1
|
An L, Liu Y, Liu Y. Organ-on-a-Chip Applications in Microfluidic Platforms. MICROMACHINES 2025; 16:201. [PMID: 40047688 PMCID: PMC11857120 DOI: 10.3390/mi16020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/09/2025]
Abstract
Microfluidic technology plays a crucial role in organ-on-a-chip (OoC) systems by replicating human physiological processes and disease states, significantly advancing biomedical research and drug discovery. This article reviews the design and fabrication processes of microfluidic devices. It also explores how these technologies are integrated into OoC platforms to simulate human physiological environments, highlighting key principles, technological advances, and diverse applications. Through case studies involving the simulation of multiple organs such as the heart, liver, and lungs, the article evaluates the impact of OoC systems' integrated microfluidic technology on drug screening, toxicity assessment, and personalized medicine. In addition, this article considers technical challenges, ethical issues, and future directions, and looks ahead to further optimizing the functionality and biomimetic precision of OoCs through innovation, emphasizing its critical role in promoting personalized medicine and precision treatment strategies.
Collapse
Affiliation(s)
- Ling An
- School of Engineering, Dali University, Dali 671003, China;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671003, China;
| | - Yaling Liu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev 2023; 52:8531-8579. [PMID: 37882143 PMCID: PMC10712221 DOI: 10.1039/d3cs00417a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 10/27/2023]
Abstract
Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, Zürich, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Science, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
3
|
Recent development of microfluidic biosensors for the analysis of antibiotic residues. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
A Facile Integrated Microfluidic Chip Based On Chitosan-Gold Nanoparticles-Anchored Three-Dimensional Graphene Fiber Film for Monitoring Prostate Specific Antigen. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
All-in-One Optofluidic Chip for Molecular Biosensing Assays. BIOSENSORS 2022; 12:bios12070501. [PMID: 35884304 PMCID: PMC9313335 DOI: 10.3390/bios12070501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
Integrated biosensor platforms have become subjects of high interest for consolidated assay preparation and analysis to reduce sample-to-answer response times. By compactly combining as many biosensor processes and functions as possible into a single lab-on-chip device, all-in-one point-of-care devices can aid in the accessibility and speed of deployment due to their compact size and portability. Biomarker assay preparation and sensing are functionalities that are often carried out on separate devices, thus increasing opportunity of contamination, loss of sample volume, and other forms of error. Here, we demonstrate a complete lab-on-chip system combining sample preparation, on-chip optofluidic dye laser, and optical detection. We first show the integration of an on-chip distributed feedback dye laser for alignment-free optical excitation of particles moving through a fluidic channel. This capability is demonstrated by using Rhodamine 6G as the gain medium to excite single fluorescent microspheres at 575 nm. Next, we present an optofluidic PDMS platform combining a microvalve network (automaton) for sample preparation of nanoliter volumes, on-chip distributed feedback dye laser for target excitation, and optical detection. We conduct concurrent capture and fluorescence tagging of Zika virus nucleic acid on magnetic beads in 30 min. Target-carrying beads are then optically excited using the on-chip laser as they flow through an analysis channel, followed by highly specific fluorescence detection. This demonstration of a complete all-in-one biosensor is a tangible step in the development of a rapid, point-of-care device that can assist in limiting the severity of future outbreaks.
Collapse
|
6
|
Riesen N, Peterkovic ZQ, Guan B, François A, Lancaster DG, Priest C. Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics. SENSORS 2022; 22:s22114135. [PMID: 35684755 PMCID: PMC9185560 DOI: 10.3390/s22114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022]
Abstract
The rapid development of optofluidic technologies in recent years has seen the need for sensing platforms with ease-of-use, simple sample manipulation, and high performance and sensitivity. Herein, an integrated optofluidic sensor consisting of a pillar array-based open microfluidic chip and caged dye-doped whispering gallery mode microspheres is demonstrated and shown to have potential for simple real-time monitoring of liquids. The open microfluidic chip allows for the wicking of a thin film of liquid across an open surface with subsequent evaporation-driven flow enabling continuous passive flow for sampling. The active dye-doped whispering gallery mode microspheres placed between pillars, avoid the use of cumbersome fibre tapers to couple light to the resonators as is required for passive microspheres. The performance of this integrated sensor is demonstrated using glucose solutions (0.05–0.3 g/mL) and the sensor response is shown to be dynamic and reversible. The sensor achieves a refractive index sensitivity of ~40 nm/RIU, with Q-factors of ~5 × 103 indicating a detection limit of ~3 × 10−3 RIU (~20 mg/mL glucose). Further enhancement of the detection limit is expected by increasing the microsphere Q-factor using high-index materials for the resonators, or alternatively, inducing lasing. The integrated sensors are expected to have significant potential for a host of downstream applications, particularly relating to point-of-care diagnostics.
Collapse
Affiliation(s)
- Nicolas Riesen
- Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (Z.Q.P.); (B.G.); (A.F.); (D.G.L.); (C.P.)
- ARC Research Hub for Integrated Devices for End-User Analysis at Low-Levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence:
| | - Zane Q. Peterkovic
- Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (Z.Q.P.); (B.G.); (A.F.); (D.G.L.); (C.P.)
| | - Bin Guan
- Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (Z.Q.P.); (B.G.); (A.F.); (D.G.L.); (C.P.)
- ARC Research Hub for Integrated Devices for End-User Analysis at Low-Levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Alexandre François
- Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (Z.Q.P.); (B.G.); (A.F.); (D.G.L.); (C.P.)
| | - David G. Lancaster
- Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (Z.Q.P.); (B.G.); (A.F.); (D.G.L.); (C.P.)
- ARC Research Hub for Integrated Devices for End-User Analysis at Low-Levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Craig Priest
- Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (Z.Q.P.); (B.G.); (A.F.); (D.G.L.); (C.P.)
- ARC Research Hub for Integrated Devices for End-User Analysis at Low-Levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
7
|
Cheng Q, Feng J, Wu T, Zhang N, Wang X, Ma H, Sun X, Wei Q. Microfluidic Ratiometric Photoelectrochemical Biosensor Using a Magnetic Field on a Photochromic Composite Platform: A Proof-of-Concept Study for Magnetic-Photoelectrochemical Bioanalysis. Anal Chem 2021; 93:13680-13686. [PMID: 34585582 DOI: 10.1021/acs.analchem.1c03171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating a microfluidic sensor with a ratiometric photoelectrochemical (PEC) strategy to build a bioanalysis device for actual sample testing is often limited to large-volume space-resolution equipment and wavelength-dependent or potential-dependent paired photoactive materials. This work reports a microfluidic ratiometric magnetic-photoelectrochemical (M-PEC) biosensor on the photochromic composite platform to solve the above problems. In particular, as a proof-of-concept study, the platform Bi2WO6-x/amorphous BiOCl nanosheets/Bi2S3 (p-BWO-s) mediated by photochromic color centers and the magnetic photoactive secondary antibody marker ZnFe2O4@Ag2O are integrated on the microfluidic biosensor. By enhancement of the photochromic color centers, p-BWO-s outputs a considerable photocurrent signal. Meanwhile, the photoactivity of the secondary antibody marker can be changed with a magnetic field; thus, different photocurrent signals can be obtained to realize ratiometric detection. The quenching photocurrent signal without the magnetic field and the difference photocurrent signal under the magnetic field are quantitatively related to the target concentration, which unfolds a novel general strategy for bioanalysis. Different from traditional ratiometric PEC biosensors, this work characterizes the first ratiometric PEC biosensor based on an external magnetic field. Generally speaking, combined with different biorecognition cases, this scheme with good expansibility brings a unique new perspective.
Collapse
Affiliation(s)
- Qian Cheng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, P. R. China
| | - Jinhui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, P. R. China
| | - Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, P. R. China
| | - Xueying Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, P. R. China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
8
|
Shi Y, Ye P, Yang K, Meng J, Guo J, Pan Z, Bayin Q, Zhao W. Application of Microfluidics in Immunoassay: Recent Advancements. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2959843. [PMID: 34326976 PMCID: PMC8302407 DOI: 10.1155/2021/2959843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.
Collapse
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Ye
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kuojun Yang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jie Meng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhixiang Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiaoge Bayin
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
9
|
Asano K, Didier P, Ohshiro K, Lobato-Dauzier N, Genot AJ, Minamiki T, Fujii T, Minami T. Real-Time Detection of Glyphosate by a Water-Gated Organic Field-Effect Transistor with a Microfluidic Chamber. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7305-7311. [PMID: 34110177 DOI: 10.1021/acs.langmuir.1c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper reports the development of a real-time monitoring system utilizing the combination of a water-gated organic field-effect transistor (WG-OFET) and a microfluidic chamber for the detection of the herbicide glyphosate (GlyP). For the realization of the real-time sensing with the WG-OFET, the surface of a polymer semiconductor was utilized as a sensing unit. The aqueous solution including the target analyte, which is employed as a gate dielectric of the WG-OFET, flows into a designed microfluidic chamber on the semiconductor layer and the gate electrode. As the sensing mechanism, the WG-OFET-based sensor utilizes the competitive complexation among carboxylate-functionalized polythiophene, a copper(II) (Cu2+) ion, and GlyP. The reversible accumulation and desorption of the positively charged Cu2+ ion on the semiconductor surface induced a change in the electrical double-layer capacitance (EDLC). The optimization of the microfluidic chamber enables a uniform water flow and contributes to real-time quantitative sensing of GlyP at a micromolar level. Thus, this study would lead to practical real-time sensing in water for various fields including environmental assessment.
Collapse
Affiliation(s)
- Koichiro Asano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Pierre Didier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Nicolas Lobato-Dauzier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Anthony J Genot
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
10
|
Soler M, Estevez MC, Cardenosa-Rubio M, Astua A, Lechuga LM. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens 2020; 5:2663-2678. [PMID: 32786383 PMCID: PMC7447078 DOI: 10.1021/acssensors.0c01180] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
The global sanitary crisis caused by the emergence of the respiratory virus SARS-CoV-2 and the COVID-19 outbreak has revealed the urgent need for rapid, accurate, and affordable diagnostic tests to broadly and massively monitor the population in order to properly manage and control the spread of the pandemic. Current diagnostic techniques essentially rely on polymerase chain reaction (PCR) tests, which provide the required sensitivity and specificity. However, its relatively long time-to-result, including sample transport to a specialized laboratory, delays massive detection. Rapid lateral flow tests (both antigen and serological tests) are a remarkable alternative for rapid point-of-care diagnostics, but they exhibit critical limitations as they do not always achieve the required sensitivity for reliable diagnostics and surveillance. Next-generation diagnostic tools capable of overcoming all the above limitations are in demand, and optical biosensors are an excellent option to surpass such critical issues. Label-free nanophotonic biosensors offer high sensitivity and operational robustness with an enormous potential for integration in compact autonomous devices to be delivered out-of-the-lab at the point-of-care (POC). Taking the current COVID-19 pandemic as a critical case scenario, we provide an overview of the diagnostic techniques for respiratory viruses and analyze how nanophotonic biosensors can contribute to improving such diagnostics. We review the ongoing published work using this biosensor technology for intact virus detection, nucleic acid detection or serological tests, and the key factors for bringing nanophotonic POC biosensors to accurate and effective COVID-19 diagnosis on the short term.
Collapse
Affiliation(s)
| | | | - Maria Cardenosa-Rubio
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro Astua
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Advanced Fabrication Techniques of Microengineered Physiological Systems. MICROMACHINES 2020; 11:mi11080730. [PMID: 32731495 PMCID: PMC7464561 DOI: 10.3390/mi11080730] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
The field of organs-on-chips (OOCs) has experienced tremendous growth over the last decade. However, the current main limiting factor for further growth lies in the fabrication techniques utilized to reproducibly create multiscale and multifunctional devices. Conventional methods of photolithography and etching remain less useful to complex geometric conditions with high precision needed to manufacture the devices, while laser-induced methods have become an alternative for higher precision engineering yet remain costly. Meanwhile, soft lithography has become the foundation upon which OOCs are fabricated and newer methods including 3D printing and injection molding show great promise to innovate the way OOCs are fabricated. This review is focused on the advantages and disadvantages associated with the commonly used fabrication techniques applied to these microengineered physiological systems (MPS) and the obstacles that remain in the way of further innovation in the field.
Collapse
|
12
|
Akbaridoust F, de Silva CM, Szydzik C, Mitchell A, Marusic I, Nesbitt WS. Experimental fluid dynamics characterization of a novel micropump-mixer. BIOMICROFLUIDICS 2020; 14:044116. [PMID: 32849975 PMCID: PMC7442494 DOI: 10.1063/5.0012240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The application of lab-on-a-chip systems to biomedical engineering and medical biology is rapidly growing. Reciprocating micropumps show significant promise as automated bio-fluid handling systems and as active reagent-to-sample mixers. Here, we describe a thorough fluid dynamic analysis of an active micro-pump-mixer designed for applications of preclinical blood analysis and clinical diagnostics in hematology. Using high-speed flow visualization and micro-particle image velocimetry measurements, a parametric study is performed to investigate the fluid dynamics of six discrete modes of micropump operation. With this approach, we identify an actuation regime that results in optimal sample flow rates while concomitantly maximizing reagent-to-sample mixing.
Collapse
Affiliation(s)
| | - C. M. de Silva
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - C. Szydzik
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - A. Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - I. Marusic
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - W. S. Nesbitt
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
13
|
Hamilton ES, Ganjalizadeh V, Wright JG, Schmidt H, Hawkins AR. 3D Hydrodynamic Focusing in Microscale Optofluidic Channels Formed with a Single Sacrificial Layer. MICROMACHINES 2020; 11:E349. [PMID: 32230783 PMCID: PMC7230747 DOI: 10.3390/mi11040349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022]
Abstract
Optofluidic devices are capable of detecting single molecules, but greater sensitivity and specificity is desired through hydrodynamic focusing (HDF). Three-dimensional (3D) hydrodynamic focusing was implemented in 10-μm scale microchannel cross-sections made with a single sacrificial layer. HDF is achieved using buffer fluid to sheath the sample fluid, requiring four fluid ports to operate by pressure driven flow. A low-pressure chamber, or pit, formed by etching into a substrate, enables volumetric flow ratio-induced focusing at a low flow velocity. The single layer design simplifies surface micromachining and improves device yield by 1.56 times over previous work. The focusing design was integrated with optical waveguides and used in order to analyze fluorescent signals from beads in fluid flow. The implementation of the focusing scheme was found to narrow the distribution of bead velocity and fluorescent signal, giving rise to 33% more consistent signal. Reservoir effects were observed at low operational vacuum pressures and a balance between optofluidic signal variance and intensity was achieved. The implementation of the design in optofluidic sensors will enable higher detection sensitivity and sample specificity.
Collapse
Affiliation(s)
- Erik S. Hamilton
- Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA; (J.G.W.); (A.R.H.)
| | - Vahid Ganjalizadeh
- Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; (V.G.); (H.S.)
| | - Joel G. Wright
- Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA; (J.G.W.); (A.R.H.)
| | - Holger Schmidt
- Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; (V.G.); (H.S.)
| | - Aaron R. Hawkins
- Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA; (J.G.W.); (A.R.H.)
| |
Collapse
|
14
|
Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced Evanescent-Wave Optical Biosensors for the Detection of Nucleic Acids: An Analytic Perspective. Front Chem 2019; 7:724. [PMID: 31709240 PMCID: PMC6823211 DOI: 10.3389/fchem.2019.00724] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Evanescent-wave optical biosensors have become an attractive alternative for the screening of nucleic acids in the clinical context. They possess highly sensitive transducers able to perform detection of a wide range of nucleic acid-based biomarkers without the need of any label or marker. These optical biosensor platforms are very versatile, allowing the incorporation of an almost limitless range of biorecognition probes precisely and robustly adhered to the sensor surface by covalent surface chemistry approaches. In addition, their application can be further enhanced by their combination with different processes, thanks to their integration with complex and automated microfluidic systems, facilitating the development of multiplexed and user-friendly platforms. The objective of this work is to provide a comprehensive synopsis of cutting-edge analytical strategies based on these label-free optical biosensors able to deal with the drawbacks related to DNA and RNA detection, from single point mutations assays and epigenetic alterations, to bacterial infections. Several plasmonic and silicon photonic-based biosensors are described together with their most recent applications in this area. We also identify and analyse the main challenges faced when attempting to harness this technology and how several innovative approaches introduced in the last years manage those issues, including the use of new biorecognition probes, surface functionalization approaches, signal amplification and enhancement strategies, as well as, sophisticated microfluidic solutions.
Collapse
Affiliation(s)
- Cesar S. Huertas
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| |
Collapse
|
15
|
Knoerzer M, Szydzik C, Ren G, Huertas CS, Palmer S, Tang P, Nguyen TG, Bui L, Boes A, Mitchell A. Optical frequency comb based system for photonic refractive index sensor interrogation. OPTICS EXPRESS 2019; 27:21532-21545. [PMID: 31510229 DOI: 10.1364/oe.27.021532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
In this contribution, we demonstrate how an optical frequency comb can be used to enhance the functionality of an integrated photonic biosensor platform. We show that if an optical frequency comb is used to sample the spectral response of a Mach-Zehnder interferometer and if the line spacing is arranged to sample the periodic response at 120° intervals, then it is possible to combine these samples into a single measurement of the interferometer phase. This phase measurement approach is accurate, independent of the bias of the interferometer and robust against intensity fluctuations that are common to each of the comb lines. We demonstrate this approach with a simple silicon photonic interferometric refractive index sensor and show that the benefits of our approach can be obtained without degrading the lower limit of detection of 3.70×10-7 RIU.
Collapse
|
16
|
Liang L, Jin L, Ran Y, Sun LP, Guan BO. Fiber Light-Coupled Optofluidic Waveguide (FLOW) Immunosensor for Highly Sensitive Detection of p53 Protein. Anal Chem 2018; 90:10851-10857. [PMID: 30141911 DOI: 10.1021/acs.analchem.8b02123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly sensitive detection of molecular tumor markers is essential for biomarker-based cancer diagnostics. In this work, we showcase the implementation of fiber light-coupled optofluidic waveguide (FLOW) immunosensor for the detection of p53 protein, a typical tumor marker. The FLOW consists of a liquid-core capillary and an accompanying optical fiber, which allows evanescent interaction between light and microfluidic sample. Molecular binding at internal surface of the capillary induces a response in wavelength shift of the transmission spectrum in the optical fiber. To enable highly sensitive molecular detection, the evanescent-wave interaction has been strengthened by enlarging shape factor R via fine geometry control. The proposed FLOW immunosensor works with flowing microfluid, which increases the surface molecular coverage and improves the detection limit. As a result, the FLOW immunosensor presents a log-linear response to the tumor protein at concentrations ranging from 10 fg/mL up to 10 ng/mL. In addition, the nonspecifically adsorbed molecules can be effectively removed by the fluid at an optimal flow rate, which benefits the accuracy of the measurement. Tested in serum samples, the FLOW successfully maintains its sensitivity and specificity on p53 protein, making it suitable for diagnostics applications.
Collapse
Affiliation(s)
- Lili Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China.,Department of Biomedical Engineering , Duke University , Durham , 27708 , United States
| | - Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
17
|
A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. INVENTIONS 2018. [DOI: 10.3390/inventions3030060] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microfluidic devices currently play an important role in many biological, chemical, and engineering applications, and there are many ways to fabricate the necessary channel and feature dimensions. In this review, we provide an overview of microfabrication techniques that are relevant to both research and commercial use. A special emphasis on both the most practical and the recently developed methods for microfluidic device fabrication is applied, and it leads us to specifically address laminate, molding, 3D printing, and high resolution nanofabrication techniques. The methods are compared for their relative costs and benefits, with special attention paid to the commercialization prospects of the various technologies.
Collapse
|