1
|
Otor HO, Hicks JC. Sequential Dosing Strategies for Controlling Selectivity and Plasma-Phase Contributions in Plasma Catalysis. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:6118-6126. [PMID: 40201388 PMCID: PMC11973868 DOI: 10.1021/acs.energyfuels.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Plasma-assisted catalysis has advanced in recent years, particularly for transforming stable reactants at atmospheric pressure and ambient temperature. However, achieving a deeper understanding of the many plasma and catalytic contributions remains a significant goal, as improving product yield and selectivity in plasma catalysis depends on proper catalyst selection, which is often challenging due to the complex interplay between plasma-phase and plasma-surface reactions. A sequential methodology has emerged as a means to decouple the catalyst activity from plasma-phase reactions. In this approach, nonthermal plasma is used in one step to activate and/or convert a gas phase or surface bound reactant, while in a second step, the catalyst directs product formation under steady-state or temperature-programmed conditions. This review examines studies using this technique for reactions involving N2, CO2, and SO2, offering insights into reaction mechanisms and catalyst behavior/selection for these transformations. These systematic studies provide a framework that can be applied to other plasma-assisted reactions. We also highlight remaining questions, propose directions for future studies, and discuss the potential of applying this methodology to other reaction systems.
Collapse
Affiliation(s)
- Hope O. Otor
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Jason C. Hicks
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Belkessa N, Assadi AA, Bouzaza A, Nguyen-Tri P, Amrane A, Khezami L. A review of non-thermal plasma -catalysis: The mutual influence and sources of synergetic effect for boosting volatile organic compounds removal. ENVIRONMENTAL RESEARCH 2024; 257:119333. [PMID: 38849000 DOI: 10.1016/j.envres.2024.119333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
This review is aimed at researchers in air pollution control seeking to understand the latest advancements in volatile organic compound (VOC) removal. Implementing of plasma-catalysis technology for the removal of volatile organic compounds (VOCs) led to a significant boost in terms of degradation yield and mineralization rate with low by-product formation. The plasma-catalysis combination can be used in two distinct ways: (I) the catalyst is positioned downstream of the plasma discharge, known as the "post plasma catalysis configuration" (PPC), and (II) the catalyst is located in the plasma zone and exposed directly to the discharge, called "in plasma catalysis configuration" (IPC). Coupling these two technologies, especially for VOCs elimination has attracted the interest of many researchers in recent years. The term "synergy" is widely reported in their works and associated with the positive effect of the plasma catalysis combination. This review paper investigates the state of the art of newly published papers about catalysis, photocatalysis, non-thermal plasma, and their combination for VOC removal application. The focus is on understanding different synergy sources operating mutually between plasma and catalysis discussed and classified into two main parts: the effect of the plasma discharge on the catalyst and the effect of the catalyst on plasma discharge. This approach has the potential for application in air purification systems for industrial processes or indoor environments.
Collapse
Affiliation(s)
- Nacer Belkessa
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Aymen Amin Assadi
- College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh, 11432, Saudi Arabia.
| | - Abdelkrim Bouzaza
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environnent, Université Du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec, G9A 5H7, Canada
| | - Abdetif Amrane
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Lotfi Khezami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11623, Saudi Arabia
| |
Collapse
|
3
|
Liang Y, Xue Y, Fang D, Tan T, Jiang Z, Shangguan W, Yang J, Pan Y. Reaction mechanism of toluene decomposition in non-thermal plasma: How does it compare with benzene? FUNDAMENTAL RESEARCH 2024; 4:1100-1109. [PMID: 39659502 PMCID: PMC11630718 DOI: 10.1016/j.fmre.2022.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Non-thermal plasma (NTP) catalysis is considered one of the most promising technologies to address a wide range of energy and environmental needs, such as carbon dioxide (CO2) conversion, NH3 synthesis, and volatile organic compounds (VOCs) removal. A systematic approach to optimizing NTP systems benefits from understanding VOCs' fundamental NTP destruction behavior and analyzing the correlations between molecular structures and conversion and selectivity. Herein, the mechanical performance of the toluene destruction in NTP is examined and compared with benzene bearing a similar molecular structure. Different experimental and theoretical techniques are applied, including synchrotron vacuum ultraviolet photoionization mass spectrometry(SVUV-PIMS), thermochemistry, and quantum chemistry. Comparatively, toluene is more readily destroyed under the same NTP conditions than benzene. More intriguingly, the distribution of the decomposition species is significantly different. The theoretical calculations reveal that the abundant methyl radicals generated in toluene decomposition mainly lead to the various species distribution. These radicals promote some reactions, such as the decomposition of o-benzoquinone, one of the key intermediates, thus leading to new reaction pathways and products different from benzene. Finally, the critical mechanistic steps of toluene decomposition under the present non-thermal plasma conditions are established, which include the interactions between toluene and electrons or reactive radicals, the cleavage of the aromatic ring, and the various reaction pathways involving of methyl radicals. This study presents an effective approach to elucidate the distinct fundamental reaction mechanisms arising from subtle structural differences, offering new insights into the underlying plasma chemistry crucial for advancing various promising environmental and energy applications of non-thermal plasma systems.
Collapse
Affiliation(s)
- Yuting Liang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingying Xue
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongxu Fang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi Jiang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
4
|
Baskaran D, Dhamodharan D, Behera US, Byun HS. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. ENVIRONMENTAL RESEARCH 2024; 251:118472. [PMID: 38452912 DOI: 10.1016/j.envres.2024.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, India
| | - Duraisami Dhamodharan
- Interdisciplinary Research Centre for Refining and Advanced Chemicals, King Fahd, University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea.
| |
Collapse
|
5
|
Trad P, Blin-Simiand N, Jeanney P, Pasquiers S, Lemaire J, Louarn E, Mestdagh H, Heninger M. Monitoring of n-hexane degradation in a plasma reactor by chemical ionization mass spectrometry. Analyst 2023; 148:6050-6060. [PMID: 37901987 DOI: 10.1039/d3an01617j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
n-Hexane (C6H14) removal and conversion are investigated in a filamentary plasma generated by a pulsed high-voltage Dielectric Barrier Discharge (DBD) at atmospheric pressure and room temperature in a dry N2/O2 (20%) mixture with C6H14. The degradation of n-hexane and the by-product formation are analyzed in real-time using a high-resolution Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer coupled with Chemical Ionization (CI). As alkanes are reacting slowly with H3O+ ions, two precursor ions were used: O2+ to follow the n-hexane mixing ratios and H3O+ to follow the mixing ratios of organic by-products. As the CI-FTICR technique can work at high mixing ratios, studies were made between 5 and 200 ppm of n-hexane. Absorption spectroscopy is also used to follow ozone and carbon dioxide molecules. We show that the DBD efficiency increases for lower n-hexane mixing ratios and a large number of by-products are identified, with the major compounds being: formaldehyde, acetaldehyde, propanal, carbon dioxide, and carbon monoxide along with nitrate compounds. Based on the nature of the by-products characterized, a mechanism accounting for their formation is proposed.
Collapse
Affiliation(s)
- Perla Trad
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France.
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS60027, 54519 Vandæuvre Cedex, France
| | - Nicole Blin-Simiand
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France.
| | - Pascal Jeanney
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France.
| | - Stéphane Pasquiers
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France.
| | - Joel Lemaire
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Essyllt Louarn
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Hélène Mestdagh
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Michel Heninger
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| |
Collapse
|
6
|
Jiang Z, Fang D, Liang Y, He Y, Einaga H, Shangguan W. Catalytic degradation of benzene over non-thermal plasma coupled Co-Ni binary metal oxide nanosheet catalysts. J Environ Sci (China) 2023; 132:1-11. [PMID: 37336600 DOI: 10.1016/j.jes.2022.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 06/21/2023]
Abstract
Non-thermal plasma (NTP) has been demonstrated as one of the promising technologies that can degrade volatile organic compounds (VOCs) under ambient condition. However, one of the key challenges of VOCs degradation in NTP is its relatively low mineralization rate, which needs to be addressed by introducing catalysts. Therefore, the design and optimization of catalysts have become the focus of NTP coupling catalysis research. In this work, a series of two-dimensional nanosheet Co-Ni metal oxides were synthesized by microwave method and investigated for the catalytic oxidation of benzene in an NTP-catalysis coupling system. Among them, Co2Ni1Ox achieves 60% carbon dioxide (CO2) selectivity (SCO2) when the benzene removal efficiency (REbenzene) reaches more than 99%, which is a significant enhancement compared with the CO2 selectivity obtained without any catalysts (38%) under the same input power. More intriguingly, this SCO2 is also significantly higher than that of single metal oxides, NiO or Co3O4, which is only around 40%. Such improved performance of this binary metal oxide catalyst is uniquely attributed to the synergistic effects of Co and Ni in Co2Ni1Ox catalyst. The introduction of Co2Ni1Ox was found to promote the generation of acrolein significantly, one of the key intermediates found in NTP alone system reported previously, suggest the benzene ring open reaction is promoted. Compared with monometallic oxides NiO and Co3O4, Co2Ni1Ox also shows higher active oxygen proportion, better oxygen mobility, and stronger low-temperature redox capability. The above factors result in the improved catalytic performance of Co2Ni1Ox in the NTP coupling removal of benzene.
Collapse
Affiliation(s)
- Zhi Jiang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongxu Fang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Liang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyu He
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hisahiro Einaga
- Department of Energy and Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Camposeco R, Miguel O, Torres AE, Armas DE, Zanella R. Highly active Ru/TiO 2 nanostructures for total catalytic oxidation of propane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98076-98090. [PMID: 37603243 PMCID: PMC10495525 DOI: 10.1007/s11356-023-29153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Ruthenium is a robust catalyst for a variety of applications in environmental heterogeneous catalysis. The catalytic performance of Ru/TiO2 materials, synthesized by using the deposition precipitation with urea method, was assessed in the catalytic oxidation of C3H8, varying the ruthenium loading. The highest catalytic reactivity was obtained for a Ru loading of 2 wt. % in comparison with the 1, 1.5, 3, and 4 wt. % Ru catalysts. The physicochemical properties of the synthesized materials were investigated by XRD, N2 adsorption, TEM, FT-IR pyridine, H2-TPR, and XPS. The size of ruthenium particles was found to be greatly dependent on the pretreatment gas (air or hydrogen) and the catalytic activity was enhanced by the small-size ruthenium metal nanoparticles, leading to changes in the reduction degree of ruthenium, which also increased the Brönsted and Lewis acidity. Metal to support charge transfer enhanced the reactant adsorption sites while oxygen vacancies on the interface enabled the dissociation of O2 molecules as revealed through DFT calculations. The outstanding catalytic activity of the 2Ru/TiO2 catalysts allowed to convert C3H8 into CO2 at reaction temperatures of about 100 °C. This high activity may be attributed to the metal/support interaction between Ru and TiO2, which promoted the reducibility of Ti4+/Ti3+ and Ru4+/Ru0 species, and to the fast migration of TiO2 lattice oxygen in the catalyst. Furthermore, the Ru/TiO2 catalyst exhibited high stability and reusability for 30 h under reaction conditions, using a GHSV of 45,000 h-1. The underlying alkane-metal interactions were explored theoretically in order to explain the C-H bond activation in propane by the catalyst.
Collapse
Affiliation(s)
- Roberto Camposeco
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México
| | - Omar Miguel
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México
| | - Ana E Torres
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México
| | - Daniela E Armas
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, México.
| |
Collapse
|
8
|
Liu L, Shao G, Ma C, Nikiforov A, De Geyter N, Morent R. Plasma-catalysis for VOCs decomposition: A review on micro- and macroscopic modeling. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131100. [PMID: 36893595 DOI: 10.1016/j.jhazmat.2023.131100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Plasma-catalysis has been recognized as a promising method to decompose hazardous volatile organic compounds (VOCs) since many years ago. To understand the fundamental mechanisms of VOCs decomposition by plasma-catalysis systems, both experimental and modeling studies have been extensively carried out. However, literature on summarized modeling methodologies is still scarce. In this short review, we therefore present a comprehensive overview of modeling methodologies ranging from microscopic to macroscopic modeling in plasma-catalysis for VOCs decomposition. The modeling methods of VOCs decomposition by plasma and plasma-catalysis are classified and summarized. The roles of plasma and plasma-catalyst interactions in VOCs decomposition are also critically examined. Taking the current advances in understanding the decomposition mechanisms of VOCs into account, we finally provide our perspectives for future research directions. This short review aims to stimulate the further development of plasma-catalysis for VOCs decomposition in both fundamental studies and practical applications with advanced modeling methods.
Collapse
Affiliation(s)
- Lu Liu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Guangcai Shao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuanlong Ma
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Kyere-Yeboah K, Bique IK, Qiao XC. Advances of non-thermal plasma discharge technology in degrading recalcitrant wastewater pollutants. A comprehensive review. CHEMOSPHERE 2023; 320:138061. [PMID: 36754299 DOI: 10.1016/j.chemosphere.2023.138061] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
With development and urbanization, the amount of wastewater generated due to human activities drastically increases yearly, causing water pollution and intensifying the already worsened water crisis. Although convenient, conventional wastewater treatment methods such as activated sludge, stabilization ponds, and adsorption techniques cannot fully eradicate the complex and recalcitrant contaminants leading to toxic byproducts generation. Recent advancements in wastewater treatment techniques, specifically non-thermal plasma technology, have been extensively investigated for the degradation of complex pollutants in wastewater. Non-thermal plasma is an effective alternative for degrading and augmenting the biodegradability of recalcitrant pollutants due to its ability to generate reactive species in situ. This article critically reviews the non-thermal plasma technology, considering the plasma discharge configuration and reactor types. Furthermore, the influence of operational parameters on the efficiency of the plasma systems and the reactive species generated by the system during discharge has gained significant interest and hence been discussed. Also, the application of non-thermal plasma technology for the degradation of pharmaceuticals, pesticides, and dyes and the inactivation of microbial activities are outlined in this review article. Additionally, optimistic applications involving the combination of non-thermal plasma and catalysts and pilot and industrial-scale projects utilizing non-thermal plasma technology have been addressed. Concluding perceptions on the challenges and future perspectives of the non-thermal technology on wastewater treatment are accentuated. Overall, this review outlines a comprehensive understanding of the non-thermal plasma technology for recalcitrant pollutant degradation from a scientific perspective providing detailed instances for reference.
Collapse
Affiliation(s)
- Kwasi Kyere-Yeboah
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ikenna Kemba Bique
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xiu-Chen Qiao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
10
|
Review of Emission Characteristics and Purification Methods of Volatile Organic Compounds (VOCs) in Cooking Oil Fume. Processes (Basel) 2023. [DOI: 10.3390/pr11030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Volatile organic compounds (VOCs) in cooking oil fumes need to be efficiently removed due to the significant damage they cause to the environment and human health. This review discusses the emission characteristics, which are influenced by different cooking temperatures, cooking oils, and cuisines. Then, various cooking oil fume purification methods are mainly classified into physical capture, chemical decomposition, and combination methods. VOCs removal rate, system operability, secondary pollution, application area, and cost are compared. The catalytic combustion method was found to have the advantages of high VOC removal efficiency, environmental protection, and low cost. Therefore, the last part of this review focuses on the research progress of the catalytic combustion method and summarizes its mechanisms and catalysts. The Marse-van Krevelen (MVK), Langmuir-Hinshelwood (L-H), and Eley-Rideal (E-R) mechanisms are analyzed. Noble metal and non-noble metal catalysts are commonly used. The former showed excellent activity at low temperatures due to its strong adsorption and electron transfer abilities, but the high price limits its application. The transition metals primarily comprise the latter, including single metal and composite metal catalysts. Compared to single metal catalysts, the interaction between metals in composite metal catalysts can further enhance the catalytic performance.
Collapse
|
11
|
Ding Y, Liu W, Huang W, Gao G, Liu Z, Xu H, Qu Z, Yan N. Enhancement of Flue Gas Low-Concentration Toluene Removal in Pulsed Plasma Coupling with Porous Ceramic Modified Catalyst Reactor. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Yuchen Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Liu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
- Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210019, China
- Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing 210019, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Gan G, Fan S, Li X, Zhang Z, Hao Z. Adsorption and membrane separation for removal and recovery of volatile organic compounds. J Environ Sci (China) 2023; 123:96-115. [PMID: 36522017 DOI: 10.1016/j.jes.2022.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity, high volatility, and poor degradability. It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations. In China, clear directions and requirements for reduction of VOCs have been given in the "national plan on environmental improvement for the 13th Five-Year Plan period". Therefore, the development of efficient technologies for removal and recovery of VOCs is of great significance. Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions. Among them, adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects. This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs. Firstly, adsorption and membrane separation were found to be the research hotspots through bibliometric analysis. Then, a comprehensive understanding of their mechanisms, factors, and current application statuses was discussed. Finally, the challenges and perspectives in this emerging field were briefly highlighted.
Collapse
Affiliation(s)
- Guoqiang Gan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
13
|
Wang H, Sun S, Nie L, Zhang Z, Li W, Hao Z. A review of whole-process control of industrial volatile organic compounds in China. J Environ Sci (China) 2023; 123:127-139. [PMID: 36521978 DOI: 10.1016/j.jes.2022.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) play an important role in the formation of ground-level ozone and secondary organic aerosol (SOA), and they have been key issues in current air pollution prevention and control in China. Considerable attention has been paid to industrial activities due to their large and relatively complex VOCs emissions. The present research aims to provide a comprehensive review on whole-process control of industrial VOCs, which mainly includes source reduction, collection enhancement and end-pipe treatments. Lower VOCs materials including water-borne ones are the keys to source substitution in industries related to coating and solvent usage, leak detection and repair (LDAR) should be regarded as an efficient means of source reduction in refining, petrochemical and other chemical industries. Several types of VOCs collection methods such as gas-collecting hoods, airtight partitions and others are discussed, and airtight collection at negative pressure yields the best collection efficiency. Current end-pipe treatments like UV oxidation, low-temperature plasma, activated carbon adsorption, combustion, biodegradation, and adsorption-combustion are discussed in detail. Finally, several recommendations are made for future advanced treatment and policy development in industrial VOCs emission control.
Collapse
Affiliation(s)
- Hailin Wang
- Beijing Key Laboratory for Urban Atmospheric VOCs Pollution Control and Technology Application, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Shumei Sun
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Lei Nie
- Beijing Key Laboratory for Urban Atmospheric VOCs Pollution Control and Technology Application, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Wenpeng Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
14
|
Efficient toluene oxidation by post plasma catalysis over hollow Co3O4 nanospheres. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Li T, Wang Z, Shi Y, Yao X. Preparation and Performance of Carbon-Based Ce-Mn Catalysts for Efficient Degradation of Acetone at Low Temperatures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416879. [PMID: 36554760 PMCID: PMC9779373 DOI: 10.3390/ijerph192416879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 05/28/2023]
Abstract
Based on the porous carbon material from citric acid residue, catalysts of different Ce-Mn ratios were prepared with incipient-wetness impregnation (IWI) to delve into their acetone-degrading performance and relevant mechanisms. When the Ce-Mn molar ratio is 0.8, the prepared catalyst Ce0.8-Mn/AC shows abundant and uniformly dispersed Mn and Ce particles on the surface. The content of Mn and Ce on the Ce0.8-Mn/AC surface reaches 5.64% and 0.75%, respectively. At the acetone concentration of 238 mg/m3 (100 ppm), the laws of acetone degradation in different catalysts at different catalyzing temperatures and with various oxygen concentrations were studied, and we found that the rate of acetone degradation by Ce0.8-Mn/AC can exceed 90% at 250 °C. Cerium oxide and manganese oxide are synergistic in the catalytic degradation of acetone. Adding cerium to manganese-based catalysts can increase the oxygen migration rate in the catalysts and thus raise the reduction rate of lattice oxygen in manganese oxide. The results offer new ideas and approaches for the efficient and comprehensive utilization of bio-fermentation by-products, and for the development of cheap and high degradation performance catalysts for acetone.
Collapse
Affiliation(s)
- Tong Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Zhibo Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
16
|
Zhao Y, Zhuang Y, Ye K, Wu Y, Luo C, Li D, Zhang Y, Yao J, Ali S. Decomposition of VOCs by a novel catalytic DBD plasma reactor: A pilot study. ChemistrySelect 2022. [DOI: 10.1002/slct.202201614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yafei Zhao
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Ye Zhuang
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Kai Ye
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Yifei Wu
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Changhe Luo
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Dan Li
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Yi Zhang
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Jin Yao
- School of Chemistry and Materials Science University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Sajid Ali
- Department of Chemical and Biochemical Engineering Xiamen University Xiamen Fujian Xiamen 361005 China)
| |
Collapse
|
17
|
Plasma-coupled catalysis in VOCs removal and CO2 conversion: Efficiency enhancement and synergistic mechanism. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Ma K, Wang Y, Zheng Y, Xiao J, Xu L, Dai X, Wang Z. Adsorption Mechanism and Optical Behaviors of Typical Volatile Organic Compounds on Pristine and Cu/Ni‐Modified C
3
N Monolayer: A First‐Principles Study. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kexin Ma
- College of Science Guilin University of Technology Guilin 541008 China
| | - Yanwen Wang
- College of Science Guilin University of Technology Guilin 541008 China
| | - Yunxin Zheng
- College of Science Guilin University of Technology Guilin 541008 China
| | - Jianrong Xiao
- College of Science Guilin University of Technology Guilin 541008 China
| | - Liang Xu
- Energy Materials Computing Center, School of Energy and Mechanical Engineering Jiangxi University of Science and Technology Nanchang 330013 China
| | - Xueqiong Dai
- College of Science Guilin University of Technology Guilin 541008 China
| | - Zhiyong Wang
- College of Science Guilin University of Technology Guilin 541008 China
| |
Collapse
|
19
|
Purification Technologies for NOx Removal from Flue Gas: A Review. SEPARATIONS 2022. [DOI: 10.3390/separations9100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Nitrogen oxide (NOx) is a major gaseous pollutant in flue gases from power plants, industrial processes, and waste incineration that can have adverse impacts on the environment and human health. Many denitrification (de-NOx) technologies have been developed to reduce NOx emissions in the past several decades. This paper provides a review of the recent literature on NOx post-combustion purification methods with different reagents. From the perspective of changes in the valence of nitrogen (N), purification technologies against NOx in flue gas are classified into three approaches: oxidation, reduction, and adsorption/absorption. The removal processes, mechanisms, and influencing factors of each method are systematically reviewed. In addition, the main challenges and potential breakthroughs of each method are discussed in detail and possible directions for future research activities are proposed. This review provides a fundamental and systematic understanding of the mechanisms of denitrification from flue gas and can help researchers select high-performance and cost-effective methods.
Collapse
|
20
|
Darabdhara J, Ahmaruzzaman M. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. CHEMOSPHERE 2022; 304:135261. [PMID: 35697109 DOI: 10.1016/j.chemosphere.2022.135261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
With the growth of globalization which has been the primary cause of water pollution, it is utmost necessary for us living being to have access to clean water for the purpose of drinking, washing and various other useful applications. With the purpose of future security and to restore our ecological balance, it is essential to give much significance towards the removal of unwanted toxic contaminants from our water resources. In this regard adsorptive removal of toxic pollutants from wastewater with porous adsorbent is regarded as one of the most promising way for water decontamination process. Metal organic frameworks (MOFs) comprising of uniformly arranged pores, abundant active sites and containing an easily tunable structure has aroused as a promising material for adsorbent to remove the unwanted contaminants from water sources. The adsorption of pollutants by the different MOFs surface are driven by various interactions including π-π, acid-base, electrostatic and H-bonding etc. On the other hand, the removal of various contaminants by MOFs is influenced by various factors including pH, temperature and initial concentration. In this review we will specifically discuss the adsorptive removal of different organic and inorganic pollutants present in our water systems with the use of MOFs as adsorbent along with the various factors and interaction mechanism manipulating the adsorption behaviour.
Collapse
Affiliation(s)
- Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
21
|
Decomposition of Naphthalene by Dielectric Barrier Discharge in Conjunction with a Catalyst at Atmospheric Pressure. Catalysts 2022. [DOI: 10.3390/catal12070740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, coaxial dielectric barrier discharge (DBD) plasma, in conjunction with a metal oxide catalyst, was used to degrade naphthalene. The characteristics of plasma discharge were studied by measuring voltage and current waveforms and the Lissajous figure. The effects of different parameters of the process on naphthalene decomposition in air were investigated. XRD, BET, and SEM data were used to investigate the nature, specific surface area, and surface morphology of the catalyst. The results show that the mineralization of naphthalene reached 82.2% when the initial naphthalene concentration was 21 ppm and the total gas flow rate was 1 L/min in the DBD reactor filled with Al2O3. The mineralization of naphthalene first increased and then became stable with the increase in treatment time and discharge power. The TiO2 catalyst has more apparent advantages than the two other studied catalysts in terms of the removal efficiency and mineralization of naphthalene due to this catalyst’s large specific surface area, porous structure, and photocatalytic properties. In addition, the introduction of a small amount of water vapor can promote the mineralization and CO2 selectivity of naphthalene. With further increases in the water vapor, Fe2O3 has a negative effect on the naphthalene oxidation due to its small pore size. The TiO2 catalyst can overcome the adverse effects of water molecule attachment due to its photocatalytic properties.
Collapse
|
22
|
Chang T, Wang Y, Wang Y, Zhao Z, Shen Z, Huang Y, Veerapandian SKP, De Geyter N, Wang C, Chen Q, Morent R. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154290. [PMID: 35248631 DOI: 10.1016/j.scitotenv.2022.154290] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
It is urgent to control the emission of volatile organic compounds (VOCs) due to their harmful effects on the environment and human health. A hybrid system integrating non-thermal-plasma and catalysis is regarded as one of the most promising technologies for VOCs removal due to their high VOCs removal efficiency, product selectivity and energy efficiency. This review systematically documents the main findings and improvements of VOCs removal using plasma-catalysis technology in recent 10 years. To better understand the fundamental relation between different aspects of this research field, this review mainly addresses the catalyst development, key influential factors, generation of by-products and reaction mechanism of VOCs decomposition in the plasma-catalysis process. Also, a comparison of the performance in various VOCs removal processes is provided. Particular emphasis is given to the importance of the selected catalyst and the synergy of plasma and catalyst in the VOCs removal in the hybrid system, which can be used as a reference point for future studies in this field.
Collapse
Affiliation(s)
- Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China; State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yaqi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zuotong Zhao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Huang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Savita K P Veerapandian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium.
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Rino Morent
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Pentane Depletion by a Surface DBD and Catalysis Processing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We study pentane depletion using a hybrid plasma system based on a surface dielectric barrier discharge (SDBD), with and without a catalyst, and as a function of plasma power and alkane concentration. We evaluate pentane decomposition efficiency based on plasma power and quantify the role of the catalyst in the resulting depletion of intermediate products. Analyses of the temporal evolution of pentane and the intermediate decomposition products allow us to estimate the corresponding decomposition rates according to the plasma parameters. We find that depletion efficiency increases as a function of pentane concentration. Furthermore, it is shown that the catalytic processes are responsible for a significant increase in the depletion rates of the intermediate reaction products, thus contributing to the total abatement process of pentane.
Collapse
|
24
|
Chen S, Wang H, Dong F. Activation and characterization of environmental catalysts in plasma-catalysis: Status and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128150. [PMID: 34979387 DOI: 10.1016/j.jhazmat.2021.128150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plasma-catalysis has attracted great attentions in environmental/energy-related fields, but the synergetic mechanism still suffers intractable defects. Key issues are that what kind of catalysts are applicable for plasma system, how are they activated in plasma, and how to characterize them in plasma. This review systematically gives a comprehensive summarization of the selection of catalysts and its activation mechanism in plasma, based on the character of plasma, including physical effects containing the enhancement of discharge intensity and adsorption of reactants, and the utilization of plasma-generated active species such as·O, heat, O3, ultraviolet light and e* . Focus is given to the illumination of the activation mechanisms of catalysts when placed in plasma zone. Subsequently, the novel characterization techniques for catalysts, which may associate properties to performance, are critically overviewed. The challenges and opportunities for the activation and characterizations of catalysts are proposed, and future perspectives are suggested about where the efforts should be made. It is expected that a bridge between catalysts design and character of plasma can be built to shed light on the synergetic mechanism for plasma-catalysis and design of new plasma-catalysis systems.
Collapse
Affiliation(s)
- Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Haiqiang Wang
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
25
|
Chen C, Kosari M, He C, Ma M, Tian M, Jiang Z, Albilali R. Realizing Toluene Deep Mineralization by Coupling Nonthermal Plasma and Nitrogen-Enriched Hollow Hybrid Carbon. ACS APPLIED MATERIALS & INTERFACES 2022; 14:990-1001. [PMID: 34958541 DOI: 10.1021/acsami.1c20157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving excellent efficiency to mineralize volatile organic compounds (VOCs) under nonthermal plasma catalysis (NTP-catalysis) systems tremendously relies on the catalyst design. Herein, we report a dual-template strategy for synthesizing a core-shell structured nitrogen-enriched hollow hybrid carbon (N-HHC) by a facile pyrolysis of a Mn-ZIF-8@polydopamine core-shell precursor. N-HHC exhibits a remarkable plasma synergy effect and superior degradation efficiency for toluene (up to 90% with a specific input energy of 281 J/L), excellent CO2 selectivity (>45%), and byproduct-inhibiting capability. Such outstanding functionality of the developed N-HHC is uniquely attributed to its hollow multistage and channeling structure, high concentration of O3-decomposing species (pyrrolic and oxide pyridinic-N), and abundant ZnO active sites. Shedding light on an efficient synthetic strategy for designing an advanced nanocatalyst with enhanced VOC destruction in the NTP-catalysis system, the present results could be extended to design other N-doped metal/metal oxide-decorated hollow porous carbons for environment-related applications.
Collapse
Affiliation(s)
- Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Reem Albilali
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
26
|
Böddecker A, Bodnar A, Schücke L, Giesekus J, Wenselau K, Nguyen-Smith RT, Oppotsch T, Oberste-Beulmann C, Muhler M, Gibson AR, Awakowicz P. A scalable twin surface dielectric barrier discharge system for pollution remediation at high gas flow rates. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00167e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of conversion of volatile organic compounds by a scaled-up surface dielectric barrier discharge reactor designed for industrial applications.
Collapse
Affiliation(s)
- Alexander Böddecker
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Arisa Bodnar
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Lars Schücke
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Jonas Giesekus
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Katja Wenselau
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Ryan T. Nguyen-Smith
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Timothy Oppotsch
- Laboratory of Industrial Chemistry (LTC), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christian Oberste-Beulmann
- Laboratory of Industrial Chemistry (LTC), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry (LTC), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Andrew R. Gibson
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
- Research Group for Biomedical Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Peter Awakowicz
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Liu J, Ji Y, Zhu S, Guo T, Xu L, Dong J, Cheng P. C-dot doping for enhanced catalytic performance of TiO 2/5A for toluene degradation in non-thermal plasma-catalyst system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2480-2492. [PMID: 34374012 DOI: 10.1007/s11356-021-15840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Non-thermal plasma (NTP) is gaining attention as a powerful tool to induce various reactions. The combination of NTP with catalysts has been successfully used to degrade volatile organic compounds (VOCs) for pollution control. In this study, a series of TiO2-C/5A catalysts, synthesized by carbon dots (C-dots) that decorate TiO2 by sol-gel and wetness impregnation methods, were incorporated with a dielectric barrier discharge (DBD) reactor in a single-stage structure to degrade toluene at atmospheric pressure and room temperature. A proton-transfer reaction mass spectrometer and a CO2 analyzer were used to monitor the concentration variations of organic by-products and CO2 online. The effects of input power, mass ratio of C-dots/TiO2 (TiO2/5A (0 wt%), TiO2-C1/5A (2.5 wt%), TiO2-C2/5A (5 wt%), TiO2-C3/5A (10 wt%)), gas flow rate, initial concentration of toluene on the toluene degradation efficiency, and CO2 selectivity were studied. The plasma-catalyst hybrid system could effectively improve the energy efficiency and reaction selectivity, attaining a maximum toluene degradation efficiency of 99.6% and CO2 selectivity of 83.0% compared to 79.5% and 37.5%, respectively, using the conventional plasma alone. Moreover, the generation of organic by-products also declined dramatically, averaging only half as much in plasma alone. The results also indicated that the appropriate amount of C-dot doping could greatly improve the catalyst efficiency in the hybrid plasma system. This is because the interaction between C-dots and TiO2 favors the formation of photoelectron holes and reduces the energy band gap and the recombination rate of photogenerated electron holes, which facilitates the generation of more active species on the catalyst surface, thereby leading to a more effective degradation reaction. These observations will provide guidance for the interaction studies between NTP and catalysts, not only for the exploration of new chemical mechanisms of aromatic compounds, but also for the screening of favorable materials for the desired reactions.
Collapse
Affiliation(s)
- Jixing Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yanyan Ji
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shuping Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Teng Guo
- Institute of Environment Safety and Pollution Control, Jinan University, Guangzhou, 510632, China
| | - Li Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Junguo Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ping Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
28
|
Synthesis of Rod-Like Co3O4 Catalyst Derived from Co-MOFs with Rich Active Sites for Catalytic Combustion of Toluene. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Liang Y, Li J, Xue Y, Tan T, Jiang Z, He Y, Shangguan W, Yang J, Pan Y. Benzene decomposition by non-thermal plasma: A detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126584. [PMID: 34273887 DOI: 10.1016/j.jhazmat.2021.126584] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 07/03/2021] [Indexed: 05/15/2023]
Abstract
Non-thermal Plasma (NTP) catalysis is considered as one of the most promising technologies to address a wide range of environmental needs, such as volatile organic compounds (VOCs) and NOx removal. To meet the updated environmental emission standard, the NTP catalysis reaction system needs to be better understood and further optimized. In this work, the degradation process of benzene in NTP, which is still regarded as a "black box" process, was explored by synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). For the first time, we observed over 20 representative species by PIMS and identified their structures accurately by photoionization efficiency (PIE) spectra. Phenol, acetylene and acrolein were recognized as the three main products. More intriguingly, concentration profiles demonstrated that a large amount of acrolein and also several higher-order products, which were usually neglected in previous research, were produced during the NTP destruction process. The details of the benzene degradation reaction mechanism, were finally established by the combination of SVUV-PIMS results, thermochemistry and theoretical calculations. This work helps to complete the mechanistic picture of plasma chemistry, which may be helpful on raveling the more complicated NTP catalysis mechanism in the future therefore contributing to design of improved NTP system for environmental applications.
Collapse
Affiliation(s)
- Yuting Liang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingying Xue
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi Jiang
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyu He
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| |
Collapse
|
30
|
Qi Y, Li C, Li H, Yang H, Guan J. Elimination or Removal of Ethylene for Fruit and Vegetable Storage via Low-Temperature Catalytic Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10419-10439. [PMID: 34463513 DOI: 10.1021/acs.jafc.1c02868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ethylene acts as an important hormone to trigger the ripening and senescence of fruits and vegetables (F&V). Thus, it is essential to eliminate trace ethylene and prevent F&V losses effectively. There are several technologies currently applying to control the ethylene concentration in the storage and transportation environment, including adsorption, gene modification, oxidation, etc. These protocols will be compared, and special attention will be paid to the low-temperature catalytic oxidation that has already been applied to practical production in this review. The active sites, supports, and reaction and deactivation mechanism of the catalysts for the low-temperature ethylene oxidation will be discussed and evaluated systematically to provide new insights for the development of effective catalysts, along with the suggestion of some perspectives for future research on this important catalytic system for F&V preservation.
Collapse
Affiliation(s)
- Ying Qi
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Huaming Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Junfeng Guan
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, People's Republic of China
| |
Collapse
|
31
|
Li W, Jiang Q, Li D, Ao Z, An T. Density functional theory investigation on selective adsorption of VOCs on borophene. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Bao L, Wu D. Effect of Acid Treatment on the Catalytic Activity and Mechanical Stability of SmMnO
3
/Cordierite Monolithic Catalysts. ChemistrySelect 2021. [DOI: 10.1002/slct.202102001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Bao
- Department of Chemical Engineering School of Chemistry and Chemical Engineering Southeast University Jiangning District Nanjing 211189 PR China
| | - Dongfang Wu
- Department of Chemical Engineering School of Chemistry and Chemical Engineering Southeast University Jiangning District Nanjing 211189 PR China
| |
Collapse
|
33
|
Matyakubov N, Nguyen DB, Saud S, Heo I, Kim SJ, Kim YJ, Lee JH, Mok YS. Effective practical removal of acetaldehyde by a sandwich-type plasma-in-honeycomb reactor under surrounding ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125608. [PMID: 33730645 DOI: 10.1016/j.jhazmat.2021.125608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The effective removal of acetaldehyde by humidified air plasma was investigated with a high throughput of contaminated gas in a sandwiched honeycomb catalyst reactor at surrounding ambient temperature. Here, acetaldehyde at the level of a few ppm was successfully oxidized by the honeycomb plasma discharge despite the harsh condition of large water content in the feed gas. The conversion rate of acetaldehyde increased significantly with the presence of catalysts coating on the surface channels. The increased conversion rate was also obtained with a high specific energy input (SEI) and total flow rate. Interestingly, the conversion changed negligibly under the acetaldehyde concentration range from 5 to 20 ppm. However, the conversion rate decreased toward increased water amount in the feed gas. Notably, about 60% of acetaldehyde in the feed was oxidized under SEI of 40 J/L at water amounts ≤ 2.5%, approximately 0.5 g/kWh for acetaldehyde removal. Also, the plasma-catalyst reaction was superior to the thermal reactive catalyst for acetaldehyde removal in airborne pollutants. In comparison with other plasma-catalyst sources for acetaldehyde removal, the energy efficiency under the condition is comparable. Moreover, the honeycomb plasma discharge features high throughput, avoiding pressure drop, and straightforward reactor configuration, suggesting potential practical applications.
Collapse
Affiliation(s)
- Nosir Matyakubov
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Duc Ba Nguyen
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea; Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam.
| | - Shirjana Saud
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Iljeong Heo
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sang-Joon Kim
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Jin Kim
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jin Hee Lee
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
34
|
Adsorption Followed by Plasma Assisted Catalytic Conversion of Toluene into CO2 on Hopcalite in an Air Stream. Catalysts 2021. [DOI: 10.3390/catal11070845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The abatement of toluene was studied in a sequential adsorption-plasma catalysis (APC) process. Within this process, Hopcalite was used as bifunctional material: as adsorbent (storage stage) and as catalyst via the oxidation of adsorbed toluene (discharge stage). It was observed that the desorption and oxidation activity of the adsorbed toluene was significantly affected the process variables. In addition, the adsorption time influenced the CO2 selectivity and CO2 yield by changing the interaction between the catalyst and the plasma generated species. At least four APC sequences were performed for each examined condition suggesting that Hopcalite is very stable under plasma exposure during all the sequences. Consequently, these results could contribute to advance the plasma–catalyst system with an optimal VOC oxidation efficiency. The catalytic activity, amount of toluene adsorbed, amount of toluene desorbed and product formation have been quantified by FT-IR. Moreover, the catalyst was characterized by XRD, H2-TPR, N2 adsorption–desorption analysis and XPS. Hopcalite shows a good CO2 selectivity and CO2 yield when the APC process is performed with an adsorption time of 20 min and a plasma treatment with a discharge power of 46 W which leads to a low energy cost of 11.6 kWh·m−3 and energy yields of toluene and CO2 of 0.18 (±0.01) g·kWh−1 and 0.48 (±0.06) g·kWh−1 respectively.
Collapse
|
35
|
Investigation of ZrMnFe/Sepiolite Catalysts on Toluene Degradation in a One-Stage Plasma-Catalysis System. Catalysts 2021. [DOI: 10.3390/catal11070828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Toluene removal by double dielectric barrier charge (DDBD) plasma combined with a ZrMnFe/Sepiolite (SEP) catalyst was investigated and compared with the results from Fe/SEP, Mn/SEP and MnFe/SEP ones. All the catalysts were prepared by the impregnation method and characterized by XRD, BET, ICP, SEM, TEM, H2-TPR and XPS. The effect of catalysts on toluene degradation efficiency, carbon balance, CO2 selectivity and residual O3 concentration was studied. The experimental results indicated that the ZrMnFe/SEP catalyst presented the best catalytic performance. This is because of the high content of lattice oxygen contained in its surface, owing to the addition of Zr. When the SIE was 740 J/L, the highest toluene removal efficiency (87%), carbon balance (93%) and CO2 selectivity (51%) were obtained. The ZrMnFe/SEP catalyst had a better ozone inhibition effect than other catalysts. The catalyst has good stability, which the toluene removal efficiency, carbon balance and CO2 selectivity did not decrease significantly after 36 h of work at a constant energy density. The results indicated that the ZrMnFe/SEP catalyst is an efficient catalyst for degradation of toluene by plasma-catalyst measures.
Collapse
|
36
|
Parvizi N, Rahemi N, Allahyari S, Tasbihi M, Ghareshabani E. Synthesis of La0.8Zn0.2MnO3 nanocatalysts for decomposition of VOCs in a DBD plasma reactor; Influence of sol-gel parameters. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Audemar M, Vallcorba O, Peral I, Thomann JS, Przekora A, Pawlat J, Canal C, Ginalska G, Kwiatkowski M, Duday D, Hermans S. Catalytic enrichment of plasma with hydroxyl radicals in the aqueous phase at room temperature. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01557a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Iron oxide on mesoporous silica gave a synergy with plasma jet for HO˙ radical production at neutral pH.
Collapse
|
38
|
Abstract
Plasma catalysis has been utilized in many environmental applications for removal of various hydrocarbons including tars. The aim of this work was to study the tars removal process by atmospheric pressure DBD non-thermal plasma generated in combination with packing materials of various composition and catalytic activity (TiO2, Pt/γAl2O3, BaTiO3, γAl2O3, ZrO2, glass beads), dielectric constant (5–4000), shape (spherical and cylindrical pellets and beads), size (3–5 mm in diameter, 3–8 mm in length), and specific surface area (37–150 m2/g). Naphthalene was chosen as a model tar compound. The experiments were performed at a temperature of 100 °C and a naphthalene initial concentration of approx. 3000 ppm, i.e., under conditions that are usually less favorable to achieve high removal efficiencies. For a given specific input energy of 320 J/L, naphthalene removal efficiency followed a sequence: TiO2 > Pt/γAl2O3 > ZrO2 > γAl2O3 > glass beads > BaTiO3 > plasma only. The efficiency increased with the increasing specific surface area of a given packing material, while its shape and size were also found to be important. By-products of naphthalene decomposition were analyzed by means of FTIR spectrometry and surface of packing materials by SEM analysis.
Collapse
|
39
|
Non-Thermal Plasma Coupled with Catalyst for the Degradation of Water Pollutants: A Review. Catalysts 2020. [DOI: 10.3390/catal10121438] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-thermal plasma is one of the most promising technologies used for the degradation of hazardous pollutants in wastewater. Recent studies evidenced that various operating parameters influence the yield of the Non-Thermal Plasma (NTP)-based processes. In particular, the presence of a catalyst, suitably placed in the NTP reactor, induces a significant increase in process performance with respect to NTP alone. For this purpose, several researchers have studied the ability of NTP coupled to catalysts for the removal of different kind of pollutants in aqueous solution. It is clear that it is still complicated to define an optimal condition that can be suitable for all types of contaminants as well as for the various types of catalysts used in this context. However, it was highlighted that the operational parameters play a fundamental role. However, it is often difficult to understand the effect that plasma can induce on the catalyst and on the production of the oxidizing species most responsible for the degradation of contaminants. For this reason, the aim of this review is to summarize catalytic formulations coupled with non-thermal plasma technology for water pollutants removal. In particular, the reactor configuration to be adopted when NTP was coupled with a catalyst was presented, as well as the position of the catalyst in the reactor and the role of the main oxidizing species. Furthermore, in this review, a comparison in terms of degradation and mineralization efficiency was made for the different cases studied.
Collapse
|
40
|
Influence of Operation Conditions on the Performance of Non-thermal Plasma Technology for VOC Pollution Control. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Plasma-assisted catalytic reduction of SO2 to elemental sulfur: Influence of nonthermal plasma and temperature on iron sulfide catalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Plasma-Catalysis for Volatile Organic Compounds Decomposition: Complexity of the Reaction Pathways during Acetaldehyde Removal. Catalysts 2020. [DOI: 10.3390/catal10101146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acetaldehyde removal was carried out using non-thermal plasma (NTP) at 150 J·L−1, and plasma-driven catalysis (PDC) using Ag/TiO2/SiO2, at three different input energies—70, 350 and 1150 J·L−1. For the experimental configuration used, the PDC process showed better results in acetaldehyde (CH3CHO) degradation. At the exit of the reactor, for both processes and for all the used energies, the same intermediates in CH3CHO decomposition were identified, except for acetone which was only produced in the PDC process. In order to contribute to a better understanding of the synergistic effect between the plasma and the catalyst, acetaldehyde/catalyst surface interactions were studied by diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS). These measurements showed that different species such as acetate, formate, methoxy, ethoxy and formaldehyde are present on the surface, once it has been in contact with the plasma. A reaction pathway for CH3CHO degradation is proposed taking into account all the identified compounds in both the gas phase and the catalyst surface. It is very likely that in CH3CHO degradation the presence of methanol, one of the intermediates, combined with oxygen activation by silver atoms on the surface, are key elements in the performance of the PDC process.
Collapse
|
43
|
Ollegott K, Wirth P, Oberste‐Beulmann C, Awakowicz P, Muhler M. Fundamental Properties and Applications of Dielectric Barrier Discharges in Plasma‐Catalytic Processes at Atmospheric Pressure. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kevin Ollegott
- Ruhr University Bochum Laboratory of Industrial Chemistry Universitätsstraße 150 44780 Bochum Germany
| | - Philipp Wirth
- Ruhr University Bochum Institute for Electrical Engineering and Plasma Technology (AEPT) Universitätsstraße 150 44780 Bochum Germany
| | | | - Peter Awakowicz
- Ruhr University Bochum Institute for Electrical Engineering and Plasma Technology (AEPT) Universitätsstraße 150 44780 Bochum Germany
| | - Martin Muhler
- Ruhr University Bochum Laboratory of Industrial Chemistry Universitätsstraße 150 44780 Bochum Germany
| |
Collapse
|
44
|
AlQahtani MS, Knecht SD, Wang X, Bilén SG, Song C. One-Step Low-Temperature Reduction of Sulfur Dioxide to Elemental Sulfur by Plasma-Enhanced Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad S. AlQahtani
- Clean Fuels & Catalysis Program, EMS Energy Institute, Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sean D. Knecht
- School of Engineering Design, Technology, and Professional Programs, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaoxing Wang
- Clean Fuels & Catalysis Program, EMS Energy Institute, Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sven G. Bilén
- School of Engineering Design, Technology, and Professional Programs, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chunshan Song
- Clean Fuels & Catalysis Program, EMS Energy Institute, Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
45
|
Bo Z, Yang S, Kong J, Zhu J, Wang Y, Yang H, Li X, Yan J, Cen K, Tu X. Solar-Enhanced Plasma-Catalytic Oxidation of Toluene over a Bifunctional Graphene Fin Foam Decorated with Nanofin-like MnO 2. ACS Catal 2020; 10:4420-4432. [PMID: 32296596 PMCID: PMC7147263 DOI: 10.1021/acscatal.9b04844] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/27/2020] [Indexed: 12/20/2022]
Abstract
In this work, we propose a hybrid and unique process combining solar irradiation and post-plasma catalysis (PPC) for the effective oxidation of toluene over a highly active and stable MnO2/GFF (bifunctional graphene fin foam) catalyst. The bifunctional GFF, serving as both the catalyst support and light absorber, is decorated with MnO2 nanofins, forming a hierarchical fin-on-fin structure. The results show that the MnO2/GFF catalyst can effectively capture and convert renewable solar energy into heat (absorption of >95%), leading to a temperature rise (55.6 °C) of the catalyst bed under solar irradiation (1 sun, light intensity 1000 W m-2). The catalyst weight (9.8 mg) used in this work was significantly lower (10-100 times lower) than that used in previous studies (usually 100-1000 mg). Introducing solar energy into the typical PPC process via solar thermal conversion significantly enhances the conversion of toluene and CO2 selectivity by 36-63%, reaching ∼93% for toluene conversion and ∼83% for CO2 selectivity at a specific input energy of ∼350 J L-1, thus remarkably reducing the energy consumption of the plasma-catalytic gas cleaning process. The energy efficiency for toluene conversion in the solar-enhanced post-plasma catalytic (SEPPC) process reaches up to 12.7 g kWh-1, ∼57% higher than that using the PPC process without solar irradiation (8.1 g kWh-1), whereas the energy consumption of the SEPPC process is reduced by 35-52%. Moreover, the MnO2/GFF catalyst exhibits an excellent self-cleaning capability induced by solar irradiation, demonstrating a superior long-term catalytic stability of 72 h at 1 sun, significantly better than that reported in previous works. The prominent synergistic effect of solar irradiation and PPC with a synergistic capacity of ∼42% can be mainly attributed to the solar-induced thermal effect on the catalyst bed, boosting ozone decomposition (an almost triple enhancement from ∼0.18 gO3 g-1 h-1 for PPC to ∼0.52 gO3 g-1 h-1 for SEPPC) to generate more oxidative species (e.g., O radicals) and enhancing the catalytic oxidation on the catalyst surfaces, as well as the self-cleaning capacity of the catalyst at elevated temperatures driven by solar irradiation. This work opens a rational route to use abundant, renewable solar power to achieve high-performance and energy-efficient removal of volatile organic compounds.
Collapse
Affiliation(s)
- Zheng Bo
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Shiling Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jing Kong
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jinhui Zhu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Yaolin Wang
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Huachao Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xin Tu
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| |
Collapse
|
46
|
Feng X, Chen C, He C, Chai S, Yu Y, Cheng J. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121143. [PMID: 31518814 DOI: 10.1016/j.jhazmat.2019.121143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 05/14/2023]
Abstract
A novel strategy for removal of toluene by non-thermal plasma (NTP) coupled with metal-organic frameworks (MOFs) derived catalyst was proposed in this work. The MOF-derived porous trimetallic oxide catalyst (MnCoNiOx, MCNO) was prepared by simple pyrolysis of a MOF-74(Mn-Co-Ni) precursor. We found that the MCNO material can well synergy with NTP in total decomposition of toluene owing to its high specific surface area, regular porous structure and excellent reducibility, which endow superior catalytic activity and CO2 selectivity of NTP-MCNO system compared to that of NTP-MnOx, NTP-CoOx and NTP-NiOx. For instance, the toluene degradation efficiency can reach up to 75.7% in NTP-MCNO system with a low specific input energy of 101 J/L, much higher than that of NTP-MnOx (59.3%), NTP-CoOx (70.9%), NTP-NiOx (65.0%) and NTP alone (42.9%). Moreover, the formed ozone (O3) can be well-controlled by the NTP-MCNO system due to the spinel-type oxides (MCNO) derived from MOF could generate more open-formwork structure and improve the mobility of oxygen. The results of this work would shed light on rational design and preparation of spinel-type oxides for oxidation applications, which provides guidance for further improvement of plasma-catalysis system.
Collapse
Affiliation(s)
- Xiangbo Feng
- Shaanxi Key Laboratory of Safety and Durability of Concrete, Xijing University, Xi'an, 710123, Shaanxi, PR China; State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China; Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, 401331, PR China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| | - Shouning Chai
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - Yanke Yu
- Department of Chemical Engineering, Columbia University, New York, 10027, United States
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|
47
|
Improvement of Ethylene Removal Performance by Adsorption/Oxidation in a Pin-Type Corona Discharge Coupled with Pd/ZSM-5 Catalyst. Catalysts 2020. [DOI: 10.3390/catal10010133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The adsorption and plasma-catalytic oxidation of dilute ethylene were performed in a pin-type corona discharge-coupled Pd/ZSM-5 catalyst. The catalyst has an adsorption capacity of 320.6 μ mol g cat − 1 . The catalyst was found to have two different active sites activated at around 340 and 470 °C for ethylene oxidation. The removal of ethylene in the plasma catalyst was carried out by cyclic operation consisting of repetitive steps: (1) adsorption (60 min) followed by (2) plasma-catalytic oxidation (30 min). For the purpose of comparison, the removal of ethylene in the continuous plasma-catalytic oxidation mode was also examined. The ethylene adsorption performance of the catalyst was improved by the cyclic plasma-catalytic oxidation. With at least 80% of C2H4 in the feed being adsorbed, the cyclic plasma-catalytic oxidation was carried out for the total adsorption time of 8 h, whereas it occurred within 2 h of early adsorption in the case of catalyst alone. There was a slight decrease in catalyst adsorption capability with an increased number of adsorption cycles due to the incomplete release of CO2 during the plasma-catalytic oxidation step. However, the decreased rate of adsorption capacity was negligible, which is less than one percent per cycle. Since the activation temperature of all active sites of Pd/ZSM-5 for ethylene oxidation is 470 °C, the specific input energy requirement by heating the feed gas in order to activate the catalyst is estimated to be 544 J/L. This value is higher than that of the continuous plasma-catalytic oxidation (450 J/L) for at least 86% ethylene conversion. Interestingly, the cyclic adsorption and plasma-catalytic oxidation of ethylene is not only a low-temperature oxidation process but also reduces energy consumption. Specifically, the input energy requirement was 225 J/L, which is half that of the continuous plasma-catalytic oxidation; however, the adsorption efficiency and conversion rate were maintained. To summarize, cyclic plasma treatment is an effective ethylene removal technique in terms of low-temperature oxidation and energy consumption.
Collapse
|
48
|
Xu B, Wang N, Xie J, Song Y, Huang Y, Yang W, Yin X, Wu C. Removal of toluene as a biomass tar surrogate by combining catalysis with nonthermal plasma: understanding the processing stability of plasma catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01211d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The processing stability of plasma catalysis was understood in terms of tar removal.
Collapse
Affiliation(s)
- Bin Xu
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Nantao Wang
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Jianjun Xie
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Yanpei Song
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Yanqin Huang
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Wenshen Yang
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Xiuli Yin
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Chuangzhi Wu
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
| |
Collapse
|
49
|
Xin Y, Ando Y, Nakagawa S, Nishikawa H, Shirai T. New possibility of hydroxyapatites as noble-metal-free catalysts towards complete decomposition of volatile organic compounds. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00787k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Initially established catalysis mechanism for the decomposition of VOCs on noble-metal-free hydroxyapatite catalysts.
Collapse
Affiliation(s)
- Yunzi Xin
- Advanced Ceramics Research Center
- Nagoya Institute of Technology
- Nagoya
- 466-8555 Japan
| | - Yuri Ando
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- 466-8555 Japan
| | - Sohei Nakagawa
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- 466-8555 Japan
| | - Harumitsu Nishikawa
- Advanced Ceramics Research Center
- Nagoya Institute of Technology
- Nagoya
- 466-8555 Japan
| | - Takashi Shirai
- Advanced Ceramics Research Center
- Nagoya Institute of Technology
- Nagoya
- 466-8555 Japan
- Department of Life Science and Applied Chemistry
| |
Collapse
|
50
|
Vikrant K, Cho M, Khan A, Kim KH, Ahn WS, Kwon EE. Adsorption properties of advanced functional materials against gaseous formaldehyde. ENVIRONMENTAL RESEARCH 2019; 178:108672. [PMID: 31450145 DOI: 10.1016/j.envres.2019.108672] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Intense efforts have been made to eliminate toxic volatile organic compounds (VOCs) in indoor environments, especially formaldehyde (FA). In this study, the removal performances of gaseous FA using two metal-organic frameworks, MOF-5 and UiO-66-NH2, and two covalent-organic polymers, CBAP-1 (EDA) and CBAP-1 (DETA), along with activated carbon as a conventional reference material, were evaluated. To assess the removal capacity of FA under near-ambient conditions, a series of adsorption experiments were conducted at its concentrations/partial pressures of both low (0.1-0.5 ppm/0.01-0.05 Pa) and high ranges (5-25 ppm/0.5-2.5 Pa). Among all tested materials at the high-pressure region ㅐ (e.g., at 2.5 ppm FA), a maximum adsorption capacity of 69.7 mg g-1 was recorded by UiO-66-NH2. Moreover, UiO-66-NH2 also displayed the best 10% breakthrough volume (BTV10) of 534 L g-1 (0.5 ppm FA) to 2963 L g-1 (0.1 ppm FA). In contrast, at the high concentration test (at 5, 10, and 25 ppm FA), the maximum BTV10 values were observed as: 137 (UiO-66-NH2), 144 (CBAP-1 (DETA)), and 36.8 L g-1 (CBAP-1 (EDA)), respectively. The Langmuir isotherm model was observed to be a better fit of the adsorption data than the Freundlich model under most of the tested conditions. The superiority of UiO-66-NH2 was attributed to the van der Waals interactions between the linkers (framework) and the hydrocarbon "tail" (FA) coupled with interactions between its open metal sites and the FA carbonyl groups. This study demonstrated the good potential of these advanced functional materials toward the practical removal of gaseous FA in indoor environments.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Minkyu Cho
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Azmatullah Khan
- Department of Civil Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05005, Republic of Korea.
| |
Collapse
|