1
|
Koike M, Grosskreuz I, Asakura Y, Miyawaki R, Gies H, Wada H, Shimojima A, Marler B, Kuroda K. Bridging the Gap between Zeolites and Dense Silica Polymorphs: Formation of All-Silica Zeolite with High Framework Density from Natural Layered Silicate Magadiite. Chemistry 2023; 29:e202301942. [PMID: 37486717 DOI: 10.1002/chem.202301942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
A silica zeolite (RWZ-1) with a very high framework density (FD) was synthesized from highly crystalline natural layered silicate magadiite, bridging the gap between the two research areas of zeolites and dense silica polymorphs. Magadiite was topotactically converted into a 3D framework through two-step heat treatment. The resulting structure had a 1D micropore system of channel-like cavities with an FD of 22.1 Si atoms/1000 Å3 . This value is higher than those of all other silica zeolites reported so far, approaching those of silica polymorphs (tridymite (22.6) and α-quartz (26.5)). RWZ-1 is a slight negative thermal expansion material with thermal properties approaching those of dense silica polymorphs. It contributes to the creation of a new field on microporous high-density silica/silicates. Synergistic interactions are expected between the micropores with molecular sieving properties and the dense layer-like building units with different topologies which provide thermal and mechanical stabilities.
Collapse
Affiliation(s)
- Masakazu Koike
- Department of Applied Chemistry Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| | - Isabel Grosskreuz
- Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Yusuke Asakura
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Present Address: Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ritsuro Miyawaki
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Hermann Gies
- Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Hiroaki Wada
- Department of Applied Chemistry Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| | - Bernd Marler
- Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Kazuyuki Kuroda
- Department of Applied Chemistry Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan
| |
Collapse
|
2
|
Sadare OO, Ngobeni R, Daramola MO. Effect of Silica Sodalite Loading on SOD/PSF Membranes during Treatment of Phenol-Containing Wastewater. MEMBRANES 2022; 12:800. [PMID: 36005715 PMCID: PMC9416467 DOI: 10.3390/membranes12080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, silica sodalite (SSOD) was prepared via topotactic conversion and different silica sodalite loadings were infused into the polysulfone (PSF) for application in phenol-containing water treatment. The composite membranes were fabricated through the phase inversion technique. Physicochemical characteristics of the nanoparticles and membranes were checked using a Scanning Electron Microscope (SEM), Brunauer Emmett-Teller (BET), and Fourier Transform Infrared (FTIR) for surface morphology, textural properties, and surface chemistry, respectively. A nanotensile test, Atomic Force Microscopy (AFM), and contact angle measurement were used to check the mechanical properties, surface roughness, and hydrophilicity of the membranes, respectively. SEM results revealed that the pure polysulfone surface is highly porous with large evident pores. However, the pores decreased with increasing SSOD loading. The performance of the fabricated membranes was evaluated using a dead-end filtration device at varying feed pressure during phenol-containing water treatment. The concentration of phenol in water used in this study was 20 mg/L. The pure PSF displayed the maximum phenol rejection of 95 55% at 4 bar, compared to the composite membranes having 61.35% and 64.75% phenol rejection for 5 wt.% SSOD loading and 10 wt.% SSOD loading, respectively. In this study, a novel Psf-infused SSOD membrane was successfully fabricated for the treatment of synthetic phenol-containing water to alleviate the challenges associated with it.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rivoningo Ngobeni
- School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Private Bag X3, Wits, Johannesburg 2050, South Africa
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
3
|
Ntshangase NC, Sadare OO, Daramola MO. Effect of Silica Sodalite Functionalization and PVA Coating on Performance of Sodalite Infused PSF Membrane during Treatment of Acid Mine Drainage. MEMBRANES 2021; 11:315. [PMID: 33925776 PMCID: PMC8145470 DOI: 10.3390/membranes11050315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
In this study, silica sodalite (SSOD) nanoparticles were synthesized by topotactic conversion and functionalized using HNO3/H2SO4 (1:3). The SSOD and functionalized SSOD (fSSOD) nanoparticles were infused into a Polysulfone (Psf) membrane to produce mixed matrix membranes. The membranes were fabricated via the phase inversion method. The membranes and the nanoparticles were characterized using Scanning Electron Microscopy (SEM) to check the morphology of the nanoparticles and the membranes and Fourier Transform Infrared to check the surface chemistry of the nanoparticles and the membranes. Thermal stability of the nanoparticles and the membranes was evaluated using Themogravimetry analysis (TGA) and the degree of hydrophilicity of the membranes was checked via contact angle measurements. The mechanical strength of the membranes and their surface nature (roughness) were checked using a nanotensile instrument and Atomic Force Microscopy (AFM), respectively. The textural property of the nanoparticles were checked by conducting N2 physisorption experiments on the nanoparticles at 77 K. AMD-treatment performance of the fabricated membranes was evaluated in a dead-end filtration cell using a synthetic acid mine drainage (AMD) solution prepared by dissolving a known amount of MgCl2, MnCl2·4H2O, Na2SO4, Al(NO3)3, Fe(NO3)3·9H2O, and Ca2OH2 in deionized water. Results from the N2 physisorption experiments on the nanoparticles at 77 K showed a reduction in surface area and increase in pore diameter of the nanoparticles after functionalization. Performance of the membranes during AMD treatment shows that, at 4 bar, a 10% fSSOD/Psf membrane displayed improved heavy metal rejection >50% for all heavy metals considered, expect the SSOD-loaded membrane that showed a rejection <13% (except for Al3+ 89%). In addition, coating the membranes with a PVA layer improved the antifouling property of the membranes. The effects of multiple PVA coating and behaviour of the membranes during real AMD are not reported in this study, these should be investigated in a future study. Therefore, the newly developed functionalized SSOD infused Psf membranes could find applications in the treatment of AMD or for the removal of heavy metals from wastewater.
Collapse
Affiliation(s)
- Nobuhle C. Ntshangase
- Faculty of Engineering and Built Environment, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Wits, Johannesburg 2050, South Africa;
| | - Olawumi O. Sadare
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| |
Collapse
|
4
|
Ngobeni R, Sadare O, Daramola MO. Synthesis and Evaluation of HSOD/PSF and SSOD/PSF Membranes for Removal of Phenol from Industrial Wastewater. Polymers (Basel) 2021; 13:polym13081253. [PMID: 33924295 PMCID: PMC8070184 DOI: 10.3390/polym13081253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Phenol is regarded as a major pollutant, as the toxicity levels are in the range of 9–25 mg/L for aquatic life and humans. This study embedded silica sodalite (SSOD) and hydroxy sodalite (HSOD) nanoparticles into polysulfone (PSF) for enhancement of its physicochemical properties for treatment of phenol-containing wastewater. The pure polysulfone membranes and sodalite-infused membranes were synthesized via phase inversion. To check the surface morphology, surface hydrophilicity, surface functionality, surface roughness and measure the mechanical properties of the membranes, characterization techniques such as Scanning Electron Microscope (SEM), contact angle measurements, Fourier Transform Infrared, Atomic Force Microscopy (AFM) nanotensile tests were used, respectively. The morphology of the composite membranes showed incorporation of the sodalite crystals decreased the membrane porosity. The results obtained showed the highest contact angle of 83.81° for pure PSF as compared to that of the composite membranes. The composite membranes with 10 wt.% HSOD/PSF and 10 wt.% SSOD/PSF showed mechanical enhancement as indicated by a 20.96% and 19.69% increase in ultimate tensile strength, respectively compared to pure PSF. The performance evaluation of the membranes was done using a dead-end filtration cell at varied feed pressure. Synthetic phenol-containing wastewater was prepared by dissolving one gram of phenol crystals in 1 L of deionized water and used in this study. Results showed higher flux for sodalite infused membranes than pure PSF for both pure and phenol-containing water. However, pure PSF showed the highest phenol rejection of 93.55% as compared to 63.65% and 64.75% achieved by 10 wt.% HSOD/PSF and 10 wt.% SSOD/PSF, respectively. The two sodalite infused membranes have shown enhanced mechanical properties and permeability during treatment of phenol in synthetic wastewater.
Collapse
Affiliation(s)
- Rivoningo Ngobeni
- Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Private Bag X3, Wits, Johannesburg 2050, South Africa;
| | - Olawumi Sadare
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| | - Michael O. Daramola
- Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Private Bag X3, Wits, Johannesburg 2050, South Africa;
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
5
|
Koike M, Sakai R, Enomoto S, Mino T, Sugimura N, Gotoh T, Wada H, Shimojima A, Kuroda K. Encapsulation of Cu nanoparticles in nanovoids of plate-like silica sodalite through interlayer condensation of Cu 2+ ion-exchanged layered silicate RUB-15. Dalton Trans 2020; 49:8067-8074. [PMID: 32388543 DOI: 10.1039/d0dt01083a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interlayer condensation of layered silicates is a unique method for synthesizing zeolites and is effective for the introduction of metal species into platy zeolite frameworks. Layered silicate RUB-15 is a useful starting material because metal ions can be introduced between the layers and zeolite frameworks (all-silica SOD-type zeolite; silica sodalite) can be formed through interlayer condensation. In this study, Cu ions were intercalated into layered silicate RUB-15, and metal Cu nanoparticles were formed in the nanovoids of silica sodalite by a simple heat treatment in an inert atmosphere. Both interlayer condensation and the reduction of Cu2+ ions were confirmed by in situ XRD analysis performed during the heat treatment. The residual interlayer tetramethylammonium ions played two roles: the control of stacking sequence in the interlayer condensation and the reduction of Cu2+ ions. The formed Cu nanoparticles were stable in air atmosphere because of their confinement in the nanovoids of the sodalite frameworks.
Collapse
Affiliation(s)
- Masakazu Koike
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim HI, Yim D, Jeon SJ, Kang TW, Hwang IJ, Lee S, Yang JK, Ju JM, So Y, Kim JH. Modulation of oligonucleotide-binding dynamics on WS 2 nanosheet interfaces for detection of Alzheimer's disease biomarkers. Biosens Bioelectron 2020; 165:112401. [PMID: 32729521 DOI: 10.1016/j.bios.2020.112401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Non-covalent adsorption and desorption of oligonucleotides on two-dimensional nanosheets are widely employed to design nanobiosensors for the rapid optical detection of targets. A precise control over the weak interactions between nanosheet interfaces and oligonucleotides is crucial for a high-sensing performance. Herein, the interface of ultrathin WS2 nanosheets used as a fluorescence quencher was engineered by four different dextran polymers in an aqueous solution to control the adsorption kinetics and thermodynamics of the DNA probe. The WS2 nanosheets, functionalized by the carboxyl group-bearing dextran (CM-dex-WS2) or the trimethylammonium-modified dextran (TMA-dex-WS2), exhibited 3.6-fold faster adsorption rates of the fluorescein-labeled DNA probe (FAM-DNA), which led to the effective fluorescence quenching of FAM, compared to the nanosheets functionalized with pristine dextran (dex-WS2) or the hydrophobic phenoxy groups-bearing dextran (PhO-dex-WS2). Isothermal titration calorimetry measurements showed that the adsorption strength of FAM-DNA for CM-dex-WS2 was one order of magnitude greater than its hybridization energy for a target microRNA (miR-29a) that is well-known as an Alzheimer's disease (AD) biomarker, leading to the unfavorable desorption of the DNA probe from the surface. In contrast, TMA-dex-WS2 exhibited the proper adsorption strength of FAM-DNA, which was lower than its hybridization energy for miR-29a, leading to its favorable desorption from the nanosheet surface along with the noticeable restoration of the quenched fluorescence after its hybridization with miR-29a. Finally, the interface modulation of WS2 nanosheets allowed the selective and sensitive recognition of miR-29a against non-complementary RNA and single base-mismatched RNA in human serum via increases in target-specific fluorescence.
Collapse
Affiliation(s)
- Hye-In Kim
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - DaBin Yim
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Su-Ji Jeon
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Tae Woog Kang
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - In-Jun Hwang
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Sin Lee
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Jin-Kyoung Yang
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Jong-Min Ju
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Yoonhee So
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Jong-Ho Kim
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea.
| |
Collapse
|
7
|
Asakura Y, Sugihara M, Hirohashi T, Torimoto A, Matsumoto T, Koike M, Kuroda Y, Wada H, Shimojima A, Kuroda K. Formation of silicate nanoscrolls through solvothermal treatment of layered octosilicate intercalated with organoammonium ions. NANOSCALE 2019; 11:12924-12931. [PMID: 31250866 DOI: 10.1039/c9nr01651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report silicate nanoscrolls composed of only SiO4 tetrahedra with crystalline walls for the first time in this study. The procedure consists of the intercalation of layered octosilicate with dioctadecyldimethylammonium bromide ((C18)2DMABr) and the subsequent solvothermal treatment of the intercalated material in heptane. The walls of the obtained nanoscrolls are crystalline, which originates from layer crystallinity in the pristine silicate. The direction of rolling up is fixed at the a- or b-axis of the silicate based on the electron diffraction patterns of the nanoscrolls. Desorption of (C18)2DMABr, which is present in addition to (C18)2DMA cations, from the interlayer during solvothermal treatment is likely related to the nanoscrolling process. Although the yield of nanoscrolls is low, these findings will lead to the re-estimation of many layered silicates intercalated with long-chain alkylammonium compounds as precursors for silicate nanoscrolls with crystalline walls.
Collapse
Affiliation(s)
- Yusuke Asakura
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Megumi Sugihara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Takeru Hirohashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Aya Torimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Takuya Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Masakazu Koike
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Yoshiyuki Kuroda
- Green Hydrogen Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Tokohama 240-8501, Japan
| | - Hiroaki Wada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan. and Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|