1
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
2
|
Devlin LA, Dewhurst RM, Sudhindar PD, Sayer JA. Renal ciliopathies. Curr Top Dev Biol 2025; 163:229-305. [PMID: 40254346 DOI: 10.1016/bs.ctdb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Primary cilia are essential cellular organelles with pivotal roles in many signalling pathways. Here we provide an overview of the role of primary cilia within the kidney, starting with primary ciliary structure and key protein complexes. We then highlight the specialised functions of primary cilia, emphasising their role in a group of diseases known as renal ciliopathies. These conditions include forms of polycystic kidney disease, nephronophthisis, and other syndromic ciliopathies, such as Joubert syndrome and Bardet-Biedl syndrome. We explore models of renal ciliopathies, both in vitro and in vivo, shedding light on the molecular mechanisms underlying these diseases including Wnt and Hedgehog signalling pathways, inflammation, and cellular metabolism. Finally, we discuss therapeutic approaches, from current treatments to cutting-edge preclinical research and clinical trials.
Collapse
Affiliation(s)
- Laura A Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca M Dewhurst
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Praveen D Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Renal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; National Institute for Health Research, Newcastle Biomedical Research Centre, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
3
|
Kiranmai G, Chameettachal S, Sriya Y, Duin S, Lode A, Gelinsky M, Akkineni AR, Pati F. Recent trends in the development of in vitro3D kidney models. Biofabrication 2025; 17:022010. [PMID: 39993331 DOI: 10.1088/1758-5090/adb999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The kidneys are vital for maintaining bodily homeostasis and are susceptible to various diseases that disrupt their function. Traditionally, research on kidney diseases has relied on animal models and simplistic two-dimensional cell cultures, which do not fully replicate human tissue pathology. To address this, recent advances focus on developing advanced 3D biomimeticin vitromodels using human-derived cells. These models mimic healthy and diseased kidney tissues with specificity, replicating key elements like glomerular and tubular structures through tissue engineering. By closely mimicking human physiology, they provide a promising platform for studying renal disorders, drug-induced nephrotoxicity, and evaluating new therapies. However, the challenges include optimizing scalability, reproducibility, and long-term stability to enhance reliability in research and clinical applications. This review highlights the transformative potential of 3D biomimeticin vitrokidney models in advancing biomedical research and clinical applications. By focusing on human-specific cell cultures and tissue engineering techniques, these models aim to overcome the limitations of conventional animal models and simplistic 2D cell cultures. The review discusses in detail the various types of biomimetic kidney models currently under development, their specific applications, and the innovative approaches used to construct them. It also addresses the challenges and limitations associated with these models for their widespread adoption and reliability in research settings.
Collapse
Affiliation(s)
- Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Yeleswarapu Sriya
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
4
|
Kimura H, Nishikawa M, Kutsuzawa N, Tokito F, Kobayashi T, Kurniawan DA, Shioda H, Cao W, Shinha K, Nakamura H, Doi K, Sakai Y. Advancements in Microphysiological systems: Exploring organoids and organ-on-a-chip technologies in drug development -focus on pharmacokinetics related organs. Drug Metab Pharmacokinet 2024; 60:101046. [PMID: 39847980 DOI: 10.1016/j.dmpk.2024.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025]
Abstract
This study explored the evolving landscape of Microphysiological Systems (MPS), with a focus on organoids and organ-on-a-chip (OoC) technologies, which are promising alternatives to animal testing in drug discovery. MPS technology offers in vitro models with high physiological relevance, simulating organ function for pharmacokinetic studies. Organoids composed of 3D cell aggregates and OoCs mimicking in vivo environments based on microfluidic platforms represent the forefront of MPS. This paper provides a comprehensive overview of their application in studying the gut, liver, and kidney and their challenges in becoming reliable alternatives to in vivo models. Although MPS technology is not yet fully comparable to in vivo systems, its continued development, aided by in silico, automation, and AI approaches, is anticipated to bring about further advancements. Collaboration across multiple disciplines and ongoing regulatory discussions will be crucial in driving MPS toward practical and ethical applications in biomedical research and drug development.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Naokata Kutsuzawa
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan; Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Takuma Kobayashi
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Dhimas Agung Kurniawan
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Hiroki Shioda
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Wenxin Cao
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Kenta Shinha
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Hiroko Nakamura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Kotaro Doi
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan
| |
Collapse
|
5
|
Saud B, Guha K, Iannacci J, Selishchev S, Sengupta P, Dutta A. Design and simulation of a microfluidics-based artificial glomerular ultrafiltration unit to reduce cell-induced fouling. Artif Organs 2024; 48:1404-1417. [PMID: 39078122 DOI: 10.1111/aor.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The microfluidic-based Glomerulus-on-Chips (GoC) are mostly cell based, that is, 3D cell culture techniques are used to culture glomerular cells in order to mimic glomerular ultrafiltration. These chips require high maintenance to keep cell viability intact. There have been some approaches to build non-cell-based GoCs but many of these approaches have the drawback of membrane fouling. This article presents a structural design and simulation study of a dialysate free microfluidic channel for replicating the function of the human glomerular filtration barrier. The key advancement of the current work is addressing the fouling issue by combining a pre-filter to eliminate cellular components and performing filtration on the blood plasma. METHODS The Laminar Flow Mixture Model in COMSOL Multiphysics 5.6 has been utilized to simulate the behavior of blood flow in the microchannels. The geometrical effect of microchannels on the separation of the filtrate was investigated. The velocity at the inlet of the microchannel and pore size of the filtration membrane are varied to see the change in outflow and filtration fraction. RESULTS The efficiency of the device is calculated in terms of the filtration fraction (FF%) formed. Simulation results show that the filtrate obtained is ~20% of the plasma flow rate in the channel, which resembles the glomerular filtration fraction. CONCLUSION Given that it is not dependent on the functionality of grown cells, the proposed device is anticipated to have a longer lifespan due to its non-cell-based design. The device's cost can be reduced by avoiding cell cultivation inside of it. It can be integrated as a glomerular functional unit with other units of kidney model to build a fully developed artificial kidney.
Collapse
Affiliation(s)
- Bhagyashree Saud
- Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, India
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, India
| | - Jacopo Iannacci
- Center for Sensors and Devices (SD), Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Sergei Selishchev
- National Research University of Electronic Technology (MIET), Moscow, Russia
| | | | - Arindam Dutta
- RG Stone Urology & Laparoscopic Hospital, Kolkata, India
| |
Collapse
|
6
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Yang M, Hong M, Wang G, Wang S, Shen R, Guo J, Shen C, Wang Y. Preparation of 3D Zonal and Interactional Glomerular Models Based on Composite Core–Shell Hydrogel Microspheres. ACS MATERIALS LETTERS 2024; 6:5154-5162. [DOI: 10.1021/acsmaterialslett.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Menghan Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Meiying Hong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Guanxiong Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Siping Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Rui Shen
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Jianxiu Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Chongyang Shen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| |
Collapse
|
8
|
Kiranmai G, Alam A, Chameettachal S, Khandelwal M, Pati F. Engineering a Biomimetic Glomerular Filtration Barrier: Coculturing Endothelial Podocytes on Kidney ECM-Bacterial Cellulose Membrane Hybrid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52008-52022. [PMID: 39305285 DOI: 10.1021/acsami.4c09505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A novel avenue for advancing our understanding of kidney disease mechanisms and developing targeted therapeutics lies in overcoming the limitations of the existing in vitro models. Traditional animal models, while useful, do not fully capture the intricacies of human kidney physiology and pathophysiology. Tissue engineering offers a promising solution, yet current models often fall short in replicating the complex microarchitecture and biochemical milieu of the kidney. To address this challenge, we propose the development of a sophisticated in vitro glomerular filtration barrier (GFB) utilizing advanced biomaterials and a kidney decellularized extracellular matrix (kdECM). In our approach, we employ a bacterial cellulose membrane (BC) as a scaffold, providing a robust framework for cell growth and interaction. Coating this scaffold with kdECM hydrogel derived from caprine kidney tissue via a detergent-free decellularization method ensures the preservation of vital extracellular matrix proteins crucial for cellular compatibility and signaling. Our engineered GFB not only supports the growth of endothelial and podocyte cells but also exhibits the presence of key markers such as CD31 and nephrin, indicating successful cellular integration. Furthermore, the expression of collagen IV, an essential extracellular matrix (ECM) protein, validates the fidelity of our model in simulating cellular interactions within a kdECM matrix. Additionally, we assessed the filtration efficiency of the developed GFB model using albumin, a standard protein, to evaluate its performance under conditions that closely mimic the native physiological environment. This innovative approach, which faithfully recapitulates the native microenvironment of the glomerulus, holds immense promise for elucidating kidney disease mechanisms, conducting permeability studies, and advancing personalized therapeutic strategies. By leveraging cutting-edge biomaterials and tissue-specific coculture technology, this study can be further extended to develop GFB for the treatment of renal diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| |
Collapse
|
9
|
Tian P, Koudis NM, Morais MRPT, Pickard A, Fresquet M, Adamson A, Derby B, Lennon R. Collagen IV assembly is influenced by fluid flow in kidney cell-derived matrices. Cells Dev 2024; 179:203923. [PMID: 38670459 DOI: 10.1016/j.cdev.2024.203923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Kidney podocytes and endothelial cells assemble a complex and dynamic basement membrane that is essential for kidney filtration. Whilst many components of this specialised matrix are known, the influence of fluid flow on its assembly and organisation remains poorly understood. Using the coculture of podocytes and glomerular endothelial cells in a low-shear stress, high-flow bioreactor, we investigated the effect of laminar fluid flow on the composition and assembly of cell-derived matrix. With immunofluorescence and matrix image analysis we found flow-mediated remodelling of collagen IV. Using proteomic analysis of the cell-derived matrix we identified changes in both abundance and composition of matrix proteins under flow, including the collagen-modifying enzyme, prolyl 4-hydroxylase (P4HA1). To track collagen IV assembly, we used CRISPR-Cas9 to knock in the luminescent marker HiBiT to the endogenous COL4A2 gene in podocytes. With this system, we found that collagen IV was secreted and accumulated consistently under both static and flow conditions. However knockdown of P4HA1 in podocytes led to a reduction in the secretion of collagen IV and this was more pronounced under flow. Together, this work demonstrates the effect of fluid flow on the composition, modification, and organisation of kidney cell-derived matrix and provides an in vitro system for investigating flow-induced matrix alteration in the context of kidney development and disease.
Collapse
Affiliation(s)
- Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Nikki-Maria Koudis
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Mychel R P T Morais
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Adam Pickard
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Antony Adamson
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Brian Derby
- School of Materials, University of Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester, UK.
| |
Collapse
|
10
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
11
|
Nam U, Kim J, Yi HG, Jeon JS. Investigation of the Dysfunction Caused by High Glucose, Advanced Glycation End Products, and Interleukin-1 Beta and the Effects of Therapeutic Agents on the Microphysiological Artery Model. Adv Healthc Mater 2024; 13:e2302682. [PMID: 38575148 DOI: 10.1002/adhm.202302682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Diabetes mellitus (DM) has substantial global implications and contributes to vascular inflammation and the onset of atherosclerotic cardiovascular diseases. However, translating the findings from animal models to humans has inherent limitations, necessitating a novel platform. Therefore, herein, an arterial model is established using a microphysiological system. This model successfully replicates the stratified characteristics of human arteries by integrating collagen, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs). Perfusion via a peristaltic pump shows dynamic characteristics distinct from those of static culture models. High glucose, advanced glycation end products (AGEs), and interleukin-1 beta are employed to stimulate diabetic conditions, resulting in notable cellular changes and different levels of cytokines and nitric oxide. Additionally, the interactions between the disease models and oxidized low-density lipoproteins (LDL) are examined. Finally, the potential therapeutic effects of metformin, atorvastatin, and diphenyleneiodonium are investigated. Metformin and diphenyleneiodonium mitigate high-glucose- and AGE-associated pathological changes, whereas atorvastatin affects only the morphology of ECs. Altogether, the arterial model represents a pivotal advancement, offering a robust and insightful platform for investigating cardiovascular diseases and their corresponding drug development.
Collapse
Affiliation(s)
- Ungsig Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Jaesang Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
12
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ-on-Chip Research. Adv Healthc Mater 2024; 13:e2301067. [PMID: 37479227 DOI: 10.1002/adhm.202301067] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Organoids and cells in organ-on-chip platforms replicate higher-level anatomical, physiological, or pathological states of tissues and organs. These technologies are widely regarded by academia, the pharmacological industry and regulators as key biomedical developments. To map advances in this emerging field, a literature analysis of 16,000 article metadata based on a quality-controlled text-mining algorithm is performed. The analysis covers titles, keywords, and abstracts of categorized academic publications in the literature and preprint databases published after 2010. The algorithm identifies and tracks 149 and 107 organs or organ substructures modeled as organoids and organ-on-chip, respectively, stem cell sources, as well as 130 diseases, and 16 groups of organisms other than human and mouse in which organoid/organ-on-chip technology is applied. The analysis illustrates changing diversity and focus in organoid/organ-on-chip research and captures its geographical distribution. The downloadable dataset provided is a robust framework for researchers to interrogate with their own questions.
Collapse
Affiliation(s)
- Jun-Ya Shoji
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Richard P Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, 7522NB, the Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| |
Collapse
|
13
|
Musah S, Bhattacharya R, Himmelfarb J. Kidney Disease Modeling with Organoids and Organs-on-Chips. Annu Rev Biomed Eng 2024; 26:383-414. [PMID: 38424088 PMCID: PMC11479997 DOI: 10.1146/annurev-bioeng-072623-044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.
Collapse
Affiliation(s)
- Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
- Developmental and Stem Cell Biology Program and Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Kidney Research Institute, and Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA;
| |
Collapse
|
14
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Yu T, Yang Q, Peng B, Gu Z, Zhu D. Vascularized organoid-on-a-chip: design, imaging, and analysis. Angiogenesis 2024; 27:147-172. [PMID: 38409567 DOI: 10.1007/s10456-024-09905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024]
Abstract
Vascularized organoid-on-a-chip (VOoC) models achieve substance exchange in deep layers of organoids and provide a more physiologically relevant system in vitro. Common designs for VOoC primarily involve two categories: self-assembly of endothelial cells (ECs) to form microvessels and pre-patterned vessel lumens, both of which include the hydrogel region for EC growth and allow for controlled fluid perfusion on the chip. Characterizing the vasculature of VOoC often relies on high-resolution microscopic imaging. However, the high scattering of turbid tissues can limit optical imaging depth. To overcome this limitation, tissue optical clearing (TOC) techniques have emerged, allowing for 3D visualization of VOoC in conjunction with optical imaging techniques. The acquisition of large-scale imaging data, coupled with high-resolution imaging in whole-mount preparations, necessitates the development of highly efficient analysis methods. In this review, we provide an overview of the chip designs and culturing strategies employed for VOoC, as well as the applicable optical imaging and TOC methods. Furthermore, we summarize the vascular analysis techniques employed in VOoC, including deep learning. Finally, we discuss the existing challenges in VOoC and vascular analysis methods and provide an outlook for future development.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
16
|
Huang W, Chen YY, He FF, Zhang C. Revolutionizing nephrology research: expanding horizons with kidney-on-a-chip and beyond. Front Bioeng Biotechnol 2024; 12:1373386. [PMID: 38605984 PMCID: PMC11007038 DOI: 10.3389/fbioe.2024.1373386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Organs-on-a-chip (OoC) is a microengineered three-dimensional cell culture system developed for decades. Utilizing microfluidic technology, OoC cultivates cells on perfusable channels to construct in vitro organ models, enabling the simulation of organ-level functions under physiological and pathophysiological conditions. The superior simulation capabilities compared to traditional animal experiments and two-dimensional cell cultures, making OoC a valuable tool for in vitro research. Recently, the application of OoC has extended to the field of nephrology, where it replicates various functional units, including glomerulus-on-a-chip, proximal tubule-on-a-chip, distal tubule-on-a-chip, collecting duct-on-a-chip, and even the entire nephron-on-a-chip to precisely emulate the structure and function of nephrons. Moreover, researchers have integrated kidney models into multi-organ systems, establishing human body-on-a-chip platforms. In this review, the diverse functional kidney units-on-a-chip and their versatile applications are outlined, such as drug nephrotoxicity screening, renal development studies, and investigations into the pathophysiological mechanisms of kidney diseases. The inherent advantages and current limitations of these OoC models are also examined. Finally, the synergy of kidney-on-a-chip with other emerging biomedical technologies are explored, such as bioengineered kidney and bioprinting, and a new insight for chip-based renal replacement therapy in the future are prospected.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- *Correspondence: Fang-Fang He, ; Chun Zhang,
| |
Collapse
|
17
|
Hu S, Hang X, Wei Y, Wang H, Zhang L, Zhao L. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review. Cell Commun Signal 2024; 22:136. [PMID: 38374141 PMCID: PMC10875896 DOI: 10.1186/s12964-024-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic kidney disease (DKD) is a long-term and serious complication of diabetes that affects millions of people worldwide. It is characterized by proteinuria, glomerular damage, and renal fibrosis, leading to end-stage renal disease, and the pathogenesis is complex and involves multiple cellular and molecular mechanisms. Among three kinds of intraglomerular cells including podocytes, glomerular endothelial cells (GECs) and mesangial cells (MCs), the alterations in one cell type can produce changes in the others. The cell-to-cell crosstalk plays a crucial role in maintaining the glomerular filtration barrier (GFB) and homeostasis. In this review, we summarized the recent advances in understanding the pathological changes and interactions of these three types of cells in DKD and then focused on the signaling pathways and factors that mediate the crosstalk, such as angiopoietins, vascular endothelial growth factors, transforming growth factor-β, Krüppel-like factors, retinoic acid receptor response protein 1 and exosomes, etc. Furthermore, we also simply introduce the application of the latest technologies in studying cell interactions within glomerular cells and new promising mediators for cell crosstalk in DKD. In conclusion, this review provides a comprehensive and updated overview of the glomerular crosstalk in DKD and highlights its importance for the development of novel intervention approaches.
Collapse
Affiliation(s)
- Shiwan Hu
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xing Hang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
18
|
Louw CJ, de Haan P, Verpoorte E, Baker P. Efficient Electrochemiluminescence Sensing in Microfluidic Biosensors: A Review. Crit Rev Biomed Eng 2024; 52:41-62. [PMID: 38523440 DOI: 10.1615/critrevbiomedeng.2023049565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Microfluidic devices are capable of handling 10-9 L to 10-18 L of fluids by incorporating tiny channels with dimensions of ten to hundreds of micrometers, and they can be fabricated using a wide range of materials including glass, silicon, polymers, paper, and cloth for tailored sensing applications. Microfluidic biosensors integrated with detection methods such as electrochemiluminescence (ECL) can be used for the diagnosis and prognosis of diseases. Coupled with ECL, these tandem devices are capable of sensing biomarkers at nanomolar to picomolar concentrations, reproducibly. Measurement at this low level of concentration makes microfluidic electrochemiluminescence (MF-ECL) devices ideal for biomarker detection in the context of early warning systems for diseases such as myocardial infarction, cancer, and others. However, the technology relies on the nature and inherent characteristics of an efficient luminophore. The luminophore typically undergoes a redox process to generate excited species which emit energy in the form of light upon relaxation to lower energy states. Therefore, in biosensor design the efficiency of the luminophore is critical. This review is focused on the integration of microfluidic devices with biosensors and using electrochemiluminescence as a detection method. We highlight the dual role of carbon quantum dots as a luminophore and co-reactant in electrochemiluminescence analysis, drawing on their unique properties that include large specific surface area, easy functionalization, and unique luminescent properties.
Collapse
Affiliation(s)
- Clementine Juliat Louw
- SensorLab, Chemistry Department, University of the Western Cape, Cape Town, South Africa; Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Pim de Haan
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Elisabeth Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Priscilla Baker
- Department of Chemistry, University of the Western Cape Bellville, 7535, Republic of South Africa
| |
Collapse
|
19
|
Pajoumshariati R, Ewart L, Kujala V, Luc R, Peel S, Corrigan A, Weber H, Nugraha B, Hansen PBL, Williams J. Physiological Replication of the Human Glomerulus Using a Triple Culture Microphysiological System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303131. [PMID: 37867234 PMCID: PMC10667800 DOI: 10.1002/advs.202303131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Indexed: 10/24/2023]
Abstract
The function of the glomerulus depends on the complex cell-cell/matrix interactions and replication of this in vitro would aid biological understanding in both health and disease. Previous models do not fully reflect all cell types and interactions present as they overlook mesangial cells within their 3D matrix. Herein, the development of a microphysiological system that contains all resident renal cell types in an anatomically relevant manner is presented. A detailed transcriptomic analysis of the contributing biology of each cell type, as well as functionally appropriate albumin retention in the system, is demonstrated. The important role of mesangial cells is shown in promoting the health and maturity of the other cell types. Additionally, a comparison of the incremental advances that each individual cell type brings to the phenotype of the others demonstrates that glomerular cells in simple 2D culture exhibit a state more reflective of the dysfunction observed in human disease than previously recognized. This in vitro model will expand the capability to investigate glomerular biology in a more translatable manner by the inclusion of the important mesangial cell compartment.
Collapse
Affiliation(s)
- Ramin Pajoumshariati
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | | | | | | | - Samantha Peel
- Functional Genomics, Research and Early DevelopmentDiscovery SciencesBioPharmaceuticals R&DAstraZenecaCambridgeCB21 6GHUK
| | - Adam Corrigan
- Functional Genomics, Research and Early DevelopmentDiscovery SciencesBioPharmaceuticals R&DAstraZenecaCambridgeCB21 6GHUK
| | | | - Bramasta Nugraha
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | - Pernille B. L. Hansen
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | - Julie Williams
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| |
Collapse
|
20
|
Sun L, Bian F, Xu D, Luo Y, Wang Y, Zhao Y. Tailoring biomaterials for biomimetic organs-on-chips. MATERIALS HORIZONS 2023; 10:4724-4745. [PMID: 37697735 DOI: 10.1039/d3mh00755c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Organs-on-chips are microengineered microfluidic living cell culture devices with continuously perfused chambers penetrating to cells. By mimicking the biological features of the multicellular constructions, interactions among organs, vascular perfusion, physicochemical microenvironments, and so on, these devices are imparted with some key pathophysiological function levels of living organs that are difficult to be achieved in conventional 2D or 3D culture systems. In this technology, biomaterials are extremely important because they affect the microstructures and functionalities of the organ cells and the development of the organs-on-chip functions. Thus, herein, we provide an overview on the advances of biomaterials for the construction of organs-on-chips. After introducing the general components, structures, and fabrication techniques of the biomaterials, we focus on the studies of the functions and applications of these biomaterials in the organs-on-chips systems. Applications of the biomaterial-based organs-on-chips as alternative animal models for pharmaceutical, chemical, and environmental tests are described and highlighted. The prospects for exciting future directions and the challenges of biomaterials for realizing the further functionalization of organs-on-chips are also presented.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
21
|
Wu D, Wu J, Liu H, Shi S, Wang L, Huang Y, Yu X, Lei Z, Ouyang T, Shen J, Wu G, Wang S. A biomimetic renal fibrosis progression model on-chip evaluates anti-fibrotic effects longitudinally in a dynamic fibrogenic niche. LAB ON A CHIP 2023; 23:4708-4725. [PMID: 37840380 DOI: 10.1039/d3lc00393k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Although renal fibrosis can advance chronic kidney disease and progressively lead to end-stage renal failure, no effective anti-fibrotic drugs have been clinically approved. To aid drug development, we developed a biomimetic renal fibrosis progression model on-chip to evaluate anti-fibrotic effects of natural killer cell-derived extracellular vesicles and pirfenidone (PFD) across different fibrotic stages. First, the dynamic interplay between fibroblasts and kidney-derived extracellular matrix (ECM) resembling the fibrogenic niche on-chip demonstrated that myofibroblasts induced by stiff ECM in 3 days were reversed to fibroblasts by switching to soft ECM, which was within 2, but not 7 days. Second, PFD significantly down-regulated the expression of α-SMA in NRK-49F in medium ECM, as opposed to stiff ECM. Third, a study in rats showed that early administration of PFD significantly inhibited renal fibrosis in terms of the expression levels of α-SMA and YAP. Taken together, both on-chip and animal models indicate the importance of early anti-fibrotic intervention for checking the progression of renal fibrosis. Therefore, this renal fibrosis progression on-chip with a feature of recapitulating dynamic biochemical and biophysical cues can be readily used to assess anti-fibrotic candidates and to explore the tipping point when the fibrotic fate can be rescued for better medical intervention.
Collapse
Affiliation(s)
- Di Wu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Jianguo Wu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Hui Liu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Shengyu Shi
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yixiao Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xiaorui Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zhuoyue Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Tanliang Ouyang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jia Shen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Guohua Wu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Shuqi Wang
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| |
Collapse
|
22
|
Pandey S, Chmelir T, Chottova Dvorakova M. Animal Models in Diabetic Research-History, Presence, and Future Perspectives. Biomedicines 2023; 11:2852. [PMID: 37893225 PMCID: PMC10603837 DOI: 10.3390/biomedicines11102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus (DM) is a very serious disease, the incidence of which has been increasing worldwide. The beginning of diabetic research can be traced back to the 17th century. Since then, animals have been experimented on for diabetic research. However, the greatest development of diabetes research occurred in the second half of the last century, along with the development of laboratory techniques. Information obtained by monitoring patients and animal models led to the finding that there are several types of DM that differ significantly from each other in the causes of the onset and course of the disease. Through different types of animal models, researchers have studied the pathophysiology of all types of diabetic conditions and discovered suitable methods for therapy. Interestingly, despite the unquestionable success in understanding DM through animal models, we did not fully succeed in transferring the data obtained from animal models to human clinical research. On the contrary, we have observed that the chances of drug failure in human clinical trials are very high. In this review, we will summarize the history and presence of animal models in the research of DM over the last hundred years. Furthermore, we have summarized the new methodological approaches, such as "organ-on-chip," that have the potential to screen the newly discovered drugs for human clinical trials and advance the level of knowledge about diabetes, as well as its therapy, towards a personalized approach.
Collapse
Affiliation(s)
- Shashank Pandey
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Tomas Chmelir
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| | - Magdalena Chottova Dvorakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic;
| |
Collapse
|
23
|
Liang J, Liu Y. Animal Models of Kidney Disease: Challenges and Perspectives. KIDNEY360 2023; 4:1479-1493. [PMID: 37526653 PMCID: PMC10617803 DOI: 10.34067/kid.0000000000000227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention, and treatment of human kidney diseases.
Collapse
Affiliation(s)
- Jianqing Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
24
|
Finch NC, Neal CR, Welsh GI, Foster RR, Satchell SC. The unique structural and functional characteristics of glomerular endothelial cell fenestrations and their potential as a therapeutic target in kidney disease. Am J Physiol Renal Physiol 2023; 325:F465-F478. [PMID: 37471420 PMCID: PMC10639027 DOI: 10.1152/ajprenal.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Glomerular endothelial cell (GEnC) fenestrations are a critical component of the glomerular filtration barrier. Their unique nondiaphragmed structure is key to their function in glomerular hydraulic permeability, and their aberration in disease can contribute to loss of glomerular filtration function. This review provides a comprehensive update of current understanding of the regulation and biogenesis of fenestrae. We consider diseases in which GEnC fenestration loss is recognized or may play a role and discuss methods with potential to facilitate the study of these critical structures. Literature is drawn from GEnCs as well as other fenestrated cell types such as liver sinusoidal endothelial cells that most closely parallel GEnCs.
Collapse
Affiliation(s)
- Natalie C Finch
- Bristol Renal, University of Bristol, United Kingdom
- Langford Vets, University of Bristol, United Kingdom
| | - Chris R Neal
- Bristol Renal, University of Bristol, United Kingdom
| | - Gavin I Welsh
- Bristol Renal, University of Bristol, United Kingdom
| | | | | |
Collapse
|
25
|
Ibi Y, Nishinakamura R. Kidney Bioengineering for Transplantation. Transplantation 2023; 107:1883-1894. [PMID: 36717963 DOI: 10.1097/tp.0000000000004526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The kidney is an important organ for maintenance of homeostasis in the human body. As renal failure progresses, renal replacement therapy becomes necessary. However, there is a chronic shortage of kidney donors, creating a major problem for transplantation. To solve this problem, many strategies for the generation of transplantable kidneys are under investigation. Since the first reports describing that nephron progenitors could be induced from human induced pluripotent stem cells, kidney organoids have been attracting attention as tools for studying human kidney development and diseases. Because the kidney is formed through the interactions of multiple renal progenitors, current studies are investigating ways to combine these progenitors derived from human induced pluripotent stem cells for the generation of transplantable kidney organoids. Other bioengineering strategies, such as decellularization and recellularization of scaffolds, 3-dimensional bioprinting, interspecies blastocyst complementation and progenitor replacement, and xenotransplantation, also have the potential to generate whole kidneys, although each of these strategies has its own challenges. Combinations of these approaches will lead to the generation of bioengineered kidneys that are transplantable into humans.
Collapse
Affiliation(s)
- Yutaro Ibi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
26
|
Li Z, Li Q, Zhou C, Lu K, Liu Y, Xuan L, Wang X. Organoid-on-a-chip: Current challenges, trends, and future scope toward medicine. BIOMICROFLUIDICS 2023; 17:051505. [PMID: 37900053 PMCID: PMC10613095 DOI: 10.1063/5.0171350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
In vitro organoid models, typically defined as 3D multicellular aggregates, have been extensively used as a promising tool in drug screening, disease progression research, and precision medicine. Combined with advanced microfluidics technique, organoid-on-a-chip can flexibly replicate in vivo organs within the biomimetic physiological microenvironment by accurately regulating different parameters, such as fluid conditions and concentration gradients of biochemical factors. Since engineered organ reconstruction has opened a new paradigm in biomedicine, innovative approaches are increasingly required in micro-nano fabrication, tissue construction, and development of pharmaceutical products. In this Perspective review, the advantages and characteristics of organoid-on-a-chip are first introduced. Challenges in current organoid culture, extracellular matrix building, and device manufacturing techniques are subsequently demonstrated, followed by potential alternative approaches, respectively. The future directions and emerging application scenarios of organoid-on-a-chip are finally prospected to further satisfy the clinical demands.
Collapse
Affiliation(s)
- Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyu Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
27
|
Lee EJ, Krassin ZL, Abaci HE, Mahler GJ, Esch MB. Pumped and pumpless microphysiological systems to study (nano)therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1911. [PMID: 37464464 PMCID: PMC11323280 DOI: 10.1002/wnan.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Fluidic microphysiological systems (MPS) are microfluidic cell culture devices that are designed to mimic the biochemical and biophysical in vivo microenvironments of human tissues better than conventional petri dishes or well-plates. MPS-grown tissue cultures can be used for probing new drugs for their potential primary and secondary toxicities as well as their efficacy. The systems can also be used for assessing the effects of environmental nanoparticles and nanotheranostics, including their rate of uptake, biodistribution, elimination, and toxicity. Pumpless MPS are a group of MPS that often utilize gravity to recirculate cell culture medium through their microfluidic networks, providing some advantages, but also presenting some challenges. They can be operated with near-physiological amounts of blood surrogate (i.e., cell culture medium) that can recirculate in bidirectional or unidirectional flow patterns depending on the device configuration. Here we discuss recent advances in the design and use of both pumped and pumpless MPS with a focus on where pumpless devices can contribute to realizing the potential future role of MPS in evaluating nanomaterials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, Maryland, USA
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Zachary L Krassin
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
| | - Mandy B Esch
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
28
|
Nguyen VVT, Gkouzioti V, Maass C, Verhaar MC, Vernooij RWM, van Balkom BWM. A systematic review of kidney-on-a-chip-based models to study human renal (patho-)physiology. Dis Model Mech 2023; 16:dmm050113. [PMID: 37334839 DOI: 10.1242/dmm.050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
As kidney diseases affect ∼10% of the world population, understanding the underlying mechanisms and developing therapeutic interventions are of high importance. Although animal models have enhanced knowledge of disease mechanisms, human (patho-)physiology may not be adequately represented in animals. Developments in microfluidics and renal cell biology have enabled the development of dynamic models to study renal (patho-)physiology in vitro. Allowing inclusion of human cells and combining different organ models, such as kidney-on-a-chip (KoC) models, enable the refinement and reduction of animal experiments. We systematically reviewed the methodological quality, applicability and effectiveness of kidney-based (multi-)organ-on-a-chip models, and describe the state-of-the-art, strengths and limitations, and opportunities regarding basic research and implementation of these models. We conclude that KoC models have evolved to complex models capable of mimicking systemic (patho-)physiological processes. Commercial chips and human induced pluripotent stem cells and organoids are important for KoC models to study disease mechanisms and assess drug effects, even in a personalized manner. This contributes to the Reduction, Refinement and Replacement of animal models for kidney research. A lack of reporting of intra- and inter-laboratory reproducibility and translational capacity currently hampers implementation of these models.
Collapse
Affiliation(s)
- Vivian V T Nguyen
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
| | - Vasiliki Gkouzioti
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
| | | | - Marianne C Verhaar
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
| | - Robin W M Vernooij
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, 3584CX Utrecht, The Netherlands
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, UMC Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
29
|
Chen K, Li Y, Wang B, Yan X, Tao Y, Song W, Xi Z, He K, Xia Q. Patient-derived models facilitate precision medicine in liver cancer by remodeling cell-matrix interaction. Front Immunol 2023; 14:1101324. [PMID: 37215109 PMCID: PMC10192760 DOI: 10.3389/fimmu.2023.1101324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Liver cancer is an aggressive tumor originating in the liver with a dismal prognosis. Current evidence suggests that liver cancer is the fifth most prevalent cancer worldwide and the second most deadly type of malignancy. Tumor heterogeneity accounts for the differences in drug responses among patients, emphasizing the importance of precision medicine. Patient-derived models of cancer are widely used preclinical models to study precision medicine since they preserve tumor heterogeneity ex vivo in the study of many cancers. Patient-derived models preserving cell-cell and cell-matrix interactions better recapitulate in vivo conditions, including patient-derived xenografts (PDXs), induced pluripotent stem cells (iPSCs), precision-cut liver slices (PCLSs), patient-derived organoids (PDOs), and patient-derived tumor spheroids (PDTSs). In this review, we provide a comprehensive overview of the different modalities used to establish preclinical models for precision medicine in liver cancer.
Collapse
Affiliation(s)
- Kaiwen Chen
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Bingran Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Xuehan Yan
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhou Song
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
30
|
Hou C, Gu Y, Yuan W, Zhang W, Xiu X, Lin J, Gao Y, Liu P, Chen X, Song L. Application of microfluidic chips in the simulation of the urinary system microenvironment. Mater Today Bio 2023; 19:100553. [PMID: 36747584 PMCID: PMC9898763 DOI: 10.1016/j.mtbio.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The urinary system, comprising the kidneys, ureters, bladder, and urethra, has a unique mechanical and fluid microenvironment, which is essential to the urinary system growth and development. Microfluidic models, based on micromachining and tissue engineering technology, can integrate pathophysiological characteristics, maintain cell-cell and cell-extracellular matrix interactions, and accurately simulate the vital characteristics of human tissue microenvironments. Additionally, these models facilitate improved visualization and integration and meet the requirements of the laminar flow environment of the urinary system. However, several challenges continue to impede the development of a tissue microenvironment with controllable conditions closely resemble physiological conditions. In this review, we describe the biochemical and physical microenvironment of the urinary system and explore the feasibility of microfluidic technology in simulating the urinary microenvironment and pathophysiological characteristics in vitro. Moreover, we summarize the current research progress on adapting microfluidic chips for constructing the urinary microenvironment. Finally, we discuss the current challenges and suggest directions for future development and application of microfluidic technology in constructing the urinary microenvironment in vitro.
Collapse
Affiliation(s)
- Changhao Hou
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yubo Gu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wei Yuan
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wukai Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianjie Xiu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Jiahao Lin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yue Gao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peichuan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lujie Song
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| |
Collapse
|
31
|
‘t Hart DC, Yildiz D, Palacio-Castañeda V, Li L, Gumuscu B, Brock R, Verdurmen WPR, van der Vlag J, Nijenhuis T. Co-Culture of Glomerular Endothelial Cells and Podocytes in a Custom-Designed Glomerulus-on-a-Chip Model Improves the Filtration Barrier Integrity and Affects the Glomerular Cell Phenotype. BIOSENSORS 2023; 13:bios13030339. [PMID: 36979551 PMCID: PMC10046631 DOI: 10.3390/bios13030339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Crosstalk between glomerular endothelial cells and glomerular epithelial cells (podocytes) is increasingly becoming apparent as a crucial mechanism to maintain the integrity of the glomerular filtration barrier. However, in vitro studies directly investigating the effect of this crosstalk on the glomerular filtration barrier are scarce because of the lack of suitable experimental models. Therefore, we developed a custom-made glomerulus-on-a-chip model recapitulating the glomerular filtration barrier, in which we investigated the effects of co-culture of glomerular endothelial cells and podocytes on filtration barrier function and the phenotype of these respective cell types. The custom-made glomerulus-on-a-chip model was designed using soft lithography. The chip consisted of two parallel microfluidic channels separated by a semi-permeable polycarbonate membrane. The glycocalyx was visualized by wheat germ agglutinin staining and the barrier integrity of the glomerulus-on-a-chip model was determined by measuring the transport rate of fluorescently labelled dextran from the top to the bottom channel. The effect of crosstalk on the transcriptome of glomerular endothelial cells and podocytes was investigated via RNA-sequencing. Glomerular endothelial cells and podocytes were successfully cultured on opposite sides of the membrane in our glomerulus-on-a-chip model using a polydopamine and collagen A double coating. Barrier integrity of the chip model was significantly improved when glomerular endothelial cells were co-cultured with podocytes compared to monocultures of either glomerular endothelial cells or podocytes. Co-culture enlarged the surface area of podocyte foot processes and increased the thickness of the glycocalyx. RNA-sequencing analysis revealed the regulation of cellular pathways involved in cellular differentiation and cellular adhesion as a result of the interaction between glomerular endothelial cells and podocytes. We present a novel custom-made glomerulus-on-a-chip co-culture model and demonstrated for the first time using a glomerulus-on-a-chip model that co-culture affects the morphology and transcriptional phenotype of glomerular endothelial cells and podocytes. Moreover, we showed that co-culture improves barrier function as a relevant functional readout for clinical translation. This model can be used in future studies to investigate specific glomerular paracrine pathways and unravel the role of glomerular crosstalk in glomerular (patho) physiology.
Collapse
Affiliation(s)
- Daan C. ‘t Hart
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dilemin Yildiz
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Valentina Palacio-Castañeda
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Lanhui Li
- Biosensors and Devices Laboratory, Biomedical Engineering Department, Institute for Complex Molecular Systems, Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Burcu Gumuscu
- Biosensors and Devices Laboratory, Biomedical Engineering Department, Institute for Complex Molecular Systems, Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Roland Brock
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Wouter P. R. Verdurmen
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
32
|
Wang Y, Qin J. Advances in human organoids-on-chips in biomedical research. LIFE MEDICINE 2023; 2:lnad007. [PMID: 39872958 PMCID: PMC11749282 DOI: 10.1093/lifemedi/lnad007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/21/2023] [Indexed: 01/30/2025]
Abstract
Organoids-on-chips is opening up new frontier of research in biomedical field by combining organoids and organs-on-chips technology. The integrative technology offers great opportunities to maximize the potentials of organoids with higher fidelity, thus building advanced organ model systems in a physiologically relevant manner. In this review, we highlight the key features of organoids-on-chips and how this integrative technology could be used to build organoids in higher fidelity under controlled cellular microenvironment. We then introduce the recent progress of organoids-on-chips and their applications in biomedical research. We also discuss the opportunities and challenges of the nascent field of organoids-on-chips that lie ahead to accelerate their utility in disease research, drug testing, and regenerative medicine.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
33
|
Doi K, Kimura H, Kim SH, Kaneda S, Wada T, Tanaka T, Shimizu A, Sano T, Chikamori M, Shinohara M, Matsunaga YT, Nangaku M, Fujii T. Enhanced podocyte differentiation and changing drug toxicity sensitivity through pressure-controlled mechanical filtration stress on a glomerulus-on-a-chip. LAB ON A CHIP 2023; 23:437-450. [PMID: 36546862 DOI: 10.1039/d2lc00941b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Podocytes, localized in the glomerulus, are a prognostic factor of proteinuria in kidney disease and are exposed to distinct physiological stimuli from basal to apical filtration flow. Research studies on drug discovery and disease modeling for glomerulopathy have developed a glomerulus-on-a-chip and studied podocyte mechanobiology to realize alternative methods to animal experiments. However, the effect of filtration stimulus on podocytes has remained unclear. Herein, we report the successful development of a user-friendly filtration culture device and system that can precisely control the filtration flow using air pressure control by incorporating a commercially available culture insert. It allows mouse podocytes to be cultured under filtration conditions for three days with a guarantee of maintaining the integrity of the podocyte layer. Using our system, this study demonstrated that podocyte damage caused by hyperfiltration resulting from glomerular hypertension, a common pathophysiology of many glomerulopathies, was successfully recapitulated and that filtration stimulus promotes the maturation of podocytes in terms of their morphology and gene expression. Furthermore, we demonstrated that filtration stimulus induced different drug responsiveness in podocytes than those seen under static conditions, and that the difference in drug responsiveness was dependent on the pharmacological mechanism. Overall, this study has revealed differentiating and pharmacodynamic properties of filtration stimulus and brings new insights into the research field of podocyte mechanobiology towards the realization of glomerulus-on-a-chip.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Kaneda
- Department of Mechanical Systems Engineering, Faculty of Engineering, Kogakuin University, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Takanori Sano
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
34
|
Singh NK, Kim JY, Lee JY, Lee H, Gao G, Jang J, Kim YK, Cho DW. Coaxial cell printing of a human glomerular model: an in vitroglomerular filtration barrier and its pathophysiology. Biofabrication 2023; 15. [PMID: 36538823 DOI: 10.1088/1758-5090/acad2c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Much effort has been expended in emulating the kidney's glomerular unit because of its limitless potential in the field of drug screening and nephrotoxicity testing in clinics. Herein, we fabricate a functional bilayer glomerular microvessel-on-a-chip that recapitulates the specific arrangement of the glomerular endothelial cell, podocyte layers, and the intervening glomerular basement membrane (GBM) in a single step. Our perfusable chip allows for the co-culture of monolayer glomerular endothelium and podocyte epithelium, which display mature functional markers of glomerular cells, and their proper interactions produce GBM proteins, which are the major components of the GBMin vivo. Furthermore, we test the selective permeability capacity, a representative hallmark function of the glomerular filtration barrier. Lastly, we evaluate the response of our glomerular model to Adriamycin- and hyperglycemia-induced injury to evaluate its applicability for drug screening and glomerular disease modeling.
Collapse
Affiliation(s)
- Narendra K Singh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University (OHSU), Portland, OR 97201, United States of America.,Cancer Early Detection Advanced Research Center (CEDAR), OHSU-Knight Cancer Institute, Portland, OR 97201, United States of America
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jae Yeon Lee
- Department of Companion Animal Health, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon, Republic of Korea.,Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University (KNU), Chuncheon, Republic of Korea
| | - Ge Gao
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| | - Yong Kyun Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomater Sci Eng 2023; 9:62-84. [PMID: 36541361 DOI: 10.1021/acsbiomaterials.2c01080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forecasting the consequence of nanoparticles (NPs) and therapeutically significant molecules before materializing for human clinical trials is a mainstay for drug delivery and screening processes. One of the noteworthy obstacles that has prevented the clinical translation of NP-based drug delivery systems and novel drugs is the lack of effective preclinical platforms. As a revolutionary technology, the organ-on-a-chip (OOC), a coalition of microfluidics and tissue engineering, has surfaced as an alternative to orthodox screening platforms. OOC technology recapitulates the structural and physiological features of human organs along with intercommunications between tissues on a chip. The current review discusses the concept of microfluidics and confers cutting-edge fabrication processes for chip designing. We also outlined the advantages of microfluidics in analyzing NPs in terms of characterization, transport, and degradation in biological systems. The review further elaborates the scope and research on translational nanomedicines in human reproductive organs (testis, placenta, uterus, and menstrual cycle) by taking the advantages offered by microfluidics and shedding light on their potential future implications. Finally, we accentuate the existing challenges for clinical translation and scale-up dynamics for microfluidics chips and emphasize its future perspectives.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College, Edinburgh EH9 3JG, United Kingdom
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do 52725, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
36
|
Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
37
|
Buvall L, Menzies RI, Williams J, Woollard KJ, Kumar C, Granqvist AB, Fritsch M, Feliers D, Reznichenko A, Gianni D, Petrovski S, Bendtsen C, Bohlooly-Y M, Haefliger C, Danielson RF, Hansen PBL. Selecting the right therapeutic target for kidney disease. Front Pharmacol 2022; 13:971065. [PMID: 36408217 PMCID: PMC9666364 DOI: 10.3389/fphar.2022.971065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2025] Open
Abstract
Kidney disease is a complex disease with several different etiologies and underlying associated pathophysiology. This is reflected by the lack of effective treatment therapies in chronic kidney disease (CKD) that stop disease progression. However, novel strategies, recent scientific breakthroughs, and technological advances have revealed new possibilities for finding novel disease drivers in CKD. This review describes some of the latest advances in the field and brings them together in a more holistic framework as applied to identification and validation of disease drivers in CKD. It uses high-resolution 'patient-centric' omics data sets, advanced in silico tools (systems biology, connectivity mapping, and machine learning) and 'state-of-the-art' experimental systems (complex 3D systems in vitro, CRISPR gene editing, and various model biological systems in vivo). Application of such a framework is expected to increase the likelihood of successful identification of novel drug candidates based on strong human target validation and a better scientific understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Lisa Buvall
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I. Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Julie Williams
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kevin J. Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Chanchal Kumar
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna B. Granqvist
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Fritsch
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Denis Feliers
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Anna Reznichenko
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Davide Gianni
- Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Claus Bendtsen
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Carolina Haefliger
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Regina Fritsche Danielson
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pernille B. L. Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
38
|
Kouthouridis S, Robson E, Hartung A, Raha S, Zhang B. Se(XY) matters: the importance of incorporating sex in microphysiological models. Trends Biotechnol 2022; 40:1284-1298. [PMID: 35597689 DOI: 10.1016/j.tibtech.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
The development of microphysiological models is currently at the forefront of preclinical research. Although these 3D tissue models are being developed to mimic physiological organ function and diseases, which are often sexually dimorphic, sex is usually neglected as a biological variable. For decades, national research agencies have required government-funded clinical trials to include both male and female participants as a means of eliminating male bias. However, this is not the case in preclinical trials, which have been shown to favor male rodents in animal studies and male cell types in in vitro studies. In this Opinion, we highlight the importance of considering sex as a biological variable and outline five approaches for incorporating sex-specific features into current microphysiological models.
Collapse
Affiliation(s)
- Sonya Kouthouridis
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Eleanor Robson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Alicia Hartung
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, ON, L8S 4L8, Canada; Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
39
|
McCloskey MC, Zhang VZ, Ahmad SD, Walker S, Romanick SS, Awad HA, McGrath JL. Sourcing cells for in vitro models of human vascular barriers of inflammation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:979768. [PMID: 36483299 PMCID: PMC9724237 DOI: 10.3389/fmedt.2022.979768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 07/20/2023] Open
Abstract
The vascular system plays a critical role in the progression and resolution of inflammation. The contributions of the vascular endothelium to these processes, however, vary with tissue and disease state. Recently, tissue chip models have emerged as promising tools to understand human disease and for the development of personalized medicine approaches. Inclusion of a vascular component within these platforms is critical for properly evaluating most diseases, but many models to date use "generic" endothelial cells, which can preclude the identification of biomedically meaningful pathways and mechanisms. As the knowledge of vascular heterogeneity and immune cell trafficking throughout the body advances, tissue chip models should also advance to incorporate tissue-specific cells where possible. Here, we discuss the known heterogeneity of leukocyte trafficking in vascular beds of some commonly modeled tissues. We comment on the availability of different tissue-specific cell sources for endothelial cells and pericytes, with a focus on stem cell sources for the full realization of personalized medicine. We discuss sources available for the immune cells needed to model inflammatory processes and the findings of tissue chip models that have used the cells to studying transmigration.
Collapse
Affiliation(s)
- Molly C. McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Victor Z. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samuel Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samantha S. Romanick
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Hani A. Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
40
|
Wang D, Gust M, Ferrell N. Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. SENSORS (BASEL, SWITZERLAND) 2022; 22:6889. [PMID: 36146238 PMCID: PMC9503911 DOI: 10.3390/s22186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Matthew Gust
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Statistics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. BIOMICROFLUIDICS 2022; 16:041501. [PMID: 35992641 PMCID: PMC9385224 DOI: 10.1063/5.0087852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This review provides a detailed literature survey on microfluidics and its road map toward kidney-on-chip technology. The whole review has been tailored with a clear description of crucial milestones in regenerative medicine, such as bioengineering, tissue engineering, microfluidics, microfluidic applications in biomedical engineering, capabilities of microfluidics in biomimetics, organ-on-chip, kidney-on-chip for disease modeling, drug toxicity, and implantable devices. This paper also presents future scope for research in the bio-microfluidics domain and biomimetics domain.
Collapse
Affiliation(s)
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Arindam Dutta
- Urologist, RG Stone Urology and Laparoscopic Hospital, Kolkata, West Bengal, India
| | | | | | - Nanda Sai Donepudi
- Medical Interns, Government Siddhartha Medical College, Vijayawada, India
| | - M. Surya Manoj
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Sk. Shahrukh Sohail
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| |
Collapse
|
42
|
Koyilot MC, Natarajan P, Hunt CR, Sivarajkumar S, Roy R, Joglekar S, Pandita S, Tong CW, Marakkar S, Subramanian L, Yadav SS, Cherian AV, Pandita TK, Shameer K, Yadav KK. Breakthroughs and Applications of Organ-on-a-Chip Technology. Cells 2022; 11:cells11111828. [PMID: 35681523 PMCID: PMC9180073 DOI: 10.3390/cells11111828] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Organ-on-a-chip (OOAC) is an emerging technology based on microfluid platforms and in vitro cell culture that has a promising future in the healthcare industry. The numerous advantages of OOAC over conventional systems make it highly popular. The chip is an innovative combination of novel technologies, including lab-on-a-chip, microfluidics, biomaterials, and tissue engineering. This paper begins by analyzing the need for the development of OOAC followed by a brief introduction to the technology. Later sections discuss and review the various types of OOACs and the fabrication materials used. The implementation of artificial intelligence in the system makes it more advanced, thereby helping to provide a more accurate diagnosis as well as convenient data management. We introduce selected OOAC projects, including applications to organ/disease modelling, pharmacology, personalized medicine, and dentistry. Finally, we point out certain challenges that need to be surmounted in order to further develop and upgrade the current systems.
Collapse
Affiliation(s)
- Mufeeda C. Koyilot
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Priyadarshini Natarajan
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Clayton R. Hunt
- Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Sonish Sivarajkumar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Romy Roy
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Shreeram Joglekar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Shruti Pandita
- Mays Cancer Center, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA;
| | - Carl W. Tong
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA;
| | - Shamsudheen Marakkar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | | | - Shalini S. Yadav
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Anoop V. Cherian
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, TX 77030, USA;
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| | - Khader Shameer
- School of Public Health, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| | - Kamlesh K. Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA;
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| |
Collapse
|
43
|
Lin L, Wang X, Niu M, Wu Q, Wang H, Zu Y, Wang W. Biomimetic epithelium/endothelium on chips. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
44
|
Galateanu B, Hudita A, Biru EI, Iovu H, Zaharia C, Simsensohn E, Costache M, Petca RC, Jinga V. Applications of Polymers for Organ-on-Chip Technology in Urology. Polymers (Basel) 2022; 14:1668. [PMID: 35566836 PMCID: PMC9105302 DOI: 10.3390/polym14091668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Organ-on-chips (OOCs) are microfluidic devices used for creating physiological organ biomimetic systems. OOC technology brings numerous advantages in the current landscape of preclinical models, capable of recapitulating the multicellular assemblage, tissue-tissue interaction, and replicating numerous human pathologies. Moreover, in cancer research, OOCs emulate the 3D hierarchical complexity of in vivo tumors and mimic the tumor microenvironment, being a practical cost-efficient solution for tumor-growth investigation and anticancer drug screening. OOCs are compact and easy-to-use microphysiological functional units that recapitulate the native function and the mechanical strain that the cells experience in the human bodies, allowing the development of a wide range of applications such as disease modeling or even the development of diagnostic devices. In this context, the current work aims to review the scientific literature in the field of microfluidic devices designed for urology applications in terms of OOC fabrication (principles of manufacture and materials used), development of kidney-on-chip models for drug-toxicity screening and kidney tumors modeling, bladder-on-chip models for urinary tract infections and bladder cancer modeling and prostate-on-chip models for prostate cancer modeling.
Collapse
Affiliation(s)
- Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Elena Iuliana Biru
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Horia Iovu
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
- Academy of Romanian Scientists, Ilfov Street, 50044 Bucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Eliza Simsensohn
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Razvan-Cosmin Petca
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Viorel Jinga
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| |
Collapse
|
45
|
Salmon I, Grebenyuk S, Abdel Fattah AR, Rustandi G, Pilkington T, Verfaillie C, Ranga A. Engineering neurovascular organoids with 3D printed microfluidic chips. LAB ON A CHIP 2022; 22:1615-1629. [PMID: 35333271 DOI: 10.1039/d1lc00535a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The generation of tissue and organs requires close interaction with vasculature from the earliest moments of embryonic development. Tissue-specific organoids derived from pluripotent stem cells allow for the in vitro recapitulation of elements of embryonic development. However, they are not intrinsically vascularized, which poses a major challenge for their sustained growth, and for understanding the role of vasculature in fate specification and morphogenesis. Current organoid vascularization strategies do not recapitulate the temporal synchronization and spatial orientation needed to ensure in vivo-like early co-development. Here, we developed a human pluripotent stem cell (hPSC)-based approach to generate organoids which interact with vascular cells in a spatially determined manner. The spatial interaction between organoid and vasculature is enabled by the use of a custom designed 3D printed microfluidic chip which allows for a sequential and developmentally matched co-culture system. We show that on-chip hPSC-derived pericytes and endothelial cells sprout and self-assemble into organized vascular networks, and use cerebral organoids as a model system to explore interactions with this de novo generated vasculature. Upon co-development, vascular cells physically interact with the cerebral organoid and form an integrated neurovascular organoid on chip. This 3D printing-based platform is designed to be compatible with any organoid system and is an easy and highly cost-effective way to vascularize organoids. The use of this platform, readily performed in any lab, could open new avenues for understanding and manipulating the co-development of tissue-specific organoids with vasculature.
Collapse
Affiliation(s)
- Idris Salmon
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Sergei Grebenyuk
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Gregorius Rustandi
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | | | - Catherine Verfaillie
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
46
|
Valverde MG, Mille LS, Figler KP, Cervantes E, Li VY, Bonventre JV, Masereeuw R, Zhang YS. Biomimetic models of the glomerulus. Nat Rev Nephrol 2022; 18:241-257. [PMID: 35064233 PMCID: PMC9949601 DOI: 10.1038/s41581-021-00528-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/17/2022]
Abstract
The use of biomimetic models of the glomerulus has the potential to improve our understanding of the pathogenesis of kidney diseases and to enable progress in therapeutics. Current in vitro models comprise organ-on-a-chip, scaffold-based and organoid approaches. Glomerulus-on-a-chip designs mimic components of glomerular microfluidic flow but lack the inherent complexity of the glomerular filtration barrier. Scaffold-based 3D culture systems and organoids provide greater microenvironmental complexity but do not replicate fluid flows and dynamic responses to fluidic stimuli. As the available models do not accurately model the structure or filtration function of the glomerulus, their applications are limited. An optimal approach to glomerular modelling is yet to be developed, but the field will probably benefit from advances in biofabrication techniques. In particular, 3D bioprinting technologies could enable the fabrication of constructs that recapitulate the complex structure of the glomerulus and the glomerular filtration barrier. The next generation of in vitro glomerular models must be suitable for high(er)-content or/and high(er)-throughput screening to enable continuous and systematic monitoring. Moreover, coupling of glomerular or kidney models with those of other organs is a promising approach to enable modelling of partial or full-body responses to drugs and prediction of therapeutic outcomes.
Collapse
Affiliation(s)
- Marta G Valverde
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Luis S Mille
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kianti P Figler
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Ernesto Cervantes
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Vanessa Y Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Joseph V Bonventre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
47
|
Doi K, Kimura H, Matsunaga YT, Fujii T, Nangaku M. Glomerulus-on-a-Chip: Current Insights and Future Potential Towards Recapitulating Selectively Permeable Filtration Systems. Int J Nephrol Renovasc Dis 2022; 15:85-101. [PMID: 35299832 PMCID: PMC8922329 DOI: 10.2147/ijnrd.s344725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Glomerulopathy, characterized by a dysfunctional glomerular capillary wall, results in proteinuria, leading to end-stage renal failure and poor clinical outcomes, including renal death and increased overall mortality. Conventional glomerulopathy research, including drug discovery, has mostly relied on animal experiments because in-vitro glomerulus models, capable of evaluating functional selective permeability, was unavailable in conventional in-vitro cell culture systems. However, animal experiments have limitations, including time- and cost-consuming, multi-organ effects, unstable reproducibility, inter-species reliability, and the social situation in the EU and US, where animal experiments have been discouraged. Glomerulus-on-a-chip, a new in-vitro organ model, has recently been developed in the field of organ-on-a-chip research based on microfluidic device technology. In the glomerulus-on-a-chip, the podocytes and endothelial cells are co-cultured in a microfluidic device with physical stimuli that mimic the physiological environment to enhance cell function to construct a functional filtration barrier, which can be assessed by permeability assays using fluorescently labeled molecules including inulin and albumin. A combination of this glomerulus-on-a chip technology with the culture technology to induce podocytes and endothelial cells from the human pluripotent stem cells could provide an alternative organ model and solve the issue of animal experiments. Additionally, previous experiments have verified the difference in the leakage of albumin using differentiated podocytes derived from patients with Alport syndrome, such that it could be applied to intractable hereditary glomerulopathy models. In this review, we provide an overview of the features of the existing glomerulus-on-a-chip systems, focusing on how they can address selective permeability verification tests, and the challenges they involved. We finally discuss the future approaches that should be developed for solving those challenges and allow further improvement of glomerulus-on-a-chip technologies.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | | | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022; 23:2662. [PMID: 35269803 PMCID: PMC8910155 DOI: 10.3390/ijms23052662] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
The superiority of in vitro 3D cultures over conventional 2D cell cultures is well recognized by the scientific community for its relevance in mimicking the native tissue architecture and functionality. The recent paradigm shift in the field of tissue engineering toward the development of 3D in vitro models can be realized with its myriad of applications, including drug screening, developing alternative diagnostics, and regenerative medicine. Hydrogels are considered the most suitable biomaterial for developing an in vitro model owing to their similarity in features to the extracellular microenvironment of native tissue. In this review article, recent progress in the use of hydrogel-based biomaterial for the development of 3D in vitro biomimetic tissue models is highlighted. Discussions of hydrogel sources and the latest hybrid system with different combinations of biopolymers are also presented. The hydrogel crosslinking mechanism and design consideration are summarized, followed by different types of available hydrogel module systems along with recent microfabrication technologies. We also present the latest developments in engineering hydrogel-based 3D in vitro models targeting specific tissues. Finally, we discuss the challenges surrounding current in vitro platforms and 3D models in the light of future perspectives for an improved biomimetic in vitro organ system.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
49
|
Ajay AK. Functional Drug Screening using Kidney Cells On-A-Chip: Advances in Disease Modeling and Development of Biomarkers. KIDNEY360 2022; 3:194-198. [PMID: 35373124 PMCID: PMC8967633 DOI: 10.34067/kid.0007172021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Amrendra K. Ajay
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:41-91. [PMID: 35094781 DOI: 10.1016/bs.pmbts.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ. The advantages of such systems are not only their ability to recapitulate the complex biochemical interactions between different human cell types but also to incorporate physical forces, including shear stress and mechanical stretching or compression. To improve this model, and to reproduce the absorption, distribution, metabolism, and elimination process of an exogenous compound, organ-on-chips can even be linked fluidically to mimic physiological interactions between different organs, leading to the development of body-on-chips. Although these technologies are still at a young age and need to address a certain number of limitations, they already demonstrated their relevance to study the effect of drugs or toxins on organs, displaying a similar response to what is observed in vivo. The purpose of this review is to present the evolution from organ-on-chip to body-on-chip, examine their current use for drug testing and discuss their advantages and future challenges they will face in order to become an essential pillar of pharmaceutical research.
Collapse
|