1
|
Loci L, Lockyer SJ, Bennett TS, Rogers CJ, Brookfield A, Timco GA, Whitehead GFS, Nawaz S, Miller JJ, Winpenny REP, Bowen AM. Characterizing X-Ray and Solution State Conformations for a Model Qubit System: {Cr 7Ni} Ring Rotaxanes on a Mixed Metal Triangle. Inorg Chem 2024; 63:22880-22891. [PMID: 39550763 PMCID: PMC11615942 DOI: 10.1021/acs.inorgchem.4c03919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
The synthesis of a series of [4]rotaxanes, each consisting of three [2]rotaxanes joined via a central {CrNi2} triangular linker, is reported. The resultant four [4]rotaxanes were characterized by single crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy. Orientation-selective 4-pulse double electron-electron resonance (DEER) measurements between the three {Cr7Ni} rings incorporated in each [4]rotaxane reveal that each system is conformationally fluxional in solution, with the most abundant conformations found to differ significantly from the crystal structure geometry for each compound. The degree of similarity between conformations is evaluated using a novel application of the earth mover's distance analysis.
Collapse
Affiliation(s)
- Lubomir Loci
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- The
National Research Facility for Electron Paramagnetic Resonance, The
Photon Science Institute, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Selena J. Lockyer
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- The
National Research Facility for Electron Paramagnetic Resonance, The
Photon Science Institute, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Tom S. Bennett
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ciarán J. Rogers
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- The
National Research Facility for Electron Paramagnetic Resonance, The
Photon Science Institute, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Adam Brookfield
- The
National Research Facility for Electron Paramagnetic Resonance, The
Photon Science Institute, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Grigore A. Timco
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Selina Nawaz
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jack J. Miller
- The
MR Research Centre and The PET Research Centre, Aarhus University, Aarhus 8200, Denmark
- Department
of Physics, Clarendon Laboratory, The University
of Oxford, Oxford OX1 2JD, U.K.
| | - Richard E. P. Winpenny
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- The
National Research Facility for Electron Paramagnetic Resonance, The
Photon Science Institute, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alice M. Bowen
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- The
National Research Facility for Electron Paramagnetic Resonance, The
Photon Science Institute, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Bertran A, De Zotti M, Timmel CR, Di Valentin M, Bowen AM. Determining and controlling conformational information from orientationally selective light-induced triplet-triplet electron resonance spectroscopy for a set of bis-porphyrin rulers. Phys Chem Chem Phys 2024; 26:2589-2602. [PMID: 38170870 PMCID: PMC10793979 DOI: 10.1039/d3cp03454b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 01/05/2024]
Abstract
We recently reported a new technique, light-induced triplet-triplet electron resonance (LITTER) spectroscopy, which allows quantification of the dipolar interaction between the photogenerated triplet states of two chromophores. Here we carry out a systematic LITTER study, considering orientation selection by the detection pulses, of a series of bis-porphyrin model peptides with different porphyrin-porphyrin distances and relative orientations. Orientation-dependent analysis of the dipolar datasets yields conformational information of the molecules in frozen solution which is in good agreement with density functional theory predictions. Additionally, a fast partial orientational-averaging treatment produces distance distributions with minimized orientational artefacts. Finally, by direct comparison of LITTER data to double electron-electron resonance (DEER) measured on a system with Cu(II) coordinated into the porphyrins, we demonstrate the advantages of the LITTER technique over the standard DEER methodology. This is due to the remarkable spectroscopic properties of the photogenerated porphyrin triplet state. This work sets the basis for the use of LITTER in structural investigations of unmodified complex biological macromolecules, which could be combined with Förster resonance energy transfer and microscopy inside cells.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centro Interdipartimentale di Ricerca "Centro Studi di Economia e Tecnica dell'energia Giorgio Levi Cases", 35131 Padova, Italy.
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centro Interdipartimentale di Ricerca "Centro Studi di Economia e Tecnica dell'energia Giorgio Levi Cases", 35131 Padova, Italy.
| | - Alice M Bowen
- The National Research Facility for Electron Paramagnetic Resonance, Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
3
|
Vitali V, Ackermann K, Hagelueken G, Bode BE. Spectroscopically Orthogonal Labelling to Disentangle Site-Specific Nitroxide Label Distributions. APPLIED MAGNETIC RESONANCE 2023; 55:187-205. [PMID: 38357007 PMCID: PMC10861635 DOI: 10.1007/s00723-023-01611-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 02/16/2024]
Abstract
Biomolecular applications of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) are becoming increasingly valuable in structural biology. Site-directed spin labelling of proteins is routinely performed using nitroxides, with paramagnetic metal ions and other organic radicals gaining popularity as alternative spin centres. Spectroscopically orthogonal spin labelling using different types of labels potentially increases the information content available from a single sample. When analysing experimental distance distributions between two nitroxide spin labels, the site-specific rotamer information has been projected into the distance and is not readily available, and the contributions of individual labelling sites to the width of the distance distribution are not obvious from the PDS data. Here, we exploit the exquisite precision of labelling double-histidine (dHis) motifs with CuII chelate complexes. The contribution of this label to the distance distribution widths in model protein GB1 has been shown to be negligible. By combining a dHis CuII labelling site with cysteine-specific nitroxide labelling, we gather insights on the label rotamers at two distinct sites, comparing their contributions to distance distributions based on different in silico modelling approaches and structural models. From this study, it seems advisable to consider discrepancies between different in silico modelling approaches when selecting labelling sites for PDS studies. Supplementary Information The online version contains supplementary material available at 10.1007/s00723-023-01611-1.
Collapse
Affiliation(s)
- Valentina Vitali
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
| | - Gregor Hagelueken
- Institute of Structural Biology, Biomedical Center, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
| |
Collapse
|
4
|
Wort JL, Ackermann K, Giannoulis A, Bode BE. Enhanced sensitivity for pulse dipolar EPR spectroscopy using variable-time RIDME. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107460. [PMID: 37167826 DOI: 10.1016/j.jmr.2023.107460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Pulse dipolar EPR spectroscopy (PDS) measurements are an important complementary tool in structural biology and are increasingly applied to macromolecular assemblies implicated in human health and disease at physiological concentrations. This requires ever higher sensitivity, and recent advances have driven PDS measurements into the mid-nanomolar concentration regime, though optimization and acquisition of such measurements remains experimentally demanding and time expensive. One important consideration is that constant-time acquisition represents a hard limit for measurement sensitivity, depending on the maximum measured distance. Determining this distance a priori has been facilitated by machine-learning structure prediction (AlphaFold2 and RoseTTAFold) but is often confounded by non-representative behaviour in frozen solution that may mandate multiple rounds of optimization and acquisition. Herein, we endeavour to simultaneously enhance sensitivity and streamline PDS measurement optimization to one-step by benchmarking a variable-time acquisition RIDME experiment applied to CuII-nitroxide and CuII-CuII model systems. Results demonstrate marked sensitivity improvements of both 5- and 6-pulse variable-time RIDME of between 2- and 5-fold over the constant-time analogues.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland.
| |
Collapse
|
5
|
Hasanbasri Z, Moriglioni NA, Saxena S. Efficient sampling of molecular orientations for Cu(II)-based DEER on protein labels. Phys Chem Chem Phys 2023; 25:13275-13288. [PMID: 36939213 DOI: 10.1039/d3cp00404j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Combining rigid Cu(II) labels and pulsed-EPR techniques enables distance constraint measurements that are incisive probes of protein structure and dynamics. However, the labels can lead to a dipolar signal that is biased by the relative orientation of the two spins, which is typically unknown a priori in a bilabeled protein. This effect, dubbed orientational selectivity, becomes a bottleneck in measuring distances. This phenomenon also applies to other pulsed-EPR techniques that probe electron-nucleus interactions. In this work, we dissect orientational selectivity by generating an in silico sample of Cu(II)-labeled proteins to evaluate pulse excitation in the context of double electron-electron resonance (DEER) at Q-band frequencies. This approach enables the observation of the contribution of each protein orientation to the dipolar signal, which provides direct insights into optimizing acquisition schemes to mitigate orientational effects. Furthermore, we incorporate the excitation profile of realistic pulses to identify the excited spins. With this method, we show that rectangular pulses, despite their imperfect inversion capability, can sample similar spin orientations as other sophisticated pulses with the same bandwidth. Additionally, we reveal that the efficiency of exciting spin-pairs in DEER depends on the frequency offset of two pulses used in the experiment and the relative orientation of the two spins. Therefore, we systematically examine the frequency offset of the two pulses used in this double resonance experiment to determine the optimal frequency offset for optimal distance measurements. This procedure leads to a protocol where two measurements are sufficient to acquire orientational-independent DEER at Q-band. Notably, this procedure is feasible with any commercial pulsed-EPR spectrometer. Furthermore, we experimentally validate the computational results using DEER experiments on two different proteins. Finally, we show that increasing the amplitude of the rectangular pulse can increase the efficiency of DEER experiments by almost threefold. Overall, this work provides an attractive new approach for analyzing pulsed-EPR spectroscopy to obtain microscopic nuances that cannot be easily discerned from analytical or numerical calculations.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Hasanbasri Z, Poncelet M, Hunter H, Driesschaert B, Saxena S. A new 13C trityl-based spin label enables the use of DEER for distance measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107363. [PMID: 36620971 PMCID: PMC9928843 DOI: 10.1016/j.jmr.2022.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Triarylmethyl (TAM)-based labels, while still underutilized, are a powerful class of labels for pulsed-Electron Spin Resonance (ESR) distance measurements. They feature slow relaxation rates for long-lasting signals, high stability for cellular experiments, and narrow spectral features for efficient excitation of the spins. However, the typical narrow line shape limits the available distance measurements to only single-frequency experiments, such as Double Quantum Coherence (DQC) and Relaxation Induced Dipolar Modulation Enhancement (RIDME), which can be complicated to perform or hard to process. Therefore, widespread usage of TAM labels can be enhanced by the use of Double Electron-Electron Resonance (DEER) distance measurements. In this work, we developed a new spin label, 13C1-mOX063-d24, with a 13C isotope as the radical center. Due to the resolved hyperfine splitting, the spectrum is sufficiently broadened to permit DEER-based experiments at Q-band spectrometers. Additionally, this new label can be incorporated orthogonally with Cu(II)-based protein label. The orthogonal labeling scheme enables DEER distance measurement at X-band frequencies. Overall, the new trityl label allows for DEER-based distance measurements that complement existing TAM-label DQC and RIDME experiments.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States
| | - Hannah Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States; C. Eugene Bennett Department of Chemistry West Virginia University, Morgantown, WV 26506, United States.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
7
|
Hofmann L, Mandato A, Saxena S, Ruthstein S. The use of EPR spectroscopy to study transcription mechanisms. Biophys Rev 2022; 14:1141-1159. [PMID: 36345280 PMCID: PMC9636360 DOI: 10.1007/s12551-022-01004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 02/08/2023] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has become a promising structural biology tool to resolve complex and dynamic biological mechanisms in-vitro and in-cell. Here, we focus on the advantages of continuous wave (CW) and pulsed EPR distance measurements to resolve transcription processes and protein-DNA interaction. The wide range of spin-labeling approaches that can be used to follow structural changes in both protein and DNA render EPR a powerful method to study protein-DNA interactions and structure-function relationships in other macromolecular complexes. EPR-derived data goes well beyond static structural information and thus serves as the method of choice if dynamic insight is needed. Herein, we describe the conceptual details of the theory and the methodology and illustrate the use of EPR to study the protein-DNA interaction of the copper-sensitive transcription factor, CueR.
Collapse
Affiliation(s)
- L. Hofmann
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - A. Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA
| | - S. Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA
| | - S. Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
8
|
Hofmann L, Ruthstein S. EPR Spectroscopy Provides New Insights into Complex Biological Reaction Mechanisms. J Phys Chem B 2022; 126:7486-7494. [PMID: 36137278 PMCID: PMC9549461 DOI: 10.1021/acs.jpcb.2c05235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In the last 20 years, the use of electron paramagnetic
resonance
(EPR) has made a pronounced and lasting impact in the field of structural
biology. The advantage of EPR spectroscopy over other structural techniques
is its ability to target even minor conformational changes in any
biomolecule or macromolecular complex, independent of its size or
complexity, or whether it is in solution or in the cell during a biological
or chemical reaction. Here, we focus on the use of EPR spectroscopy
to study transmembrane transport and transcription mechanisms. We
discuss experimental and analytical concerns when referring to studies
of two biological reaction mechanisms, namely, transfer of copper
ions by the human copper transporter hCtr1 and the mechanism of action
of the Escherichia coli copper-dependent
transcription factor CueR. Last, we elaborate on future avenues in
the field of EPR structural biology.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
9
|
Bogetti X, Hasanbasri Z, Hunter HR, Saxena S. An optimal acquisition scheme for Q-band EPR distance measurements using Cu 2+-based protein labels. Phys Chem Chem Phys 2022; 24:14727-14739. [PMID: 35574729 DOI: 10.1039/d2cp01032a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent advances in site-directed Cu2+ labeling of proteins and nucleic acids have added an attractive new methodology to measure the structure-function relationship in biomolecules. Despite the promise, accessing the higher sensitivity of Q-band Double Electron Electron Resonance (DEER) has been challenging for Cu2+ labels designed for proteins. Q-band DEER experiments on this label typically require many measurements at different magnetic fields, since the pulses can excite only a few orientations at a given magnetic field. Herein, we analyze such orientational effects through simulations and show that three DEER measurements, at strategically selected magnetic fields, are generally sufficient to acquire an orientational-averaged DEER time trace for this spin label at Q-band. The modeling results are experimentally verified on Cu2+ labeled human glutathione S-transferase (hGSTA1-1). The DEER distance distribution measured at the Q-band shows good agreement with the distance distribution sampled by molecular dynamics (MD) simulations and X-band experiments. The concordance of MD sampled distances and experimentally measured distances adds growing evidence that MD simulations can accurately predict distances for the Cu2+ labels, which remains a key bottleneck for the commonly used nitroxide label. In all, this minimal collection scheme reduces data collection time by as much as six-fold and is generally applicable to many octahedrally coordinated Cu2+ systems. Furthermore, the concepts presented here may be applied to other metals and pulsed EPR experiments.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Bertran A, Barbon A, Bowen AM, Di Valentin M. Light-induced pulsed dipolar EPR spectroscopy for distance and orientation analysis. Methods Enzymol 2022; 666:171-231. [PMID: 35465920 DOI: 10.1016/bs.mie.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Measuring distances in biology at the molecular level is of great importance for understanding the structure and function of proteins, nucleic acids and other biological molecules and their complexes. Pulsed Dipolar Spectroscopy (PDS) offers advantages with respect to other methods as it is uniquely sensitive and specific to electronic spin centers and allows measurements in near-native conditions, comprising the in-cell environment. PDS methods measure the electron spin-spin dipolar interaction, therefore they require the presence of at least two paramagnetic centers, which are often stable radicals. Recent developments have introduced transient triplet states, photo-activated by a laser pulse, as spin labels and probes, thereby establishing a new family of techniques-Light-induced PDS (LiPDS). In this chapter, an overview of these methods is provided, looking at the chromophores that can be used for LiPDS and some of the technical aspects of the experiments. A guide to the choice of technique that can yield the best results, depending on the type of system studied and the information required, is provided. Examples of previous LiPDS studies of model systems and proteins are given. Characterization data for the chromophores used in these studies is tabulated to help selection of appropriate triplet state probes in future studies.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Alice M Bowen
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; EPSRC National Research Facility for Electron Paramagnetic Resonance Spectroscopy, Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester, United Kingdom.
| | | |
Collapse
|
11
|
A Low-Spin CoII/Nitroxide Complex for Distance Measurements at Q-Band Frequencies. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulse dipolar electron paramagnetic resonance spectroscopy (PDS) is continuously furthering the understanding of chemical and biological assemblies through distance measurements in the nanometer range. New paramagnets and pulse sequences can provide structural insights not accessible through other techniques. In the pursuit of alternative spin centers for PDS, we synthesized a low-spin CoII complex bearing a nitroxide (NO) moiety, where both the CoII and NO have an electron spin S of 1/2. We measured CoII-NO distances with the well-established double electron–electron resonance (DEER aka PELDOR) experiment, as well as with the five- and six-pulse relaxation-induced dipolar modulation enhancement (RIDME) spectroscopies at Q-band frequencies (34 GHz). We first identified challenges related to the stability of the complex in solution via DEER and X-ray crystallography and showed that even in cases where complex disproportionation is unavoidable, CoII-NO PDS measurements are feasible and give good signal-to-noise (SNR) ratios. Specifically, DEER and five-pulse RIDME exhibited an SNR of ~100, and while the six-pulse RIDME exhibited compromised SNR, it helped us minimize unwanted signals from the RIDME traces. Last, we demonstrated RIDME at a 10 μM sample concentration. Our results demonstrate paramagnetic CoII to be a feasible spin center in medium magnetic fields with opportunities for PDS studies involving CoII ions.
Collapse
|
12
|
Meichsner SL, Kutin Y, Kasanmascheff M. In‐Cell Characterization of the Stable Tyrosyl Radical in
E. coli
Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shari L. Meichsner
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
13
|
Meichsner SL, Kutin Y, Kasanmascheff M. In-Cell Characterization of the Stable Tyrosyl Radical in E. coli Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:19155-19161. [PMID: 33844392 PMCID: PMC8453577 DOI: 10.1002/anie.202102914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Indexed: 12/21/2022]
Abstract
The E. coli ribonucleotide reductase (RNR), a paradigm for class Ia enzymes including human RNR, catalyzes the biosynthesis of DNA building blocks and requires a di‐iron tyrosyl radical (Y122.) cofactor for activity. The knowledge on the in vitro Y122. structure and its radical distribution within the β2 subunit has accumulated over the years; yet little information exists on the in vivo Y122.. Here, we characterize this essential radical in whole cells. Multi‐frequency EPR and electron‐nuclear double resonance (ENDOR) demonstrate that the structure and electrostatic environment of Y122. are identical under in vivo and in vitro conditions. Pulsed dipolar EPR experiments shed light on a distinct in vivo Y122. per β2 distribution, supporting the key role of Y. concentrations in regulating RNR activity. Additionally, we spectroscopically verify the generation of an unnatural amino acid radical, F3Y122., in whole cells, providing a crucial step towards unique insights into the RNR catalysis under physiological conditions.
Collapse
Affiliation(s)
- Shari L Meichsner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
14
|
Wort JL, Ackermann K, Norman DG, Bode BE. A general model to optimise Cu II labelling efficiency of double-histidine motifs for pulse dipolar EPR applications. Phys Chem Chem Phys 2021; 23:3810-3819. [PMID: 33533341 DOI: 10.1039/d0cp06196d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to studies of biomolecules underpinning health and disease by providing highly accurate and precise geometric constraints. Combining double-histidine (dH) motifs with CuII spin labels shows promise for further increasing the precision of distance measurements, and for investigating subtle conformational changes. However, non-covalent coordination-based spin labelling is vulnerable to low binding affinity. Dissociation constants of dH motifs for CuII-nitrilotriacetic acid were previously investigated via relaxation induced dipolar modulation enhancement (RIDME), and demonstrated the feasibility of exploiting the dH motif for EPR applications at sub-μM protein concentrations. Herein, the feasibility of using modulation depth quantitation in CuII-CuII RIDME to simultaneously estimate a pair of non-identical independent KD values in such a tetra-histidine model protein is addressed. Furthermore, we develop a general speciation model to optimise CuII labelling efficiency, depending upon pairs of identical or disparate KD values and total CuII label concentration. We find the dissociation constant estimates are in excellent agreement with previously determined values, and empirical modulation depths support the proposed model.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| | - David G Norman
- School of Life Sciences, University of Dundee, Medical Sciences Institute, Dundee, DD1 5EH, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
15
|
Russell H, Stewart R, Prior C, Oganesyan VS, Gaule TG, Lovett JE. DEER and RIDME Measurements of the Nitroxide-Spin Labelled Copper-Bound Amine Oxidase Homodimer from Arthrobacter Globiformis. APPLIED MAGNETIC RESONANCE 2021; 52:995-1015. [PMID: 34720439 PMCID: PMC8550341 DOI: 10.1007/s00723-021-01321-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
In the study of biological structures, pulse dipolar spectroscopy (PDS) is used to elucidate spin-spin distances at nanometre-scale by measuring dipole-dipole interactions between paramagnetic centres. The PDS methods of Double Electron Electron Resonance (DEER) and Relaxation Induced Dipolar Modulation Enhancement (RIDME) are employed, and their results compared, for the measurement of the dipolar coupling between nitroxide spin labels and copper-II (Cu(II)) paramagnetic centres within the copper amine oxidase from Arthrobacter globiformis (AGAO). The distance distribution results obtained indicate that two distinct distances can be measured, with the longer of these at c.a. 5 nm. Conditions for optimising the RIDME experiment such that it may outperform DEER for these long distances are discussed. Modelling methods are used to show that the distances obtained after data analysis are consistent with the structure of AGAO. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00723-021-01321-6.
Collapse
Affiliation(s)
- Hannah Russell
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, St Andrews, KY16 9SS UK
| | - Rachel Stewart
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, St Andrews, KY16 9SS UK
| | | | | | - Thembaninkosi G. Gaule
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Janet E. Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, St Andrews, KY16 9SS UK
| |
Collapse
|
16
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Precise Distance Measurements in DNA G-Quadruplex Dimers and Sandwich Complexes by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:4939-4947. [PMID: 33063395 PMCID: PMC7984025 DOI: 10.1002/anie.202008618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/12/2020] [Indexed: 12/20/2022]
Abstract
DNA G-quadruplexes show a pronounced tendency to form higher-order structures, such as π-stacked dimers and aggregates with aromatic binding partners. Reliable methods for determining the structure of these non-covalent adducts are scarce. Here, we use artificial square-planar Cu(pyridine)4 complexes, covalently incorporated into tetramolecular G-quadruplexes, as rigid spin labels for detecting dimeric structures and measuring intermolecular Cu2+ -Cu2+ distances via pulsed dipolar EPR spectroscopy. A series of G-quadruplex dimers of different spatial dimensions, formed in tail-to-tail or head-to-head stacking mode, were unambiguously distinguished. Measured distances are in full agreement with results of molecular dynamics simulations. Furthermore, intercalation of two well-known G-quadruplex binders, PIPER and telomestatin, into G-quadruplex dimers resulting in sandwich complexes was investigated, and previously unknown binding modes were discovered. Additionally, we present evidence that free G-tetrads also intercalate into dimers. Our transition metal labeling approach, combined with pulsed EPR spectroscopy, opens new possibilities for examining structures of non-covalent DNA aggregates.
Collapse
Affiliation(s)
- Lukas M. Stratmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Yury Kutin
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Müge Kasanmascheff
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
17
|
Abdullin D, Schiemann O. Localization of metal ions in biomolecules by means of pulsed dipolar EPR spectroscopy. Dalton Trans 2021; 50:808-815. [PMID: 33416053 DOI: 10.1039/d0dt03596c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions are important for the folding, structure, and function of biomolecules. Thus, knowing where their binding sites are located in proteins or oligonucleotides is a critical objective. X-ray crystallography and nuclear magnetic resonance are powerful methods in this respect, but both have their limitations. Here, a complementary method is highlighted in which paramagnetic metal ions are localized by means of trilateration using a combination of site-directed spin labeling and pulsed dipolar electron paramagnetic resonance spectroscopy. The working principle, the requirements, and the limitations of the method are critically discussed. Several applications of the method are outlined and compared with each other.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany.
| | | |
Collapse
|
18
|
Bertran A, Henbest KB, De Zotti M, Gobbo M, Timmel CR, Di Valentin M, Bowen AM. Light-Induced Triplet-Triplet Electron Resonance Spectroscopy. J Phys Chem Lett 2021; 12:80-85. [PMID: 33306382 PMCID: PMC8016185 DOI: 10.1021/acs.jpclett.0c02884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
We present a new technique, light-induced triplet-triplet electron resonance spectroscopy (LITTER), which measures the dipolar interaction between two photoexcited triplet states, enabling both the distance and angular distributions between the two triplet moieties to be determined on a nanometer scale. This is demonstrated for a model bis-porphyrin peptide that renders dipolar traces with strong orientation selection effects. Using simulations and density functional theory calculations, we extract distance distributions and relative orientations of the porphyrin moieties, allowing the dominant conformation of the peptide in a frozen solution to be identified. LITTER removes the requirement of current light-induced electron spin resonance pulse dipolar spectroscopy techniques to have a permanent paramagnetic moiety, becoming more suitable for in-cell applications and facilitating access to distance determination in unmodified macromolecular systems containing photoexcitable moieties. LITTER also has the potential to enable direct comparison with Förster resonance energy transfer and combination with microscopy inside cells.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kevin B. Henbest
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Marta De Zotti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marina Gobbo
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Marilena Di Valentin
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Alice M. Bowen
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
- Department
of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
19
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Präzise Abstandsmessungen in DNA‐G‐Quadruplex‐Dimeren und Sandwichkomplexen über gepulste dipolare EPR‐Spektroskopie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lukas M. Stratmann
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Yury Kutin
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Müge Kasanmascheff
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
20
|
Abdullin D, Schiemann O. Pulsed Dipolar EPR Spectroscopy and Metal Ions: Methodology and Biological Applications. Chempluschem 2020; 85:353-372. [DOI: 10.1002/cplu.201900705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
21
|
Breitgoff FD, Keller K, Qi M, Klose D, Yulikov M, Godt A, Jeschke G. UWB DEER and RIDME distance measurements in Cu(II)-Cu(II) spin pairs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106560. [PMID: 31377151 DOI: 10.1016/j.jmr.2019.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Distance determination by Electron Paramagnetic Resonance (EPR) based on measurements of the dipolar coupling are technically challenging for electron spin systems with broad spectra due to comparatively narrow microwave pulse excitation bandwidths. With Na4[{CuII(PyMTA)}-(stiff spacer)-{CuII(PyMTA)}] as a model compound, we compared DEER and RIDME measurements and investigated the use of frequency-swept pulses. We found very large improvements in sensitivity when substituting the monochromatic pump pulse by a frequency-swept one in DEER experiments with monochromatic observer pulses. This effect was especially strong in X band, where nearly the whole spectrum can be included in the experiment. The RIDME experiment is characterised by a trade-off in signal intensity and modulation depth. Optimal parameters are further influenced by varying steepness of the background decay. A simple 2-point optimization experiment was found to serve as good estimate to identify the mixing time of highest sensitivity. Using frequency-swept pulses in the observer sequences resulted in lower SNR in both the RIDME and the DEER experiment. Orientation selectivity was found to vary in both experiments with the detection position as well as with the settings of the pump pulse in DEER. In RIDME, orientation selection by relaxation anisotropy of the inverted spin appeared to be negligible as form factors remain relatively constant with varying mixing time. This reduces the overall observed orientation selection to the one given by the detection position. Field-averaged data from RIDME and DEER with a shaped pump pulse resulted in the same dipolar spectrum. We found that both methods have their advantages and disadvantages for given instrumental limitations and sample properties. Thus the choice of method depends on the situation at hand and we discuss which parameters should be considered for optimization.
Collapse
Affiliation(s)
- Frauke D Breitgoff
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Katharina Keller
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Daniel Klose
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Maxim Yulikov
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Gunnar Jeschke
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| |
Collapse
|
22
|
Wort JL, Ackermann K, Giannoulis A, Stewart AJ, Norman DG, Bode BE. Sub-Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu II -labelling of Double-Histidine Motifs with Lower Temperature. Angew Chem Int Ed Engl 2019; 58:11681-11685. [PMID: 31218813 PMCID: PMC6771633 DOI: 10.1002/anie.201904848] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Indexed: 12/20/2022]
Abstract
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double-histidine motifs with CuII spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol-specific labelling. However, the non-covalent CuII coordination approach is vulnerable to low binding-affinity. Herein, dissociation constants (KD ) are investigated directly from the modulation depths of relaxation-induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low- to sub-μm CuII KD s under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double-histidine motif for EPR applications even at sub-μm protein concentrations in orthogonally labelled CuII -nitroxide systems using a commercial Q-band EPR instrument.
Collapse
Affiliation(s)
- Joshua L. Wort
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Katrin Ackermann
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Angeliki Giannoulis
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Alan J. Stewart
- School of MedicineBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9TFUK
| | - David G. Norman
- School of Life SciencesUniversity of Dundee, Medical Sciences InstituteDundeeDD1 5EHUK
| | - Bela E. Bode
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| |
Collapse
|
23
|
Wort JL, Ackermann K, Giannoulis A, Stewart AJ, Norman DG, Bode BE. Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu
II
‐labelling of Double‐Histidine Motifs with Lower Temperature. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joshua L. Wort
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Alan J. Stewart
- School of Medicine Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9TF UK
| | - David G. Norman
- School of Life Sciences University of Dundee, Medical Sciences Institute Dundee DD1 5EH UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| |
Collapse
|
24
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
25
|
Keller K, Qi M, Gmeiner C, Ritsch I, Godt A, Jeschke G, Savitsky A, Yulikov M. Intermolecular background decay in RIDME experiments. Phys Chem Chem Phys 2019; 21:8228-8245. [DOI: 10.1039/c8cp07815g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Theoretical and experimental studies of the RIDME background reveal electron and nuclear spectral diffusion contributions.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Christoph Gmeiner
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Anton Savitsky
- Physics Department
- Technical University Dortmund
- Dortmund
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
26
|
Gamble Jarvi A, Ranguelova K, Ghosh S, Weber RT, Saxena S. On the Use of Q-Band Double Electron–Electron Resonance To Resolve the Relative Orientations of Two Double Histidine-Bound Cu2+ Ions in a Protein. J Phys Chem B 2018; 122:10669-10677. [DOI: 10.1021/acs.jpcb.8b07727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kalina Ranguelova
- Bruker BioSpin, Inc., EPR Division, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ralph T. Weber
- Bruker BioSpin, Inc., EPR Division, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Wilson CB, Aronson S, Clayton JA, Glaser SJ, Han S, Sherwin MS. Multi-step phase-cycling in a free-electron laser-powered pulsed electron paramagnetic resonance spectrometer. Phys Chem Chem Phys 2018; 20:18097-18109. [PMID: 29938285 DOI: 10.1039/c8cp01876f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) is a powerful tool for research in chemistry, biology, physics and materials science, which can benefit significantly from moving to frequencies above 100 GHz. In pulsed EPR spectrometers driven by powerful sub-THz oscillators, such as the free electron laser (FEL)-powered EPR spectrometer at UCSB, control of the duration, power and relative phases of the pulses in a sequence must be performed at the frequency and power level of the oscillator. Here we report on the implementation of an all-quasioptical four-step phase cycling procedure carried out directly at the kW power level of the 240 GHz pulses used in the FEL-powered EPR spectrometer. Phase shifts are introduced by modifying the optical path length of a 240 GHz pulse with precision-machined dielectric plates in a procedure we call phase cycling with optomechanical phase shifters (POPS), while numerical receiver phase cycling is implemented in post-processing. The POPS scheme was successfully used to reduce experimental dead times, enabling pulsed EPR of fast-relaxing spin systems such as gadolinium complexes at temperatures above 190 K. Coherence transfer pathway selection with POPS was used to perform spin echo relaxation experiments to measure the phase memory time of P1 centers in diamond in the presence of a strong unwanted FID signal in the background. The large excitation bandwidth of FEL-EPR, together with phase cycling, enabled the quantitative measurement of instantaneous electron spectral diffusion, from which the P1 center concentration was estimated to within 10%. Finally, phase cycling enabled saturation-recovery measurements of T1 in a trityl-water solution at room temperature - the first FEL-EPR measurement of electron T1.
Collapse
Affiliation(s)
- C Blake Wilson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Giannoulis A, Ackermann K, Spindler PE, Higgins C, Cordes DB, Slawin AMZ, Prisner TF, Bode BE. Nitroxide–nitroxide and nitroxide–metal distance measurements in transition metal complexes with two or three paramagnetic centres give access to thermodynamic and kinetic stabilities. Phys Chem Chem Phys 2018; 20:11196-11205. [DOI: 10.1039/c8cp01611a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Broadband and highly resolved EPR distance measurements reveal multimers and their kinetic stabilities.
Collapse
Affiliation(s)
- A. Giannoulis
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| | - K. Ackermann
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| | - P. E. Spindler
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- Goethe-University Frankfurt am Main
- D-60438 Frankfurt am Main
- Germany
| | - C. Higgins
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - D. B. Cordes
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - A. M. Z. Slawin
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - T. F. Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- Goethe-University Frankfurt am Main
- D-60438 Frankfurt am Main
- Germany
| | - B. E. Bode
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| |
Collapse
|
29
|
Engelhard DM, Meyer A, Berndhäuser A, Schiemann O, Clever GH. Di-copper(ii) DNA G-quadruplexes as EPR distance rulers. Chem Commun (Camb) 2018; 54:7455-7458. [DOI: 10.1039/c8cc04053b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Paramagnetic Cu(ii) complexes, immobilized via four-point-attachment to both ends of G-quadruplexes, serve as EPR-based distance rulers for studying DNA structure.
Collapse
Affiliation(s)
- David M. Engelhard
- Depart. of Chemistry and Chemical Biology
- TU Dortmund University
- Dortmund
- Germany
| | - Andreas Meyer
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Andreas Berndhäuser
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Guido H. Clever
- Depart. of Chemistry and Chemical Biology
- TU Dortmund University
- Dortmund
- Germany
| |
Collapse
|