. Subsequently, the application of MD simulation in various lipid systems was reviewed in-depth. Finally, the limitation and future prospects of MD simulation in lipid research were also discussed. This review provided new insights into the investigation of MD simulation, and a novel thought for lipid study. We believe that MD simulation will exhibit more and more great advantages in the investigation of lipids in the future due to the development of novlel methods.
Collapse
Affiliation(s)
- Binbin Nian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Ravotti R, Worlitschek J, Pulham CR, Stamatiou A. Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties. Molecules 2020; 25:molecules25235572. [PMID: 33260969 PMCID: PMC7730147 DOI: 10.3390/molecules25235572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Latent Heat Storage (LHS) with Phase-Change Materials (PCMs) represents a high energy density storage technology which could be applied in a variety of applications such as waste heat recovery and integration of renewable energy technologies in energy systems. To increase the sustainability of these storage solutions, PCMs have to be developed with particular regard to bio-origin and biodegradability. Triglycerides represent an interesting class of esters as the main constituents of animal and vegetable fats, with attractive thermal properties. In order to be used as PCMs, the thermal behaviour of triglycerides has to be fully understood, as in some cases they have been reported to show polymorphism and supercooling. This study assesses the suitability of triglycerides as PCMs by reviewing the literature published so far on their behaviour and properties. In particular, melting points, enthalpies of fusion, polymorphism, thermal conductivities, heat capacities and thermal cycling stabilities are considered, with a focus on LHS and thermal energy storage applications. In addition, the efforts conducted regarding modelling and the prediction of melting points and enthalpies based on chemical structures are summarized and assessed.
Collapse
Affiliation(s)
- Rebecca Ravotti
- Competence Centre Thermal Energy Storage (TES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland; (J.W.); (A.S.)
- EaStCHEM, School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK;
- Correspondence:
| | - Jörg Worlitschek
- Competence Centre Thermal Energy Storage (TES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland; (J.W.); (A.S.)
| | - Colin R. Pulham
- EaStCHEM, School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Anastasia Stamatiou
- Competence Centre Thermal Energy Storage (TES), Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland; (J.W.); (A.S.)
| |
Collapse
|
15
|
Fu X, Cheong YH, Ahamed A, Zhou C, Robert C, Krikstolaityte V, Gordon KC, Lisak G. Diagnostics of skin features through 3D skin mapping based on electro-controlled deposition of conducting polymers onto metal-sebum modified surfaces and their possible applications in skin treatment. Anal Chim Acta 2020; 1142:84-98. [PMID: 33280707 DOI: 10.1016/j.aca.2020.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022]
Abstract
Analytical diagnostics of skin features was developed through application of portable and fast skin mapping based on electro-controlled deposition of conducting polymers onto metal-sebum modified surfaces. In this analytical diagnostic technique, the development of skin pattern is based on electropolymerization of conducting polymers within insulating barriers in skin stamp provided by natural sebum to monitor the 3D nature of various skin features. The recorded skin maps reach a μm-level resolution and are proved to be capable of recognition, enhancement, and reproduction of surface outlines of various skin topographies, subsequently assisting dermatological diagnosis. The technique can precisely record skin surface morphology and reflect the vertical dimension information within 10 min and is aimed to assist dermatologists working with patients suffering from skin diseases via recording or monitoring the skin surface conditions. Additionally, successful trials of loading and electro-controlled release of Cu2+ into/from the developed skin patterns reveals its potential to be also utilized for treatment of pathological skin conditions. Based on the developed analytical diagnostic technique, a well-designed 3D printed portable prototype device based on electrosynthesis of the conducting polymer powered by an ordinary battery (1.5 V) was tested and was found to have excellent performance in onsite 3D skin pattern reproduction from live human skin.
Collapse
Affiliation(s)
- Xiaoxu Fu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, CleanTech, Singapore, 637141, Singapore
| | - Yi-Heng Cheong
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, CleanTech, Singapore, 637141, Singapore
| | - Ashiq Ahamed
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, CleanTech, Singapore, 637141, Singapore; Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Engineering, Biskopsgatan 8, FI-20500, Turku/Åbo, Finland
| | - Chao Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chima Robert
- Department of Chemistry, University of Otago, 70 Union Street, West Dunedin, 9016, New Zealand
| | - Vida Krikstolaityte
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, CleanTech, Singapore, 637141, Singapore
| | - Keith C Gordon
- Department of Chemistry, University of Otago, 70 Union Street, West Dunedin, 9016, New Zealand
| | - Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, CleanTech, Singapore, 637141, Singapore.
| |
Collapse
|
16
|
Tiwari N, Rai R, Sinha N. Water-lipid interactions in native bone by high-resolution solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101666. [PMID: 32371298 DOI: 10.1016/j.ssnmr.2020.101666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The study of structural and dynamical properties of lipid and its associated interaction with different components of bone is essential to understand its role at a different level of bone homeostasis such as bone mineralization and bone metabolism. In this article, we present water-dependent dynamical changes observed in lipids (triglycerides) in its absolute native environment inside bone by high-resolution 1H solid-state nuclear magnetic resonance spectroscopy (ssNMR). Relaxation measurement (T2 measurement) ssNMR experiments were performed at different levels of water network induced by dehydration and H/D exchange in native bone. Our measurements reflect the changes in the local environment and dynamical properties of triglyceride due to different hydration levels. The present study explains the role of water in stabilizing the structural properties of triglycerides in bone hence will help understand its pathological role associated with bone physiology and bone disorders.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, 226014, India; Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - RamaNand Rai
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Raebarelly Road, Lucknow, 226014, India.
| |
Collapse
|
17
|
Antunes E, Cavaco-Paulo A. Stratum corneum lipid matrix with unusual packing: A molecular dynamics study. Colloids Surf B Biointerfaces 2020; 190:110928. [DOI: 10.1016/j.colsurfb.2020.110928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/22/2020] [Accepted: 03/01/2020] [Indexed: 01/08/2023]
|
18
|
Pink DL, Loruthai O, Ziolek RM, Wasutrasawat P, Terry AE, Lawrence MJ, Lorenz CD. On the Structure of Solid Lipid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903156. [PMID: 31532892 DOI: 10.1002/smll.201903156] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Solid lipid nanoparticles (SLNs) have a crystalline lipid core which is stabilized by interfacial surfactants. SLNs are considered favorable candidates for drug delivery vehicles since their ability to store and release organic molecules can be tailored through the identity of the lipids and surfactants used. When stored, polymorphic transitions in the core of drug-loaded SLNs lead to the premature release of drug molecules. Significant experimental studies have been conducted with the aim of investigating the physicochemical properties of SLNs, however, no molecular scale investigations have been reported on the behaviors that drive SLN formation and their polymorphic transitions. A combination of small angle neutron scattering and all-atom molecular dynamics simulations is therefore used to yield a detailed atomistic description of the internal structure of an SLN comprising triglyceride, tripalmitin, and the nonionic surfactant, Brij O10 (C18:1 E10 ). The molecular scale mechanisms by which the surfactants stabilize the crystalline structure of the SLN lipid core are uncovered. By comparing these results to simulated liquid and solid aggregates of tripalmitin lipids, how the morphology of the lipids vary between these systems is demonstrated providing further insight into the mechanisms that control drug encapsulation and release from SLNs.
Collapse
Affiliation(s)
- Demi L Pink
- Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Orathai Loruthai
- Pharmaceutical Biophysics Group, Institute of Pharmaceutical Science, King's College London, London, SW1 9NH, UK
| | - Robert M Ziolek
- Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Prawarisa Wasutrasawat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ann E Terry
- CoSAXS Beamline, MAX IV Laboratory, Lund University, SE-221 00, Lund, Sweden
| | - M Jayne Lawrence
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
19
|
Tascini AS, Noro MG, Seddon JM, Chen R, Bresme F. Mechanisms of lipid extraction from skin lipid bilayers by sebum triglycerides. Phys Chem Chem Phys 2019; 21:1471-1477. [DOI: 10.1039/c8cp05706k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microsecond computations identify the pathways leading to the extraction of skin lipids by sebum triglycerides and the associated energetic costs.
Collapse
Affiliation(s)
| | | | | | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- UK
| | | |
Collapse
|
20
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|
21
|
Ladd Parada M, Sadeghpour A, Vieira J, Povey M, Rappolt M. Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the α-Phase (Part II). J Phys Chem B 2018; 122:10330-10336. [PMID: 30351126 DOI: 10.1021/acs.jpcb.8b06708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The early-stage crystallization behavior in a triacylglycerol mixture has been investigated on the nanoscale with a novel global small-angle X-ray scattering analysis technique. This method has been tailored for the determination of the electron density profiles (EDPs) replicating both (i) the nanostructural texture of molten triacylglycerols (TAGs) (refer to "Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the Molten State (Part I)" of this publication series) and (ii) the lamellar structure of the metastable α-polymorph. In a first stage, the α-phase scattering contribution alone was examined by classical Fourier analysis as well as by globally fitting the data, leading to practically identical EDPs. On the basis of these findings, we extended our analysis to the entire X-ray scattering contribution arising from molten TAGs and the solid α-phase fraction. Remarkably, the experimental and theoretical data agree very well, providing for the first time a detailed nanostructural understanding about the coexisting molecular assemblies. This, in turn, also allowed us to quantitatively determine the solid fat content (SFC) with X-ray scattering data. Our new theoretical approach for measurement of SFC is based on the global analysis of small-angle scattering/diffraction patterns, and the SFC results are in good agreement with values obtained from other techniques such as NMR spectroscopy.
Collapse
Affiliation(s)
- Marjorie Ladd Parada
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| | - Amin Sadeghpour
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K.,Department of Materials Meet Life , Center for X-ray Analytics, Empa , 8600 St. Gallen , Switzerland
| | | | - Megan Povey
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| | - Michael Rappolt
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
22
|
Sadeghpour A, Parada ML, Vieira J, Povey M, Rappolt M. Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the Molten State (Part I). J Phys Chem B 2018; 122:10320-10329. [PMID: 30351127 DOI: 10.1021/acs.jpcb.8b06704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study of triacylglycerols (TAGs) in their molten state is of fundamental importance for a deeper understanding of the TAG crystallization processes, being highly relevant for both manufacturing and medical applications. Although different models have been proposed to explain the nanostructured nature of the fluid state of TAGs, none of them are fully satisfactory. In this paper, we propose a new model consisting of positionally uncorrelated lamellar TAG assemblies embedded in an isotropic medium that assist as prenucleating structures. This model was validated by applying a novel global fitting method, resulting in an excellent agreement with the small-angle X-ray scattering data. A deeper analysis of the scattering patterns at different temperatures, both in cooling and heating directions, allowed us further to detect the crystalline traces of TAGs even after heating to 40 °C and record, on cooling, the onset of crystallization at 30-25 °C. The application of the presented novel model not only explains the outstandingly structured fluid of molten TAGs, but also lays the basis for analyzing first the crystallization steps in greater detail, which is outlined in our follow-up paper "Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the α-Phase (Part II)".
Collapse
Affiliation(s)
- Amin Sadeghpour
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K.,Department of Materials Meet Life, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 St. Gallen , Switzerland
| | - Marjorie Ladd Parada
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| | | | - Megan Povey
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| | - Michael Rappolt
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
23
|
Ladd-Parada M, Povey MJ, Vieira J, Ries ME. Fast field cycling NMR relaxometry studies of molten and cooled cocoa butter. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1508784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Megan J. Povey
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | - Michael E. Ries
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| |
Collapse
|